422 research outputs found

    Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity

    Full text link
    The aim of this paper is to compare a hyperelastic with a hypoelastic model describing the Eulerian dynamics of solids in the context of non-linear elastoplastic deformations. Specifically, we consider the well-known hypoelastic Wilkins model, which is compared against a hyperelastic model based on the work of Godunov and Romenski. First, we discuss some general conceptual differences between the two approaches. Second, a detailed study of both models is proposed, where differences are made evident at the aid of deriving a hypoelastic-type model corresponding to the hyperelastic model and a particular equation of state used in this paper. Third, using the same high order ADER Finite Volume and Discontinuous Galerkin methods on fixed and moving unstructured meshes for both models, a wide range of numerical benchmark test problems has been solved. The numerical solutions obtained for the two different models are directly compared with each other. For small elastic deformations, the two models produce very similar solutions that are close to each other. However, if large elastic or elastoplastic deformations occur, the solutions present larger differences.Comment: 14 figure

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case

    Get PDF
    International audienceOne of the main issues in the field of numerical schemes is to ally robustness with accuracy. Considering gas dynamics, numerical approximations may generate negative density or pressure, which may lead to nonlinear instability and crash of the code. This phenomenon is even more critical using a Lagrangian formalism, the grid moving and being deformed during the calculation. Furthermore, most of the problems studied in this framework contain very intense rarefaction and shock waves. In this paper, the admissibility of numerical solutions obtained by high-order finite-volume-scheme-based methods, such as the discontinuous Galerkin (DG) method, the essentially non-oscillatory (ENO) and the weighted ENO (WENO) finite volume schemes, is addressed in the one-dimensional Lagrangian gas dynamics framework. After briefly recalling how to derive Lagrangian forms of the 1D gas dynamics system of equations, a discussion on positivity-preserving approximate Riemann solvers, ensuring first-order finite volume schemes to be positive, is then given. This study is conducted for both ideal gas and non ideal gas equations of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Mie-GrĂŒneisen (MG) EOS, and relies on two different techniques: either a particular definition of the local approximation of the acoustic impedances arising from the approximate Riemann solver, or an additional time step constraint relative to the cell volume variation. Then, making use of the work presented in [89, 90, 22], this positivity study is extended to high-orders of accuracy, where new time step constraints are obtained, and proper limitation is required. Through this new procedure, scheme robustness is highly improved and hence new problems can be tackled. Numerical results are provided to demonstrate the effectiveness of these methods. This paper is the first part of a series of two. The whole analysis presented here is extended to the two-dimensional case in [85], and proves to fit a wide range of numerical schemes in the literature, such as those presented in [19, 64, 15, 82, 84]

    Numerical modelling of local scour with computational methods

    Get PDF
    Evaluating bed morphological evolution (specifically the scoured bed level) accurately using computational modelling is critical for analyses of the stability of many marine and coastal structures, such as piers, groynes, breakwaters, submarine pipelines and even telecommunication cables. This thesis considers the coupled hydrodynamic and morphodynamic modelling of the local scour around hydraulic structures, such as near a vertical pile or near a horizontal pipe. The focus in this study is on applying a fluid-structure interaction (FSI) approach to simulate the morphodynamical behaviour of the bed deformation, replacing the structural (i.e. solid mechanics) equation by the sediment continuity equation or Exner equation. Specifically, this works presents a novel method of mesh movement with anisotropic mesh adaptivity based on optimization for simulating local scour near structures with discontinuous Garlerkin (DG) discretisation methods for solving the flow field. Amongst the other goals of this work is the validation of the proposed procedure with previously performed laboratory as well as two- and three-dimensional numerical experiments. Additionally, performance is considered using an implementation of the methodology within Fluidity (http://fluidityproject.github.io/), an open-source, multi-physics, computational fluid dynamics (CFD) code, capable of handling arbitrary multi-scale unstructured tetrahedral meshes and including algorithms to perform dynamic anisotropic mesh adaptivity and mesh movement. The flexibility over mesh structure and resolution that these optimisation capabilities provide makes it potentially highly suitable for accounting the extreme bed morphological evolution close to a fixed solid structure under the action of hydrodynamics. Galerkin-based finite element methods have been used for the hydrodynamics (including discontinuous Galerkin discretisations) and morphological calculations, and automatic mesh deformation has been utilised to account for bed evolution changes while preserving the validity and quality of the mesh. Finally, the work extends the scope in regards of computational methods and considers scour modelling with pure Lagrangian and meshless methods such as smoothed particle hydrodynamics (SPH), which have also become of interest in the analysis and modelling of coastal sediment transport, particularly in scour-related processes. The SPH modelling is considered in a two-phase, flow-sediment fully Lagrangian scour simulation where the discrete-particle interaction forces between phases are resolved at the interface and continuous changes in the bed profile are obtained naturally.Open Acces
    • 

    corecore