20,701 research outputs found

    Acceleration of Histogram-Based Contrast Enhancement via Selective Downsampling

    Full text link
    In this paper, we propose a general framework to accelerate the universal histogram-based image contrast enhancement (CE) algorithms. Both spatial and gray-level selective down- sampling of digital images are adopted to decrease computational cost, while the visual quality of enhanced images is still preserved and without apparent degradation. Mapping function calibration is novelly proposed to reconstruct the pixel mapping on the gray levels missed by downsampling. As two case studies, accelerations of histogram equalization (HE) and the state-of-the-art global CE algorithm, i.e., spatial mutual information and PageRank (SMIRANK), are presented detailedly. Both quantitative and qualitative assessment results have verified the effectiveness of our proposed CE acceleration framework. In typical tests, computational efficiencies of HE and SMIRANK have been speeded up by about 3.9 and 13.5 times, respectively.Comment: accepted by IET Image Processin

    Digital enhancement of computerized axial tomograms

    Get PDF
    A systematic evaluation was conducted of certain digital image enhancement techniques performed in image space. Three types of images were used, computer generated phantoms, tomograms of a synthetic phantom, and axial tomograms of human anatomy containing images of lesions, artificially introduced into the tomograms. Several types of smoothing, sharpening, and histogram modification were explored. It was concluded that the most useful enhancement techniques are a selective smoothing of singular picture elements, combined with contrast manipulation. The most useful tool in applying these techniques is the gray-scale histogram

    Adaptive Filters for 2-D and 3-D Digital Images Processing

    Get PDF
    Práce se zabývá adaptivními filtry pro vizualizaci obrazů s vysokým rozlišením. V teoretické části je popsán princip činnosti konfokálního mikroskopu a matematicky korektně zaveden pojem digitální obraz. Pro zpracování obrazů je volen jak frekvenční přístup (s využitím 2-D a 3-D diskrétní Fourierovy transformace a frekvenčních filtrů), tak přístup pomocí digitální geometrie (s využitím adaptivní ekvalizace histogramu s adaptivním okolím). Dále jsou popsány potřebné úpravy pro práci s neideálními obrazy obsahujícími aditivní a impulzní šum. Závěr práce se věnuje prostorové rekonstrukci objektů na základě jejich optických řezů. Veškeré postupy a algoritmy jsou i prakticky zpracovány v softwaru, který byl vyvinut v rámci této práce.The thesis is concerned with filters for visualization of high dynamic range images. In the theoretical part, the principle of confocal microscopy is described and the term digital image is defined in a mathematically correct way. Both frequency approach (using 2-D and 3-D discrete Fourier transform and frequency filters) and digital geometry approach (using adaptive histogram equalization with adaptive neighbourhood) are chosen for the processing of images. Necessary adjustments when working with non-ideal images containing additive and impulse noise are described as well. The last part of the thesis is interested in 3-D reconstruction from optical cuts of an object. All the procedures and algorithms are also implemented in the software developed as a part of this thesis.

    Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets

    Get PDF
    In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pix- els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- tographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods.Web of Science500866

    AOIPS water resources data management system

    Get PDF
    A geocoded data management system applicable for hydrological applications was designed to demonstrate the utility of the Atmospheric and Oceanographic Information Processing System (AOIPS) for hydrological applications. Within that context, the geocoded hydrology data management system was designed to take advantage of the interactive capability of the AOIPS hardware. Portions of the Water Resource Data Management System which best demonstrate the interactive nature of the hydrology data management system were implemented on the AOIPS. A hydrological case study was prepared using all data supplied for the Bear River watershed located in northwest Utah, southeast Idaho, and western Wyoming
    corecore