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Abstract: Optimization has become such a favored area of research in recent times 

necessitating the need for technical papers and tutorials that will properly analyze and explain 

the basics of the field. At the heart of efficiency and effectiveness of optimization of 

engineering, business and industrial processes is metaheuristics, hence the need for proper 

explanations of the basics of optimization algorithms since the optimization algorithms are 

the engine room of successful optimization enterprise. This paper presents a foundational 

discussion on metaheuristic algorithms as a necessary ingredient in successful optimization 

endeavors and concludes, after analysis of some metaheuristic algorithms that a good 

metaheuristic algorithm should consist of four components, namely global search, local 

search, randomization and identification of the best solution at each iteration.  
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1. INTRODUCTION 

 

To say that optimization is at the center of many industrial and technological breakthroughs, 

the world over is not an overstatement. Optimization, fundamentally, is concerned with the 

search for greater efficiency and effectiveness in industrial, business, engineering, decision-

making and manufacturing concerns (Ahmadizar & Soltanpanah, 2011) through the 

identification and choice of the most cost-effective procedure. Optimization which has been 

defined as the economics of computer science is concerned with the efficient management of 

systems and resources in order to achieve a desired end (Julius Beneoluchi Odili, Mohd 

Nizam Mohmad Kahar, A. Noraziah, Zarina, & Haq, 2017). Optimization has to do with the 

search for the optimum means of achieving an end in the midst of several means (Faludi, 

2013; Odili & Noraziah, 2018).  

 Basically, optimization involves the maximization or minimization of a function by 

systematically choosing some input values within an allowable set of input values in order to 

compute the value of the function with the aim of determining the best values of the objective 

function (Odili, 2018).  The overall aim of optimization is to ensure greater efficiency 

through the use of less resource to achieve the most-desirable outcome. This most desirable 

outcome could be the minimization of input needed to achieve an end or the maximization of 

profits. A computer program, for instance could be optimized to use less memory, execute 

faster or utilize less resources. Similarly, industrial systems, procedures and processes could 

be optimized to yield maximum output from as little as possible resources. Therefore, it may 

be safe to assert that optimization has relevance in situations where there exist a need to 

maximize output cum profits while minimizing the cost/ input (Odili & Kahar, 2016). One 

can hardly imagine situations in any industrial, engineering cum business concern where such 

objective is nonexistent. 

 In as much as the overall aim of any optimization procedure is to ensure optimal use of 

available resources, it should also be noted that, in most cases, this ideal comes at a cost. For 

instance, a computer program may execute faster and obtain more effectiveness, probably due 

to its use of more computer memory and vice-versa. Overall, therefore, there is need to 

design some algorithms that will ensure better trade-off between the different constraints in 
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an optimization procedure. Over time, it has been established that metaheuristic algorithms 

has proven to be very effective and efficient in optimization procedures. This is evident in 

several successful applications of metaheuristic algorithms. Some of the successful 

applications include the travelling salesman’s problem, global optimization, tuning of PID 

parameters of Automatic Voltage Regulators (Odili, Kahar, & Noraziah, 2017), job 

scheduling, examination time-tabling scheduling (McCollum et al., 2010) etc. In the light of 

the above, this paper, which is a technical position paper, aims to bring to fore the essentials 

of a good optimization algorithm such that novel researchers can easily identify a possibly 

good metaheuristic algorithm that can obtain competitive results in a given optimization 

problem 

 The rest of this paper is structured as follows: section two discusses optimization 

algorithms; section three examines the concept of heuristics and metaheuristics; section four 

is concerned with the essential characteristics of metaheuristic algorithms and section five 

draws conclusions on the study. 

 

2. OPTIMIZATION ALGORITHMS 

 

In view of the enormous contributions of optimization algorithms to enhancing industrial, 

business, decision-making and engineering processes, a few exact algorithms, popularly 

called deterministic or traditional algorithms have been developed. Examples of such exact 

algorithms include finite volume methods (Said & Wegman, 2009), Linear Programming 

(LP) (Kuhn, 2014), Newton-Raphson (Wooldridge, 2010) Dynamic Programming 

(Sniedovich, 2010), finite elements (Hughes, 2012) etc.  

 Exact algorithms, otherwise called deterministic algorithms operate without the use of 

stochastic (probabilistic or random) elements (Motwani & Raghavan, 2010). This implies that 

with a given set of input data, these algorithms will produce the same output values. 

Similarly, given the same input data the computer’s back-end will likely use the same 

sequence of states (Kornblum, 2006).  

 On the other hand, stochastic (probabilistic) algorithms make use of some inbuilt 

randomness. This use of randomness means that given the same set of input data and initial 

conditions probabilistic algorithms may generate different outputs in each iteration until they 

home in at a final solution (Gentle, 2013; Machairas, Tsangrassoulis, & Axarli, 2014). In 

spite this, it is surprising, however, that stochastic models have proven to be very successful 

in large problems with several input parameters and operating conditions. As a result, many 

of newly-developed metaheuristics that draw their inspiration from the consistent, 

harmonious and self-organized systems in nature have also been developed with probabilistic 

components. These modern set of algorithms are classified as Natural Computing (Odili, 

Kahar, & Noraziah, 2018; Păun, 2012). 

Natural Computing refers to such algorithms that simply use computers to extract 

relatively-common but complex ideas from nature to develop computational systems or use 

natural materials such as molecules to perform computation. From this explanation, it is clear 

that natural computing can be drawing direct inspiration from nature, sometimes called 

Nature-Inspired Computing (NIC) or simply computing with natural materials (CWN) 

(Dodig-Crnkovic, 2012). Computing with natural materials is one of the most recent 

innovations in computing approaches. Here algorithm developers, in place of silicon, make 

use of natural elements as software and hardware computational tools. (Zang, Zhang, & 

Hapeshi, 2010). 

It is pertinent to note that the unprecedented popularity of NIC algorithms in and 

engineering, industrial and scientific researches all over the world in the past few decades has 

attracted the attention of many scientists. The primary reason given for this popularity is that 



Odili, J.B /International Journal of Software Engineering and Computer Systems 4(2) 2018 49-61 

51 

 

these algorithms are developed to simulate the most successful natural dynamics in chemical, 

biological and physical processes in nature (Rozenberg, Bck, & Kok, 2011). This increasing 

popularity cum demand for NIC algorithms throws up the issue of choice of algorithm (since 

we now have so many of them) whenever a researcher has an optimization problem to solve. 

The eventual choice of a particular algorithm in solving a particular is, therefore, dependent 

on the capacity of that particular technique to solve the given problem.  This scenario can be 

said to be have given impetus to the No free-lunch theorems for optimization ((Yang, 2011). 

 

2.1 Format of Metaheuristic Algorithms 

 

In general, most metaheuristic optimization algorithms have this format: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓𝑖(𝑥) (𝑖 =  1, 2,3, … , 𝑀), 𝑥 ∈  ℜ𝑛                                                     (1) 
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ℎ𝑎(𝑥) =  0,           (𝑎 =  1, 2, 3 … , 𝑁),                                                     (2) 
 

                    𝑔𝑏(𝑥) ≤  0,             (𝑏 =  1, 2,3, . . , 𝐾)                                                       (3) 
 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑖(𝑥), ℎ𝑎(𝑥) 𝑎𝑛𝑑  𝑔𝑏(𝑥) are functions of the design vectors.  

  

       𝑥𝑖𝐿 ≤  xi ≤  xiU  i =  1, N                                           (4) 

              

From the above equations, the function 𝑓𝑖(𝑥)  where 𝑖 =  1, 2, . . . , 𝑀 is called the cost 

(goal or objective) function. The cost function could be designed as a minimization or 

maximization problem depending on the interest of the designer. Please note that an 

optimization problem could have the objective of either minimizing a function or maximizing 

it. If the objective is to increase the profit margin of an organization, then the easier thing to 

do is to formulate the cost function as a maximization problem. If the reverse (that is, to 

reduce the input values needed to achieve a particular goal), then it is easier formulated as a 

minimization problem. 

Furthermore, in a situation where 𝑀 = 1, then it is an instance of single objective 

function; in a situation where 𝑀 ≥ 2, that is a multi-objective problem. Moreover, the 

variable 𝑥(𝑖) of 𝑥 is called the design or decision variable and it could be continuous, discrete 

or a mixture of both, otherwise called mixed decision variable (Feist & Palsson, 2010). The 

space covered by the decision variables is called the search space ∈  ℜ𝑛. Similarly, the space 

covered by the objective function is called the solution space. In the same vein,  ℎ𝑎  𝑎𝑛𝑑 𝑔𝑏  

are the equality and inequality constraints respectively.  

It should be observed that, as the name implies, equality constraints take the form of 

= 0 , while the inequality constraints could be in the form of  ≥  0 when it is a maximization 

problem or ≤  0 in which case, it is a minimization problem. Also, please note that the 

searchable design space usually contains by the lower and upper bounds, 𝑥𝑖𝐿 and  xiU , of the 

design or decision variables, otherwise referred to as the side constraints.  

In general, objective (goal or cost) function can be formulated to be nonlinear or 

linear, explicit or implicit. Optimization problems that have some all or of the decision 

variables to be integer or discrete values are called integer or discrete optimization problems. 

Even though both the deterministic and the stochastic optimization techniques employ similar 

format, most times, traditional optimization techniques encounter a lot of difficulties solving 

discrete or integer optimization problems. This is usually the area of strength of the stochastic 

algorithms (Venter, 2010). 
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2.2 Traditional algorithms 

 

Traditional Optimization techniques such as the Newton-Raphson and Simplex Method use 

the gradient-based approach and are usually deterministic  (Davoodi, Hagh, & Zadeh, 2014). 

They have proven to be very good in solving smooth mono-modal problems because they 

make use function values and their derivatives in their solution process. Nevertheless, in 

instances where there exists a noise in the objective function, these techniques encounter 

some challenges. In such cases, derivatives-free (non-gradient) methods such as Nelder-Mead 

downhill simplex and Hooke-Jeeves pattern search since they only make use of function 

values  (Haftka & Gürdal, 2012).  

Again, the traditional (deterministic) techniques are very effective and efficient in 

solving problems with large number of decision variables. Moreover, traditional techniques 

hardly require problem-specific tuning of parameters, so they are usually good at obtaining 

the optimal solutions in mono-modal optimization problems. However, in addition to their 

being rather tedious optimization techniques, especially to non-professional users, they 

encounter lots of challenges in multimodal optimization problems. Also, their efficiency is 

usually in continuous optimization environments. In most cases, their inefficiency in solving  

discrete optimization problems coupled with their weak handling of optimization situations 

with numerical noise is of concern to researchers (Toga, Clark, Thompson, Shattuck, & Van 

Horn, 2012). These observed weaknesses gave rise to the development of stochastic 

algorithms. 

 

2.3 Stochastic algorithms 

 

Stochastic (probabilistic) algorithms make extensive use of randomness in their search for 

optimization solutions are, generally, of two types, namely, Nature-inspired Computing 

(NIC) and Computing with Nature (CWN) (Dodig-Crnkovic, 2012).  

 

2.3.1    Nature-inspired computing 

Nature Inspired Computing (NIC) suite of algorithms draw their inspiration from the close 

observation of the complex problem-solving techniques coupled with the harmonious co-

existence of different elements in natural environments (Kefi, Rokbani, Krömer, & Alimi, 

2015). Scientific investigations inspired by NIC includes cellular automata (Codd, 2014), 

artificial immune systems (Hemamalini & Simon, 2011), neural networks (Mäkisara, Simula, 

Kangas, & Kohonen, 2014), evolutionary computation (Thiele, Miettinen, Korhonen, & 

Molina, 2009) and swarm intelligence (Ducatelle, Di Caro, & Gambardella, 2010) etc. 

Besides, active researchers in robotics have drawn tremendous inspiration from nature in 

developing mechanical artificial intelligence disciplines leading to the manufacture of self-

configuring robots, water strider robot, mechanical cockroaches, robotic salamander, and so 

on (Dewangan, Naik, & Agrawal, 2014). 

Another subset of NIC is the Biologically-inspired Algorithms (BIA) which are 

primarily concerned with harnessing the collective intelligence cum interaction of a group of 

biological agents leading to the incredible solutions to complex optimization problems 

(Pandiri & Singh, 2015). NIC has been developed with inspiration from biology, chemistry, 

physics and other engineering platforms. Typically, NIC techniques simulate the interaction, 

harmonious self-organization, interdependence and competition among natural elements in 

the ecosystem. Broadly speaking, NIC has proven to obtain good solutions to problems with 

the aid of heuristics or meta-heuristic information and this has enabled them to be very 

flexible, adaptable and robust to such extent that they are applicable to a wide range of 

http://www.worldofcomputing.net/nic/swarm-intelligence.html
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optimization applications with very good outcomes (Fister Jr, Yang, Fister, Brest, & Fister, 

2013). 

 

2.3.2  Computing with nature (CWN) 

CWN refers to the computing paradigm which is one of the latest innovations that is 

revolutionizing computing through its focus on using natural materials such as molecules 

(e.g. RNA and DNA) and quantum (quantum computing) for executing computational 

processing rather than silicon. Other forms of CWN include bio-chemical computing, 

molecular computing otherwise called bio-computing, bio-molecular computing or DNA 

computing that represents data as bio-molecules (such as DNA strands) and uses tools from 

molecular biology in processing data to perform arithmetic, logical or other computing 

operations (Rozenberg et al., 2011).  Since its development, molecular computing has 

successfully been applied to solve 7-vertice TSP problems by merely manipulating DNA 

strands in a test-tube, cryptography, 20-variable 3SAT problems, splicing systems, sticker 

systems and the design applications for smart drugs (de Castro, 2007).  

On the other hand, quantum computing regards data as quantum bits and then engages 

them mechanically through entanglements and super-positioning to perform computations. A 

quantum bit (otherwise called qubit) holds either a ‘1’, ‘0’ or a quantum superposition of 

either a ‘1’ or ‘0’. Through the use of logic gates, the quantum computing performs 

computational operations on the qubits with the aid of either Shor’s polynomial algorithm for 

factoring the integers and/or the Grover’s algorithm for quantum database query (Hirvensalo, 

2013). Quantum algorithm has been successfully applied to quantum teleportation quantum 

cryptography, pattern identification and classification, nuclear magnetic resonance imaging 

and so on (Hirvensalo, 2013). In spite of its initial success, quantum computing is still at its 

early stage of development.  It is, therefore, too early to fully appreciate its merits and 

demerits because its potentials are still being investigated. In any case, a common 

characteristic of NIC is that they employ either heuristic or metaheuristic in their effort at 

arriving at acceptable solution. 

One important to feature of deterministic algorithms according to a recent study 

(Yang, 2018), is that solutions usually is determined by an iterative procedure that starts from 

an initial point. In other words, the only randomness in a deterministic algorithm is the search 

starting point which usually is either initialized randomly or a mere educated guess. 

Similarly, with regards to the algorithm structure, the main exception in a deterministic 

algorithm is the stochastic gradient method that utilizes the approximation to the true gradient 

using with some randomness. For most other analytical approaches and deterministic search 

algorithms, there is virtually no exact randomness component.  

On the contrary, randomness is the crux of metaheuristic algorithms whether they are 

evolutionary or other swarm intelligence techniques. In this class of algorithms, randomness 

in algorithms development is the first rule of the game. Continuing, Yang (2018), asserts that 

the capacity of the algorithm to properly exploit and manage its randomness component is a 

major determinant of its effectiveness. This proper deployment of the randomness component 

is crucial since metaheuristic algorithms since metaheuristic approaches use a trial-by-

eliminating-errors mechanism in finding solutions to difficult optimization search problems.  

In their contribution, Bottou et al (2018) asserts that since large-scale machine 

learning is a component beneficiary of stochastic-gradient methods, another name for 

metaheuristic techniques, perhaps, it is necessary that optimization methods should diminish 

noise that sometimes are present in stochastic techniques.  It must be emphasized that nature-

inspired algorithms, commonly called metaheuristics are developed with inspiration from the 

in-depth observation and analysis of natural phenomena. This body of algorithms learns from 

the efficiency, eff ectiveness cum beauty of nature. Their main selling point, it must be 
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emphasized is their capacity to harness and properly manage a balanced deployment of 

randomness cum a proper combination with certain deterministic components is in fact the 

essence of making such algorithms so powerful and eff ective. Yang (2018) concludes that if 

the randomness component in a search algorithm is too high, the solutions obtained by the 

search algorithm may not easily converge since the algorithm may continue rather endlessly 

search the search space for a solution.  Conversely, not having a random component reduces 

the stochastic algorithm to a deterministic one A good metaheuristic algorithm, therefore is 

one that is able to achieve a balanced tradeoff  is needed.  

In principle, metaheuristic algorithms use the regular social behavior of the search 

agent(s). To achieve this, metaheuristic algorithms deploy the real-number randomness 

coupled with some form of normal social communication and interactions among the search 

agents. This class of algorithms is easy to implement since there exists no encoding or 

decoding of the algorithms’ parameters into strictly binary strings as is common in 

evolutionary algorithms such as Genetic Algorithm and Genetic Programming. As such 

metaheuristic algorithms are usually very efficient and flexible (Odili et al, 2017b). These 

characteristics, perhaps, is a pointer to their wide acceptability and popularity among 

researchers.   

In summary, suffice to say that metaheuristic algorithms are designed from inspiration 

from nature and deliberately mimic some successful characteristics of chemical, biological or 

physical systems in nature. Today, among many other algorithms, the metaheuristic 

algorithms dominate the optimization search landscape (Yang, 2018). The reasons for this 

are:  

(i) Most metaheuristic algorithms deploy multiple agents in their search which is 

akin to what operates among swarms in natural environments. 

(ii) Most metaheuristic approaches permit the use of parallelization and 

vectorization implementations. As such they allow straight-forward 

implementation 

(iii) Most metaheuristic algorithms are so flexible that they find easy applications 

to diverse kinds of optimization problems 

(iv) Most metaheuristic algorithms are very efficient and effective in arriving at 

solutions 

(v) Most metaheuristic algorithms are able to steer away from falling into local 

optima. 

 

3.      HEURISTICS AND METAHEURISTICS 

 

As stated earlier, NIC makes use of heuristics and metaheuristics in its quest for solutions. 

Heuristic techniques simply exploit some information about a problem being solved to obtain 

solutions to such problems. Exploiting the heuristic information about the problem enables 

heuristic algorithms to obtain competitive solutions to difficult optimization problems within 

an acceptable time (Safari, 2015). However, heuristics are near-exact algorithms. In other 

words, heuristic algorithm does not lay claim to being able to obtain the exact optimal 

solutions. On its part, metaheuristics, simply means ‘beyond heuristics’ and are deemed to 

perform better than heuristics since they incorporate intelligent memory, experiential and 

other biases to direct the search process (Prakasam & Savarimuthu, 2015).  

In differentiating between metaheuristics and heuristics, heuristics make elaborate use 

of local search components, but metaheuristic techniques deploy some local search 

(exploitation) coupled with global exploration (exploration) as well as randomizations. The 

use of randomizations enables metaheuristics to steer away from being ensnared in a local 

optimum, drive them to a more global search as well as assist the search by obtaining 
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different results in any of the iterations until the algorithm homes in at a solution. The 

ultimate objective of metaheuristics is to obtain the best possible result via the use of internal 

mechanisms to achieve adequate exploration cum exploitation of the search space (Blum & 

Roli, 2003). In general, metaheuristics, unlike heuristics enjoy wider applications to diverse 

problems ranging from economics telecommunications, bioinformatics to manufacturing etc. 

(Osman & Kelly, 2012) . 

 Broadly speaking, metaheuristics is classified either trajectory-based or population-

based (Beheshti & Shamsuddin, 2013). Some researchers regard John Holland as the father of 

population-based metaheuristic techniques because his works used a combination of automata 

methodology and theoretical genetics to good effect in 1962. Since the publication of his 

successful experimentation of the above, many researchers followed this trend of applying 

diversification and variation techniques to a population to obtain results within a given search 

space. Some of the earlier techniques that followed John Holland trajectory include Dorigo 

and Di Caro’s Ant Colony Optimization ACO  (Di Caro & Dorigo, 1998), Schaffer’s Vector-

Evaluated Genetic Algorithm (VEGA) (Pierre, Zakaria, & Pal, 2011); Farmer, Packard and 

Pearson’s Artificial Immune Systems (Farmer, Packard, & Perelson, 1986); Holland’s and 

Rosenberg’s Evolutionary Strategies (Cuomo et al., 2012), and so on. 

 

4.  ESSENTIAL COMPONENTS OF METAHEURISTICS 

 

Four important features distinguishes a good metaheuristic algorithms and these include the 

use of randomness,  global search mechanism (otherwise called diversification or 

exploration), local search (intensification or exploitation) mechanism and the mechanism that 

identifies the best outcome per iteration in course of a search (Osaba, Yang, Diaz, Lopez-

Garcia, & Carballedo, 2016). 

 

4.1 Exploration and exploitation 

 

The exploration component of metaheuristics ensures that the algorithm covers as much 

space as it can of the search space within a reasonable search time. In Particle Swarm 

Optimization (PSO), the exploration component is the part represented by the  𝑃𝑔  which is 

the velocity tracked by the best particle (see Equation 5) and in the African Buffalo 

Optimization, the 𝑏𝑔 trail of the best buffalo (see Equation 6).  

 

𝑣𝑖  (𝑡 + 1) = 𝜔𝑣𝑖  (𝑡) + 𝑐1 𝑟1 (𝑝𝑖  (𝑡) − 𝑋𝑖  (𝑡)) + 𝑐2 𝑟2 (𝑃𝑔
𝑖
 (𝑡) − 𝑋𝑖  (𝑡))      (5) 

 

mk′ = mk  +  lp1(𝑏𝑔 – wk)  +  lp2(bpk   −  wk )                                          (6) 
 

In Equation 5, 𝑐2 𝑟2 (𝑃𝑔𝑖 (𝑡) − 𝑋𝑖 (𝑡)) calculates the velocity of individual particles 

in relation to the global best particle and this is the exploration component of the PSO, while 

the 𝑐1 𝑟1 (𝑝𝑖 (𝑡) − 𝑋𝑖 (𝑡) traces the path of each particle in vis-a-vis the local best particle and 

this represents the local search component of the algorithm. Similarly, in Equation 6, the 

exploration part of the ABO is calculated for each buffalo in relation to the path followed by 

the best buffalo represented by lp1(𝑏𝑔 – wk). 

On its part, the exploitation component constrains the metaheuristic to concentrate its 

search around the locations with promising results. In some algorithms, such as the ACO, 

besides concentrating the search around the areas of good solutions, the exploitation helps in 

selecting the decision vectors (search agents) that has the best outcomes in a particular 
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iteration. In PSO and the ABO, the exploitation component is represented by 𝑐1 𝑟1 (𝑝𝑖  (𝑡) 

and lp1(𝑏𝑔 – wk) respectively 
Please note that a good metaheuristic, therefore, is one that is able to achieve the best 

tradeoff between exploitation and exploration utilizing the randomness component of the 

algorithm while at the same time identifying the best outcome in any given iteration (Fang, 

Lee, & Schilling, 2010). However, when a metaheuristic embarks on too elaborate 

exploitation, it may be ensnared in a local minimum thus being unable to locate the global 

optimum. Conversely, embarking on too elaborate exploration with a little exploitation may 

result in the system experiencing delay in convergence. Conversely, too detailed exploitation 

cum exploration may lead to system delay at a great cost of computer resources and users’ 

time and. Moreover, too little exploration and exploitation may result in the degradation of 

the algorithm’s effectiveness and efficiency (Aydoğdu, Akın, & Saka, 2016). 

 

4.2 Best solution identification 

 

Another key feature of a good metaheuristic is the ability to identify the best solution in an 

iteration and possibly the best design vector associated with such best solution. This is 

generally called ‘The survival of the fittest’ criterion. One way of achieving this is to keep 

updating the current best found so far (Yang, 2011). In Cuckoo Search, this identification is 

carried out by these two lines of code 

 

                If ( 𝑓𝑖  (𝑋𝑖𝑗(t +  1)) >𝑓𝑘(𝑋𝑖𝑗(t )) then 

                       Replace k by the new solution     (7) 

 

In ABO, the identification of the best buffalo is done by: 

 

 .                wk′ =
(wk+ mk)

λ
       (8) 

 

Similarly, the PSO executes this by: 

   𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) 

If fitness≤ 0,         

  Print 𝐺𝑖  𝑏𝑒𝑠𝑡 of each particle    (9) 

 

4.3    Randomization in metaheuristics 

 

Having established that the four main essentials of a good metaheuristic are randomness, 

exploitation, exploration as well as the identification of the best performer, the technique 

employed by each algorithm to achieve these distinguishes an algorithm from the rest (Li, 

Chu, Langford, & Schapire, 2010). In general, it is safe to claim that algorithms attain these 

noble objectives through the use of randomization in coupled with a deterministic process via 

exploration and exploitation. A common mechanism to achieve randomization is to determine 

the upper and lower boundaries in a uniform distribution between 0 and 1. Algorithms such 

as Firefly Algorithm and Particle Swarm Optimization employ this method. Other 

metaheuristics such as Cuckoo Search use the Lévy flight (Senthilnath, Das, Omkar, & Mani, 

2012). A Lévy flight is a random movement (walk) or random process that is characterized 

by step-jumps which is akin to the uncoordinated movement of dust particles in a fluid or the 

movement of housefly in search of food. The lambda (λ) component of Equation 8 above in 
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ABO is used to achieve randomness in the algorithm just as 𝑟1 and 𝑟2 components of 

Equation 5 above performs the same function in PSO. 

In summary, some metaheuristics like the Evolutionary Programming, Genetic 

Programming and Genetic Algorithm make use of mutation and crossover to achieve the 

exploration effects. Mutation ensures that new solutions are different from the initial 

populations (parents) while crossover places a limit on  exploitation (Rani, Jain, Srivastava, 

& Perumal, 2012). These kinds of algorithms, such as the Genetic Algorithm (GA), embark 

on exploitation through generating new solutions around a promising (superior) solution. This 

could be achieved by employing a random walk as the move in Simulated Annealing (SA) 

(Kirkpatrick, Gelatt, & Vecchi, 1983) and pitch adjustment in Harmony Search (HS) 

algorithm (Mahdavi, Fesanghary, & Damangir, 2007) represented by: 

 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑠 𝑤                                                                                                 (10) 
 

Here 𝑠 represents the step size and 𝑤 is drawn from a Gaussian distribution with zero 

mean. Care is taken to ensure that the step size is neither too narrow nor too wide. Too wide a 

step size will lead to the algorithm becoming inefficient in exploitation in favor of 

exploration. In the same way, when the step size is too narrow, too much exploitation that 

may lead to falling into local optima/minima results. It is rather suggested that algorithms 

employ random walks such as Levy flights where the step size is drawn from a Levy 

distribution with acceptable step sizes (Kennedy, 2010). 

 

5. CONCLUSION 

 

This paper examined the concept of optimization in science, engineering and industrial 

applications generally before homing in on optimization algorithms with special reference to 

metaheuristic algorithms in particular. Since metaheuristics have assumed a very prominent 

place in the optimization of engineering, scientific and industrial processes leading to mass 

interest in the field by many experienced and budding scientists, there is the need to analyze 

the main components of a metaheuristic algorithms so as to enhance understanding, engender 

user-friendliness, assist in better choice of a particular metaheuristic in problem-solving and 

ensure wider applicability, hence the need for this research. 

After some analysis, this paper opines that a good metaheuristic algorithm should 

contain and properly balance four critical elements namely: identification of best solution per 

iteration, exploration, exploitation and randomness mechanisms. A metaheuristic that lacks 

any of the above or that is unable to balance any of the four mechanisms may not be the best 

choice in solving any optimization problems. Again, this paper observes that different 

algorithms achieve those four essential requirements using different techniques as highlighted 

in course of the discussions above. A good knowledge of how each of the algorithms 

achieves any of the four essential components is helpful in algorithm analysis and choice in 

solving any optimization problem since no particular algorithm has been proven to be the best 

in solving all kinds of optimization problems, hence the No free Lunch theorem of 

optimization algorithms (Wolpert & Macready, 1997). 
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