5 research outputs found

    Quantum Particle Swarm Optimization Algorithm Based on Dynamic Adaptive Search Strategy

    Get PDF
    The particle swarm system simulates the evolution of the social mechanism. In this system, the individual particle representing the potential solution flies in the multidimensional space in order to find the better or the optimal solution. But because of the search path and limited speed, it's hard to avoid local best and the premature phenomenon occurs easily. Based on the uncertain principle of the quantum mechanics, the global search ability of the quantum particle swarm optimization (QPSO) algorithms are better than the particle swarm optimization algorithm (PSO). On the basis of the fundamental quantum PSO algorithm, this article introduces the grouping optimization strategy, and meanwhile adopts the dynamic adjustment, quantum mutation and possibility acceptance criteria to improve the global search capability of the algorithm and avoid premature convergence phenomenon. By optimizing the test functions, the experimental simulation shows that the proposed algorithm has better global convergence and search ability

    The design and applications of the african buffalo algorithm for general optimization problems

    Get PDF
    Optimization, basically, is the economics of science. It is concerned with the need to maximize profit and minimize cost in terms of time and resources needed to execute a given project in any field of human endeavor. There have been several scientific investigations in the past several decades on discovering effective and efficient algorithms to providing solutions to the optimization needs of mankind leading to the development of deterministic algorithms that provide exact solutions to optimization problems. In the past five decades, however, the attention of scientists has shifted from the deterministic algorithms to the stochastic ones since the latter have proven to be more robust and efficient, even though they do not guarantee exact solutions. Some of the successfully designed stochastic algorithms include Simulated Annealing, Genetic Algorithm, Ant Colony Optimization, Particle Swarm Optimization, Bee Colony Optimization, Artificial Bee Colony Optimization, Firefly Optimization etc. A critical look at these ‘efficient’ stochastic algorithms reveals the need for improvements in the areas of effectiveness, the number of several parameters used, premature convergence, ability to search diverse landscapes and complex implementation strategies. The African Buffalo Optimization (ABO), which is inspired by the herd management, communication and successful grazing cultures of the African buffalos, is designed to attempt solutions to the observed shortcomings of the existing stochastic optimization algorithms. Through several experimental procedures, the ABO was used to successfully solve benchmark optimization problems in mono-modal and multimodal, constrained and unconstrained, separable and non-separable search landscapes with competitive outcomes. Moreover, the ABO algorithm was applied to solve over 100 out of the 118 benchmark symmetric and all the asymmetric travelling salesman’s problems available in TSPLIB95. Based on the successful experimentation with the novel algorithm, it is safe to conclude that the ABO is a worthy contribution to the scientific literature

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    THE DAWN OF METAHEURISTIC ALGORITHMS

    Get PDF
    Optimization has become such a favored area of research in recent times necessitating the need for technical papers and tutorials that will properly analyze and explain the basics of the field. At the heart of efficiency and effectiveness of optimization of engineering, business and industrial processes is metaheuristics, hence the need for proper explanations of the basics of optimization algorithms since the optimization algorithms are the engine room of successful optimization enterprise. This paper presents a foundational discussion on metaheuristic algorithms as a necessary ingredient in successful optimization endeavors and concludes, after analysis of some metaheuristic algorithms that a good metaheuristic algorithm should consist of four components, namely global search, local search, randomization and identification of the best solution at each iteration
    corecore