
Positivity-preserving cell-centered Lagrangian schemes

for multi-material compressible flows: From first-order

to high-orders. Part I: The one-dimensional case

François Vilar, Chi-Wang Shu, Pierre-Henri Maire

To cite this version:

François Vilar, Chi-Wang Shu, Pierre-Henri Maire. Positivity-preserving cell-centered La-
grangian schemes for multi-material compressible flows: From first-order to high-orders. Part
I: The one-dimensional case. 2015. <hal-01248910>

HAL Id: hal-01248910

https://hal.inria.fr/hal-01248910

Submitted on 29 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Positivity-preserving cell-centered Lagrangian schemes for multi-material
compressible flows: From first-order to high-orders.

Part I: The one-dimensional case
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Abstract

One of the main issues in the field of numerical schemes is to ally robustness with accuracy. Con-
sidering gas dynamics, numerical approximations may generate negative density or pressure, which
may lead to nonlinear instability and crash of the code. This phenomenon is even more critical using
a Lagrangian formalism, the grid moving and being deformed during the calculation. Furthermore,
most of the problems studied in this framework contain very intense rarefaction and shock waves.
In this paper, the admissibility of numerical solutions obtained by high-order finite-volume-scheme-
based methods, such as the discontinuous Galerkin (DG) method, the essentially non-oscillatory
(ENO) and the weighted ENO (WENO) finite volume schemes, is addressed in the one-dimensional
Lagrangian gas dynamics framework. After briefly recalling how to derive Lagrangian forms of the
1D gas dynamics system of equations, a discussion on positivity-preserving approximate Riemann
solvers, ensuring first-order finite volume schemes to be positive, is then given. This study is con-
ducted for both ideal gas and non ideal gas equations of state (EOS), such as the Jones-Wilkins-Lee
(JWL) EOS or the Mie-Grüneisen (MG) EOS, and relies on two different techniques: either a partic-
ular definition of the local approximation of the acoustic impedances arising from the approximate
Riemann solver, or an additional time step constraint relative to the cell volume variation. Then,
making use of the work presented in [89, 90, 22], this positivity study is extended to high-orders of
accuracy, where new time step constraints are obtained, and proper limitation is required. Through
this new procedure, scheme robustness is highly improved and hence new problems can be tackled.
Numerical results are provided to demonstrate the effectiveness of these methods.

This paper is the first part of a series of two. The whole analysis presented here is extended to the
two-dimensional case in [85], and proves to fit a wide range of numerical schemes in the literature,
such as those presented in [19, 64, 15, 82, 84].
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1. Introduction

This paper is the first part of a series of two, which is only concerned with the one-dimensional case.
The second paper, [85], investigates the two-dimensional situation. Here, we aim at demonstrating
the positivity-preservation property of methods solving one-dimensional Lagrangian gas dynamics
equations, from first-order to high-orders of accuracy, under suitable constraints.

It is well known that fluid dynamics relies on two kinematics descriptions: the Eulerian or spatial
description and the Lagrangian or material description, refer for instance to [49, 44]. In the former,
the conservation laws are written using a fixed reference frame whereas in the latter they are written
through the use of a time dependent reference frame that follows the fluid motion. The Lagrangian
representation is particularly well adapted to describe the time evolution of fluid flows contained in
regions undergoing large shape changes due to strong compressions or expansions. Further, in this
approach, there is no mass flux across the boundary surface of a control volume moving with the
fluid velocity. Thus, Lagrangian representation provides a natural framework to track accurately
material interfaces in multi-material compressible flows. Moreover, such a representation avoids the
appearance of numerical diffusion resulting from the discretization of the convection terms present
in the Eulerian framework.

In the Lagrangian description, the gas dynamics system may be derived in two different but consis-
tent formulations, namely the updated Lagrangian formulation based on the moving configuration,
and the total Lagrangian formulation based on the fixed initial configuration. In this latter approach,
the physical conservation laws are written employing the Lagrangian coordinates which refer to the
initial configuration of the fluid flow. Moreover, in these equations the divergence and gradient
operators are expressed by means of the Piola transformation [49], which requires the knowledge
of the deformation gradient tensor, i.e. the Jacobian matrix associated to the Lagrange-Euler flow
map. The deformation gradient tensor characterizes the time evolving deformation and is governed
by a partial differential equation named the geometric conservation law (GCL). To ensure the con-
sistency between the initial and the current configurations, this tensor has to satisfy an involutive
constraint [73], which implies the Piola compatibility condition. The total Lagrangian approach is
very well known in the solid mechanics community wherein it is extensively used to model solid
dynamics undergoing large deformations [49]. In contrast to the total Lagrangian formulation, the
updated Lagrangian formulation is a moving domain method, which is widely employed in fluid
mechanics. In this approach, the gas dynamics equations are written employing the Eulerian co-
ordinates. They refer to the current configuration of the fluid flow. The time derivative of the
physical variables is taken following the path of the fluid particles: this is the material derivative.
The integral formulation of the conservation laws is readily obtained by employing the Reynolds
transport formula over an arbitrary moving control volume. The time rate of change of a zone vol-
ume is governed by a partial differential equation which is the updated Lagrangian form of the GCL.

Two approaches are mainly employed to solve updated Lagrangian formulations of the gas dynamics
equations, namely the cell-centered and staggered approaches. In the cell-centered hydrodynamics,
a cell-centered placement of all hydrodynamic variables is employed. However, the referential being
assumed to move as the fluid flows, one needs to advect the grid points. Also, this has to be done
with respect to the GCL, which means that the new volume computed through the new position of
the grid nodes has to be the same as the one derived from the discretization of the governing equa-
tion of the specific volume. Furthermore, in the multi-dimensional case, due to the large number
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of neighboring cells sharing a node, one cannot apply in a straightforward manner one-dimensional
solvers to define uniquely the grid point velocity. The staggered hydrodynamics has been developed
to avoid such complications. In this framework, a staggered discretization is employed such that
the kinematic variables (vertex position, velocity) are located at the nodes whereas the thermody-
namic variables (density, pressure, internal energy) are defined at the cell centers. The conversion of
kinetic energy into internal energy through shock waves, consistent with the second law of thermo-
dynamics, is ensured by adding an artificial viscosity term. The staggered grid schemes employed
in most hydro-codes have been remarkably successful over the past decades in solving complex
multi-dimensional compressible fluid flows, refer for instance to [45, 88, 17, 18, 32, 55, 33, 34, 4].
However, they clearly have some theoretical and practical deficiencies such as mesh imprinting and
symmetry breaking. In addition, the fact that all variables are not conserved over the same space
can make these schemes difficult to handle when one wants to assess analytical properties of the
numerical solution. For all these reasons, this paper focuses on the cell-centered approach. Different
techniques may be employed to build the numerical fluxes and move the grid through the use of
approximate Riemann solvers, with respect to the GCL. The interested readers may refer to the
following papers [1, 19, 20, 61, 72, 15, 53, 82, 5, 16, 10, 84] for a more detailed description of this
approach and its variants. Let us mention that besides these two mainly employed approaches,
i.e. the cell-centered and staggered approaches, a third one has recently grows quickly in popular-
ity these past years. This third framework, referred to as Point-Centered Hydrodynamic (PCH),
combines the features of the first two, namely a dual grid and the fact that kinetical and thermody-
namical variables are conserved on the same cells. Indeed, in this particular frame, the momentum
and total energy conservation equations are solved on the dual grid around the nodes, generally by
means of an edge-based finite element scheme or an edge-based upwind finite volume method. The
PCH approach has been successful applied these past decades to problematics concerned with the
simulation of incompressible flows, compressible Lagrangian flows, or Lagrangian solid dynamics,
refer for instance to [28, 29, 24, 42, 48, 76, 79, 78, 86, 87, 67, 68, 2, 3]. Two of the main advantages
of these schemes are that there are very well adapted to triangular or tetrahedral grids, as well as
they reduce in most cases problems related to mesh stiffness.

Although a wide range of purely Lagrangian formulations are available, it is well known these de-
scriptions admit a severe drawback in some situations. In the presence of intense vortexes or shear
flows, Lagrangian methods suffer from a lack of robustness which may lead to the appearance of
non-convex, or even tangled, cells. This is a consequence of the fundamental assumption that the
referential moves as the fluid flows. A remedy for this type of problems may be the use of an
Arbitrary Lagrangian Eulerian (ALE) method, where generally the explicit Lagrangian phase is
combined with a rezoning phase in which a new grid is defined by improving the geometric quality
of the cells, and a remapping phase in which the Lagrangian solution is conservatively interpolated
onto the new grid. This ALE description, initially introduced in the seminal paper [52], has been
the object of many papers and will not be addressed in this article. We focus here on the purely
Lagrangian phase and how to ensure the numerical solution to remain admissible. Because, even
before facing the extreme case where the mesh tangles, Lagrangian methods, just as any other nu-
merical schemes, may produce non-physical solutions, with for instance negative density or pressure.
This work is thus of crucial significance not only for Lagrangian schemes, but also for any meth-
ods relying on a purely Lagrangian step, as ALE methods or non-direct Euler schemes based on a
Lagrangian step plus a projection. Let us note that there exist other type of ALE methods which
are not based on a Lagrangian phase, along with rezoning and remapping steps. These so-called
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direct ALE schemes take into account, in the system of equations itself, the grid velocity which can
be different if needed from the fluid velocity. For instance in [10, 36, 11, 9, 12, 13, 14], the authors
developed high-order ALE one-step WENO finite volume schemes.

The issue of robustness is fundamental for numerical schemes. Considering gas dynamics for in-
stance, numerical approximations may generate negative density or pressure, which may lead to
nonlinear instability or crash of the code. This phenomenon is even more critical using a La-
grangian formalism, the grid moving and being deformed during the calculation. Furthermore,
most of the problems studied in this framework contain very intense rarefaction and shock waves.
These phenomena are the consequence of the lack of a particular property, often referred to as posi-
tively conservation or positivity preservation. For instance, it has been proven in [39] that for some
class of Riemann problems, any linearization would yield nonphysical negative density or pressure.
This is the case of, for example, the Roe scheme, [75]. This issue of positivity is generally addressed
for the Eulerian case, see [39, 70, 71, 6, 8], but very few papers exist on this topic for the Lagrangian
formulation. Contrary to the Eulerian case where non-admissible states may appear in low density
regions, in the Lagrangian frame it is in regions of high compression that the scheme may fail and
produce negative specific volume or internal energy. In [69], Munz assessed the positivity preser-
vation property of the HLL (Harten, Lax, van Leer) scheme [51] and the HLLE (HLL Einfeldt)
scheme [38] in the Lagrangian framework. For the HLL solver, he derived particular definitions of
the left and right wavespeeds ensuring the positivity of the specific volume. In [22], Cheng and Shu
employed the HLLC (HLL contact) solver [81] to develop positivity-preserving Lagrangian schemes
in a direct ALE point of view, namely not making use of the Lagrangian mass coordinates gener-
ally adopted in the one-dimensional Lagrangian framework. Suitable choices in the left and right
wavespeeds are also required to ensure the positivity of the numerical solution. Let us also mention
the positive and entropic schemes developed in [43, 31] for a general class of Lagrangian systems
including gas dynamics and magnetohydrodynamics.

In this paper, the numerical schemes presented rely on a solver widely used in the Lagrangian
community and generally referred to as the two-states solver, see [31, 62]. It can be seen as the
counterpart of the HLLC solver in term of Lagrangian mass coordinate, and reduces in its simplest
version to the Godunov acoustic scheme [47]. This solver will prove to be positivity preserving
under particular definitions of the left and right wavespeeds. Furthermore, we will also demonstrate
how to relax any wavespeed condition, and thus allowing us to make use of the Godunov acoustic
scheme, but still ensuring the positivity of the numerical solution. To that purpose, an additional
time step constraint has to be used, along with the correct CFL condition.

The question is then how to extend this positivity property to higher-order accuracy. In the Eulerian
framework, earlier positivity-preserving schemes have been designed up to second-order, see for in-
stance [70, 71, 40, 58]. More recently, Zhang and Shu developed in a series of papers, [89, 90, 91, 92],
a general technique to extend the positivity-preserving property to high-order schemes based on
finite-volume-like discretizations, such as the discontinuous Galerkin (DG) method, and the essen-
tially non-oscillatory (ENO) and the weighted ENO (WENO) finite volume schemes. This is the
technique employed by Cheng and Shu in [22] to prove the high-order Lagrangian schemes developed
are positivity-preserving. This is also the technique used in this paper to assess the positivity of
the high-order Lagrangian schemes presented here.
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To this end, the remainder of this paper is organized as follows: In Section 2, we briefly recall
how to derive Lagrangian forms of the gas dynamics system of equations. Then, in Section 3, the
different equations of state (EOS) employed to thermodynamically close these systems are presented.
In Section 4, a classical first-order finite volume scheme solving the Lagrangian gas dynamics is
recalled, for which the numerical fluxes are defined as solution of approximate Riemann problems
located at the cell interfaces, see Sections 5 and 6. The scheme positivity-preserving property,
and more generally the admissibility of the numerical solution produced, is addressed in Section 7.
The spatial high-order extension of the introduced Lagrangian scheme and its related positivity-
preserving analysis are respectively performed in Sections 8 and 9, while the particular limitation
permitting the preservation of such property from the first-order to high-orders is developed in
Section 10. We end the theoretical analysis by presenting stability properties deriving from the
positivity of the numerical solution, Section 11, and by a discussion on high-order time discretization,
Section 12. Finally, numerical results, provided in Section 13, demonstrate the effectiveness of these
methods.

2. Governing equations

For the sake of clarity, we recall the local forms of the gas dynamics governing equations in updated,
total and mass Lagrangian frameworks in one dimension. The interested reader may refer to [44, 77,
37, 49, 31, 62, 84] for further details. To that end, let us first introduce the standard one-dimensional
compressible Euler system, constituted of the continuity equation, the momentum and total energy
conservation laws

∂ ρ

∂t
+
∂ ρ u

∂x
= 0, (1a)

∂ ρ u

∂t
+
∂ (ρ u2 + p)

∂x
= 0, (1b)

∂ ρ e

∂t
+
∂ (ρ u e+ p u)

∂x
= 0. (1c)

In this system, ρ represents the density of the fluid, u its velocity, e its total energy and p its pressure.
To obtain the counterpart of these equations in a Lagrangian framework, a moving reference has to
be considered. To that end, let X be the position of a point of the fluid in its initial configuration.
X is called the (initial) Lagrangian coordinate. Through the fluid flow, the fluid particle initially
located at X will lie at x(X, t) at time t. x is named the (moving) Eulerian coordinate. The
trajectory equation, ∂

∂tx(X, t) = u(X, t), emphasizes the fact that the particles move as the fluid
flows, where u(X, t) is nothing but the fluid velocity. The Jacobian J , associated with the fluid
flow, is defined as J = ∂ x

∂X . We assume J > 0 at all time so that the flow map is invertible. To move
the fixed reference frame to a moving one following the fluid flow, we introduce here the definition
of the material derivative. Let f be a fluid variable with sufficient smoothness. For the sake of
conciseness, the same notation is used to denote the value of the physical quantity regardless the
employed description

f = f(x, t) = f(x(X, t), t) = f(X, t).

Then, the time rate of change of f following a fluid particle along its motion writes

d

dt
f(x, t) ≡ ∂

∂t
f(X, t) =

∂

∂t
f(x, t) + u(x, t)

∂

∂x
f(x, t). (2)

5



This definition, along with basic algebraic manipulations, enables us to get the one-dimensional gas
dynamics equations (1) in an updated Lagrangian form as follows

ρ
dU

dt
+
∂ F(U)

∂x
= 0. (3)

Here U = (τ, u, e)t is the vector of the mass conservative quantities and F(U) = (−u, p, p u)t the
flux, where τ = 1

ρ denotes the specific volume. System (3) is said to be mass conservative because

the conserved quantity is ρU = (1, ρ u, ρ e)t. Indeed, thanks to the mass conservation relations

∂ ρ J

∂t
= 0, (4a)

ρ J = ρ0, (4b)

where ρ0 refers to as the initial density, the integration of equation (3) over the control volume
ω = [xL, xR] leads to the conservative integral form

∂

∂t

∫

ω
ρUdx+ F(UR)− F(UL) = 0, (5)

where UL/R = U(xL/R, t). Another Lagrangian formalism, more often used in solid dynamics, is the
total Lagrangian form which is based on the initial coordinate. The counterpart of system (3) in
the initial configuration can be easily obtained for one dimension in space through the use of the
mass conservation (4b) as well as the simple derivative relation ∂ f

∂x = J−1 ∂ f
∂X , and writes

ρ0∂ U

∂t
+
∂ F(U)

∂X
= 0. (6)

This system is the local form of the total Lagrangian gas dynamics equations. Its integral conser-
vative form reads

∂

∂t

∫

Ω
ρ0 UdX + F(UR)− F(UL) = 0, (7)

where UL/R = U(x(XL/R, t), t). Formulations (3) and (6) are perfectly equivalent under the as-
sumption J > 0, and they both write the same in a mass Lagrangian formulation as follows

dU

dt
+
∂ F(U)

∂m
= 0, (8)

where ∂m = ρ0 ∂X = ρ ∂x is referred to as the mass coordinate. The use of such coordinate,
generally employed in the Lagrangian community, is restricted to the one-dimensional case. In its
non-conservative form, this system yields

dU

dt
+ A(U)

∂ U

∂m
= 0, (9)

where the flux Jacobian matrix A(U) has λ = {−z, 0, z} as eigenvalues, where z = ρ a denotes the
acoustic impedance and a the thermodynamic sound speed.
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The thermodynamic closure of these systems is given by expressing the pressure p and the temper-
ature T in terms of the density ρ, the specific entropy S, and the internal energy ε = e− u2

2 through
the equation of state

p = ρ2 ∂ε

∂ρ
|S and T =

∂ε

∂S
|ρ.

This constitutive equation is consistent with the fundamental Gibbs relation

T dS = dε+ p dτ. (10)

We also assume that the specific entropy is a concave function with respect to the specific volume
τ and the internal energy ε. We note that the equation of state can also be written under the so-
called incomplete form p = p(ρ, ε). Finally, the thermodynamic sound speed is defined as a2 = ∂p

∂ρ |S .

Obviously, a2 has to remain positive at all time. A numerical scheme not ensuring this property
may lead to crash of the code. This remark will be one of the guiding principles of this paper, for
the different equations of state studied.

3. Equations of state

In this paper, we consider several widely assessed multi-material problems with general equations
of state. In practice, we make use of four different EOS, from the simple ideal gas one, to the more
complex Mie-Grüneisen EOS for solids. Further details can be found in Appendix A.

Gamma gas law for perfect gas

For perfect gas, we define the thermodynamic pressure as

p = ρ(γ − 1)ε, (11)

where γ > 1 is the polytropic index of the gas.

Stiffened gas EOS

This equation of state, generally used for water under very high pressures, is more generic than the
ideal one. Furthermore, prefect gas is a special case of stiffened gas. Here, the pressure reads

p = ρ(γ − 1)ε− γ ps, (12)

where ps is a positive constant representing the molecular attraction between water molecules.

Jones-Wilkins-Lee (JWL) EOS for detonation-product gas

This equation of state is used to describe explosions. Here, the pressure reads

p = ρ(γ − 1)ε+ fj(ρ), (13)

where the definition of the positive function fj(ρ) can be found in Appendix A.3.
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Mie-Grüneisen EOS for solids

Even if this paper is concerned with solving gas dynamics problems, one can decide to plug equations
of state generally used in solid mechanics into the studied system. Here, we make use of the Mie-
Grüneisen equation of state for shock-compressed solids. In this case, the pressure reads

p = ρ0 Γ0 ε+ ρ0 a
2
0 fm(η), (14)

where η = ρ
ρ0

, ρ0 being the density of the unstressed material. The physical meaning of the con-
stants involved in (14), as well as the definition of fm(η), can be found in Appendix A.4.

These different definitions of pressure yield different domains of validity. Indeed, physically the fluid
flow has the positivity property for some variables such as density, internal energy, or the quantity
inside the square root to define the sound speed. Let us note that it is not always the case of the
pressure, which can yield negative values for the stiffened gas EOS for instance. In Appendix A,
we prove that a sufficient condition for the solution to be physical writes as follows

(ρ, ε̂) ∈ ]ρmin, ρmax[×]εmin,+∞],

where ε̂ = ε − ps τ in the stiffened EOS case and ε̂ = ε otherwise, and ρmin, ρmax and εmin are
positive constants depending on the EOS. Furthermore, if the solution lies in this validity domain
then one can know for sure that a2 > 0. That being said, we now aim at ensuring that the numerical
schemes under consideration produce solutions lying in this validity domain. But before exploring
the case of a generic order of accuracy in space, one needs to ensure that the first-order scheme
preserves the desired property. The first-order scheme will provide the healthy base on which one
can build an high-order approximation.

4. First-order schemes

The cell-centered discretization of one-dimensional Lagrangian gas dynamics equations is quite well-
known and has been the subject of many seminal papers, see for instance [74, 56, 35, 69, 46, 30, 31,
7, 43, 83, 62] and the references within. Let us briefly recall the general framework of these methods.
First, let Ω = [Xb, Xe] be the domain filled by the fluid in its initial configuration. Its image through
the flow map is the considered domain ω = [xb, xe] at time t. These domains are partitioned into I
non-overlapping cells, respectively Ωi = [Xi− 1

2
, Xi+ 1

2
] and ωi = [xi− 1

2
, xi+ 1

2
], where ωi is the image

of cell Ωi through the fluid flow. This relation is given by the trajectory equation d
dtxi+ 1

2
= ui+ 1

2
,

where ui+ 1
2

denotes the vertex velocity. X 1
2

identifies the left boundary Xb of the initial domain,

and XI+ 1
2

the right boundary Xe. Similarly, x 1
2

and xI+ 1
2

identify the left and right boundaries, xb
and xe, of the actual domain. Let us define the constant mass mi of cell ωi as

mi =

∫

Ωi

ρ0(X) dX =

∫

ωi

ρ(x, t) dx. (15)

We introduce now the mass averaged value of function φ as

φi =
1

mi

∫

Ωi

ρ0(X)φ(X, t) dX =
1

mi

∫

ωi

ρ(x, t)φ(x, t) dx. (16)

This definition corresponds to a classical average operator weighted by the density. Through (16),
let Ui be the mass averaged solution vector U on cell ωi. Then, integrating on the control volume
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ωi = [xi− 1
2
, xi+ 1

2
] either system (3), (6) or (8) yields the following semi-discrete first-order finite

volume scheme

mi
dUi
dt

+ F(Ui,Ui+1)− F(Ui−1,Ui) = 0, (17)

where F(Ui,Ui+1) ≡ Fi+ 1
2

= (−ui+ 1
2
, pi+ 1

2
, pi+ 1

2
ui+ 1

2
)t denotes the numerical flux at the node xi+ 1

2
,

with the intercell values ui+ 1
2

and pi+ 1
2

computed from the left and right states Ui and Ui+1.

Different ways of computing these intercell values yield different numerical fluxes and different first
order schemes. Let 0 = t0 < t1 < · · · < tN = T be a partition of the time domain [0, T ], and
∆tn = tn+1 − tn denotes the nth time increment. Then, applying a standard forward Euler scheme
as time integrator on system (17), one gets the time discrete version of the previous first-order finite
volume scheme as follows

Un+1
i = Uni −

∆tn

mi

[
F(Uni ,U

n
i+1)− F(Uni−1,U

n
i )
]
. (18)

Similar time integration of the trajectory equation enables us to advance in time the grid position,
as xn+1

i+ 1
2

= xn
i+ 1

2

+ ∆tn un
i+ 1

2

. The numerical scheme lies in the choice of the numerical flux function

F(Uni ,U
n
i+1) = F

n
i+ 1

2
. Such function is generally obtained by exactly or approximately solving the

Riemann problem at the cell interface xi+ 1
2

with Uni and Uni+1 as the left and right states respectively.

The resolution of such problems has been addressed in many references [74, 35, 69, 46, 7, 31, 62]
and thus will not be fully detailed here. In the following, we merely present a single approximate
Riemann solver, which is widely used in the Lagrangian community and is generally referred to as
the two-states solver. This solver will reduce in some simple cases either to the Godunov acoustic
scheme, or to a linearized approximate Riemann solver in a Roe flux style. It can also be seen as
the counterpart of the HLLC solver in terms of the Lagrangian mass coordinate.

5. Two-states Riemann solvers

We present here an approximate Riemann solver associated with simple Riemann problem. In [43],
Gallice defines a simple Riemann solver as a Riemann solution consisting of (m+1) constant states,
separated by m discontinuities. This notion is not new since Roe [75], HLL [51], HLLE [38] and
HLLC [81] solvers are all simple Riemann solvers. Now, the simple Riemann problem to be solved
comes from a linearization of system (9) around two mean states ŨL and ŨR. This is why this solver
is referred as a two-states solver. The associated Riemann problem is defined as follows

dU

dt
= −





A(ŨL)
∂ U

∂m
for m-mi < 0,

A(ŨR)
∂ U

∂m
for m-mi > 0,

(19a)

U(m, 0) =

{
UL for m-mi < 0,
UR for m-mi > 0.

(19b)

This Riemann problem is said to be simple because its solutions can be put into the following form

U(m, t) =





UL for m-mi < -z̃L t,

U
−

for -z̃L t < m-mi < 0,

U
+

for z̃R t > m-mi > 0,
UR for m-mi > z̃R t,

(20)
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where U
−

and U
+

are the left and right intermediate states. This solution definition is emphasized
in Figure 1. Naturally, the left and right wavespeeds, z̃L = ρ̃L ãL and z̃R = ρ̃R ãR, are some local

UR

t

mi m

UL

z̃R0

U
+

U
−

−z̃L

Figure 1: Two-states approximate Riemann fan.

approximations of the acoustic impedance. The Rankine-Hugoniot relations on the gas dynamics
system tell us that the pressure and the velocity are continuous across a contact discontinuity, i.e.
u− = u+ = u and p− = p+ = p. These relations enable us to fully determine the intermediate states
associated with this two-states Riemann problem

U
−

= UL −
F− F(UL)

z̃L
and U

+
= UR +

F− F(UR)

z̃R
, (21)

where F = (−u, p, p u)t. These definitions give us the associated numerical fluxes

u =
z̃L uL + z̃R uR

z̃L + z̃R
− 1

z̃L + z̃R
(pR − pL), (22a)

p =
z̃R pL + z̃L pR
z̃L + z̃R

− z̃L z̃R
z̃L + z̃R

(uR − uL), (22b)

which, by the construction of the solver itself, preserves contact discontinuities. In the particular
case where z̃L = z̃R = z̃, one recovers the so-called one-state solver. This latter Riemann solver
results from a linearization of the Riemann problem, and thus can be obtained by means of a Roe
scheme [75]. Furthermore, a particular definition of z̃ will lead to the recovery of the scheme in-
troduced by Munz in [69]. In the general case where z̃L 6= z̃R, the two-states linearization makes
this solver difficult to be interpreted as a Roe scheme. Different choices on the wave speeds z̃L and
z̃R are possible and yield different properties, see [69, 31, 43] for more details. The simplest one,
and certainly the most widely used, is the acoustic approximation where the wave speeds are set
to be the left and right acoustic impedances, i.e. z̃L ≡ zL = ρL aL and z̃R ≡ zR = ρR aR. In this
particular case, this two-states solver is nothing but the Godunov acoustic solver.

Formula (22), derived as the solution of the two-states approximate Riemann problem, enable us
to end the construction of the first-order finite volume scheme (18), by defining the numerical flux

10



Fi+ 1
2

= F(Ui,Ui+1). In this definition, the left and right wavespeeds are denoted respectively by

z̃−
i+ 1

2

and z̃+
i+ 1

2

. This particular choice in the numerical flux leads to a semi-discrete production of

entropy. This statement is emphasized in the following remark.

Remark 5.1. The first-order scheme in its semi-discrete form, (17), provided with the two-states
Riemann solver as numerical fluxes, (22), ensures a semi-discrete production of entropy, see for
instance [31, 62, 83]. Indeed, by means of the Gibbs identity (10), it follows that the use of scheme
(17) implies

mi Ti
dSi
dt

= mi
d ei
dt

+ uimi
dui
dt

+ pimi
d τi
dt
,

= z̃−
i+ 1

2

(ui+ 1
2
− ui)2 + z̃+

i− 1
2

(ui− 1
2
− ui)2 ≥ 0. (23)

6. Godunov-type scheme

To assess the preservation of the numerical solution admissibility along the time, we would like
to express the updated solution Un+1

i as a convex combination of some admissible intermediate
states. Because the presented method is a Godunov-like scheme, it is possible to write it as the
combination of the two approximate Riemann solvers located at nodes xi− 1

2
and xi+ 1

2
. To that end,

adding and subtracting ∆tn

mi
F(Uni ) in equation (18), along with basic algebraic manipulation, enable

us to rewrite Un+1
i as

Un+1
i = Uni −

∆tn

mi
(F
n
i+ 1

2
− F

n
i− 1

2
) ±∆tn

mi
F(Uni ),

= (1− λi)Uni + λ−
i+ 1

2

U
−
i+ 1

2
+ λ+

i− 1
2

U
+
i− 1

2
, (24)

where λi = λ−
i+ 1

2

+ λ+
i− 1

2

with λ∓
i± 1

2

= ∆tn

mi
z̃∓
i± 1

2

. In equation (24), U
−
i+ 1

2
and U

+
i− 1

2
read as follows

U
−
i+ 1

2
= Uni −

F
n
i+ 1

2
− F(Uni )

z̃−
i+ 1

2

and U
+
i− 1

2
= Uni +

F
n
i− 1

2
− F(Uni )

z̃+
i− 1

2

, (25)

which are nothing but the intermediate states defined in (21). This convex decomposition of the
first-order Godunov-type scheme presented is depicted in Figure 2. Finally, to avoid the interaction
of left and right waves, and thus to ensure (24) is indeed a convex combination, the condition λi ≤ 1
has to be respected, which rewrites

∆tn ≤ σe
mi

z̃−
i+ 1

2

+ z̃+
i− 1

2

, (26)

with the CFL coefficient σe = 1. This simple analysis provides us with the correct definition of the
CFL condition. Only in the case of the acoustic approximation, i.e. z̃∓

i± 1
2

≡ zni = ρni a
n
i , that we

recover the following classical condition

∆tn ≤ σe
2

∆xni
ani

. (27)

The purpose of this paper is to ensure that the numerical solution remains in an admissible state
to be defined. Given equation (24), we can reasonably hope that if Uni , as well as U

−
i− 1

2
and U

+
i− 1

2
,

are admissible, the new numerical solution Un+1
i will also be admissible. This would be the case if

the admissible set is convex.
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∆tn

Un
i

t

m

mi

U
−
i+1

2
U

+
i−1

2

z̃+
i−1

2

−z̃−
i+1

2

Figure 2: Illustration of the Lagrangian scheme with the two-states solver.

7. First-order positivity-preserving schemes

We have seen in section 3 dedicated to the equations of state, that the solution may lie in a domain
of validity of the form, ρ ∈ ]ρmin, ρmax[ and ε̂ > εmin, where ε̂ = ε− p? τ in the stiffened EOS case
and ε̂ = ε otherwise, see Appendix A for further details. One can easily check that the related
admissible set

G =



U =




τ
u
e


 , τ ∈ ]τmin, τmax[ and ε̂(U) > εmin



 , (28)

is convex, where τmin/max = 1
ρmin/max

. We will thus seek for numerical solution in G at all time.

Such solution will be referred as admissible in the remainder of the article. Thanks to equation
(24), assuming Uni ∈ G, a sufficient condition to ensure Un+1

i ∈ G is to have U
∓
i± 1

2
∈ G. Making use

of definition (21), we are able to express the left and right intermediate specific volumes as

τ∓
i± 1

2

= τni ±
ui± 1

2
− uni

z̃∓
i± 1

2

, (29)

and introducing vi± 1
2

= ±
u
i± 1

2
−uni

ani
, for the sake of conciseness, expression (29) rewrites into

τ∓
i± 1

2

= τni

(
1 +

zni
z̃∓
i± 1

2

vi± 1
2

)
. (30)

Similarly, definition (21) allows us to get the intermediate specific internal energy expressions

ε∓
i± 1

2

= e∓
i± 1

2

− 1

2
(ui± 1

2
)2 = εni − pni τni

zni
z̃∓
i± 1

2

vi± 1
2

+
(ani )2

2
v2
i± 1

2

. (31)
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In [43], the author proved that the numerical solver defined in (21) ensures the intermediate states
(30) and (31) to be positive, for large enough z̃∓

i± 1
2

. This property has been obtained in the limit

regime z̃∓
i± 1

2

−→ +∞. But we should ask ourselves if this property holds for realistic values of

wave speeds z̃∓
i± 1

2

. Actually, in light of equation (30), it is clear the Godunov acoustic solver is

NOT positivity-preserving. Indeed, in this case where z̃∓
i± 1

2

= zni , the intermediate specific volumes

rewrite τ∓
i± 1

2

= τni (1 + vi± 1
2
). And for instance, if ui± 1

2
> uni + ani then τ−

i+ 1
2

< 0. That being noted,

one may want to determine the constant z̃∓
i± 1

2

ensuring the intermediate specific volume and internal

energy to be positive. A simple quadratic analysis of definition (31) tells us that if z̃∓
i± 1

2

>
pni√
2 εni

then ε∓
i± 1

2

> 0. Let us note this condition is nothing but the one obtained in the HLLC solver case

in [22]. Now, a similar analysis of equation (30), to assess the positivity of the intermediate specific
volume, tells us that the constant z̃∓

i± 1
2

has to yield z̃∓
i± 1

2

> −zni vi± 1
2
, for any value of vi± 1

2
∈ R.

This is obviously impossible, and we can conclude that z̃∓
i± 1

2

has to be a function of vi± 1
2
.

A solution to overcome this difficulty is the use of the shock Hugoniot approximation introduced in
[35] by Dukowicz. This particular characterization of the shocks, along with a two-shock approxi-
mation, allows us to define the wavespeeds z̃∓

i± 1
2

as

z̃∓
i± 1

2

= zni

(
1 + Γ

∣∣vi± 1
2

∣∣
)
. (32)

The two-shock approximation, initially employed in a Riemann solver by Colella in [27], treats
rarefaction waves as shocks. This particular approximation, along with the two-states solver (22)
and wavespeed definition (32), constituted the technique employed by Maire in [62]. The constant
Γ ≥ 1 in (32) is determined in [35] to recover the exact shock Hugoniot in the regime of infinitely
strong strength. Thus, in the ideal gas case, the exact Riemann solution tells us that

lim
v
i− 1

2
→∞

τ+
i− 1

2

τni
=
γ − 1

γ + 1
=⇒ Γ =

γ + 1

2
.

It is then relatively easy to prove this particular definition of wavespeeds, (32), always yields strictly
positive intermediate specific volumes and internal energies. However, even if for a theoretical
matter, to have τ > 0 and ε > 0 is enough in the ideal gas case, it might not be true for numerical
applications. Indeed, numerically 1.E-20 can be interpreted as -1.E-20 in double precision. Thus it
would be reasonable to rather impose τ > 1.E-15 and ε > 1.E-15. Another issue arising from the use
of the wavespeed (32) lies on the definition of the appropriate constant Γ in more complex equations
of state. Furthermore, we have seen with the four EOS considered that the desired condition in
the general case might rather be (τ, ε) ∈ ]τmin, τmax[×]εmin,+∞]. These different problems will be
treated in the following by two different and independent techniques, first by a modification of the
constant Γ in the Dukowicz solver, second by adding a constraint on the time step but relaxing the
wavespeeds definition.

7.1. Modified Dukowicz solver

We define the modified Dukowicz wavespeeds as follows

z̃∓
i± 1

2

= zni

(
1 + Γ̃

∣∣vi± 1
2

∣∣
)
, (33)

13



where Γ̃ = σ−1
v > 0 is a constant to be determined. The constant σv is introduced here for

consistence with the next section. Definition (33) is perfectly equivalent to (32) in the particular
case Γ̃ = Γ. Firstly, let us ensure that τ∓

i± 1
2

> τmin ≥ 0. Simple algebraic manipulations allow us

to rewrite τ∓
i± 1

2

as

τ∓
i± 1

2

− τmin = (τni − τmin)

(
1 +

(
τni

τni − τmin

)
zni
z̃∓
i± 1

2

vi± 1
2

)
, (34)

which, assuming τni > τmin and substituting z̃∓
i± 1

2

by its definition, equation (33), leads to the

following inequality

τ∓
i± 1

2

− τmin > (τni − τmin)

(
1−

(
τni

τni − τmin

)
σv

)
.

Finally, if σv ≤ 1− τmin
τni

then τ∓
i± 1

2

> τmin. A similar procedure for the condition τ∓
i± 1

2

< τmax ≤ +∞
yields a similar conclusion, i.e. assuming τni < τmax, if σv ≤ τmax

τni
− 1 then τ∓

i± 1
2

< τmax. In the end,

one can state the following result

Remark 7.1. If τni ∈ ]τmin, τmax[ then σv ≤ (1− τmin
τni

, τmaxτni
−1) in (33) implies τ∓

i± 1
2

∈ ]τmin, τmax[.

For the ideal gas equation of state, the physical bounds are τmin = 0 and τmax = +∞, and thus
this constraint reduces to σv ≤ 1. In practice, we set these bounds to be τmin = ε and τmax = 1

ε ,
where ε > 0 is a very small constant generally set to 10−14 in our numerical applications.

Now, we perform a similar analysis for the condition ε̂
∓
i± 1

2
> εmin ≥ 0. Let us recall that for stiffened

gas we have defined ε̂ = ε− ps τ and p̂ = p+ ps, while for the other EOS studied ε̂ = ε and p̂ = p,

see Appendix A for more details. It is easy to prove ε̂
∓
i± 1

2
can be split into two terms as

ε̂
∓
i± 1

2
− εmin = (ε̂ni − εmin)Ai± 1

2
+Bi± 1

2
, (35)

where the quantity Ai± 1
2

writes

Ai± 1
2

= 1−
(

ε̂ni
ε̂ni − εmin

)
τni p̂

n
i

ε̂ni

zni
z̃∓
i± 1

2

vi± 1
2
, (36)

and Bi± 1
2

is defined as follows

Bi± 1
2

=
1

2
(ani )2 v2

i± 1
2

. (37)

Because Bi± 1
2
≥ 0, a sufficient condition to ensure the desired property is Ai± 1

2
> 0. Similarly to

what has been done previously, assuming ε̂ni > εmin, if σv ≤ (1 − εmin
ε̂ni

)
ρni ε̂

n
i

p̂ni
then ε̂

∓
i± 1

2
> εmin.

Finally, we emphasize these results in the following proposition.

Proposition 7.2. The first-order scheme (18) provided with the numerical fluxes (22) and the
particular wavespeeds definition (33) ensures an admissible solution under the CFL condition (26)
with σe ≤ 1 and if

σv ≤ min

(
1− τmin

τni
,
τmax
τni
− 1, (1− εmin

ε̂ni
)
ρni ε̂

n
i

p̂ni

)
.
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In the perfect gas and stiffened gas cases, provided with the physical bounds τmin = 0, τmax = +∞
and εmin = 0, this constraint reads σv ≤ min(1, 1

γ−1).

In this subsection, we have shown how to modify the Dukowicz wavespeed definition to ensure the
numerical solution remains in the admissible set G at all time. Nonetheless, due to the relative
complexity as well as the non-linearity of these formula, (32) and (33), generally solved by means
of an iterative algorithm such as fixed point method, one may want to use the simple Godunov
acoustic solver. In the following, we will show how to ensure the numerical solution remains in G,
for any definition of positive wavespeeds, z̃∓

i± 1
2

, which includes the particular case of the Godunov

acoustic solver.

7.2. Generic wavespeeds

In the previous section, we have seen that we cannot ensure the intermediate states U
∓
i± 1

2
to be in

the admissible set without particular constraints on the wavespeeds. Thus, instead of working on
U
∓
i± 1

2
as it is generally done, we now directly operate on Un+1

i . To make that possible, we make

use of an additional constraint on the time step widely used in the Lagrangian community. This
constraint permits to control the relative variation of cell volume during a time step such as

∣∣∣∆V
V

∣∣∣ ≡ |∆x
n+1
i −∆xni |

∆xni
< σv, (38)

which rewrites

∆tn < σv
∆xni

|ui+ 1
2
− ui− 1

2
| . (39)

In (39), σv is a positive constant that will prove to be the same as the one defined in the modified
Dukowicz solver section. Practically, we first determine under which conditions τni ∈] τmin, τmax[
implies τn+1

i ∈ ]τmin, τmax[. Making use of system (18) and recalling that ∆V = ∆tn(ui+ 1
2
− ui− 1

2
),

we are able to rewrite τn+1
i as

τn+1
i − τmin = (τni − τmin)

(
1 +

∆V

V

( τni
τni − τmin

))
. (40)

Consequently, assuming τni > τmin, the following sufficient condition ensures τn+1
i > τmin

∣∣∣∆V
V

∣∣∣ < 1− τmin
τni

,

which is equivalent to the volume variation condition (39) with σv ≤ 1− τmin
τni

. A similar procedure

in the case of τn+1
i < τmax yields that σv has to be such that σv ≤ τmax

τni
− 1. In the end, one can

state the following result.

Remark 7.3. If τni ∈ ]τmin, τmax[ then σv ≤ (1− τmin
τni

, τmaxτni
−1) in (39) implies τn+1

i ∈ ]τmin, τmax[.

This remark provides us with a sufficient condition for the first-order scheme (18) to be positivity-
preserving, and actually more generally maximum-principle-satisfying, for the specific volume and
thus the density.
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We may now assess the required constraints to ensure ε̂n+1
i > εmin. By means of the first-order

scheme (18) and basic manipulations, ε̂n+1
i can be split into two terms

ε̂n+1
i − εmin = (ε̂ni − εmin)Ai +Bi, (41)

where the quantity Ai reads as follows

Ai = 1− ∆V

V

(
ε̂ni

ε̂ni − εmin

)
τni p̂

n
i

ε̂ni
, (42)

while Bi is defined as

Bi =
∆tn

mi

[
z̃−
i+ 1

2

w2
i+ 1

2

+ z̃+
i− 1

2

w2
i− 1

2

− ∆tn

2mi
(z̃−
i+ 1

2

wi+ 1
2

+ z̃+
i− 1

2

wi− 1
2
)2
]
, (43)

with wi± 1
2

= ui± 1
2
−uni . As we did in the previous section, if we manage to prove that Bi ≥ 0 at all

time, it is then sufficient to ensure Ai > 0. The time step constraint (39) with σv ≤ (1− εmin
ε̂ni

)
ρni ε̂

n
i

p̂ni
enforces Ai to remain strictly positive. Now for Bi, let us note this quadratic term can be put into
a matrix-vector form as

Bi =
∆tn

mi




z̃+
i− 1

2

(1− ∆tn

2mi
z̃+
i− 1

2

) −∆tn

2mi
z̃+
i− 1

2

z̃−
i+ 1

2

−∆tn

2mi
z̃+
i− 1

2

z̃−
i+ 1

2

z̃−
i+ 1

2

(1− ∆tn

2mi
z̃−
i+ 1

2

)






wi− 1
2

wi+ 1
2


 �




wi− 1
2

wi+ 1
2


 , (44)

≡ ∆tn

mi
MiW �W. (45)

It can be proven that the matrix Mi is positive semi-definite if and only if

∆tn ≤ 2
mi

z̃−
i+ 1

2

+ z̃+
i− 1

2

.

We have then recovered the CFL condition (26) with a twice bigger CFL number σe. In the Go-

dunov acoustic solver case, this condition reads ∆tn ≤ ∆xni
ani

.

Let us emphasize that the quantity Bi corresponds to an approximation of the time discrete coun-

terpart of the semi-discrete entropy production Ti
dSi
dt
≥ 0 of equation (23). Indeed, Bi rewrites

as

Bi = εn+1
i − εni + pni

(
τn+1
i − τni

)
. (46)

Nevertheless, to have Bi ≥ 0 will not ensure the scheme to produce entropy at the discrete level.
Actually, one can prove from the concavity of the specific entropy function S that

1

Tn+1
i

[
εn+1
i − εni + pn+1

i

(
τn+1
i − τni

) ]
≤ S(Un+1

i )− S(Uni ) ≤ Bi
Tni

, (47)

under the assumption that both Uni and Un+1
i lie in the admissible set G. Consequently, to prove

any increase in the entropy, one has to determine a time step ∆tn > 0 such that the left-hand side of
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inequality (47) is positive. Such demonstration has been done by Després in [31], in which the solu-
tion is assumed to be positive. In the end, even if Bi ≥ 0 will not ensure the scheme to be entropic
at the discrete level, it provides us with a sufficient condition for the positivity of the internal energy.

Finally, let us emphasize the condition of admissibility of the numerical solution in the following
proposition.

Proposition 7.4. The first-order scheme (18) provided with the numerical fluxes (22) for any
definition of positive wavespeeds ensures an admissible solution under the CFL condition (26) with
σe ≤ 2 and the volume variation constraint (39) with

σv ≤ min

(
1− τmin

τni
,
τmax
τni
− 1, (1− εmin

ε̂ni
)
ρni ε̂

n
i

p̂ni

)
.

This proposition holds for any definition of positive wavespeed z̃∓
i± 1

2

> 0, and thus for the particular

case of the Godunov acoustic solver, z̃∓
i± 1

2

= zni . Furthermore, we have seen the coefficient σv

involved in the control volume variation time step constraint (39), can be chosen similarly to the
one in the modified Dukowicz solver definition (33).

Summary. Due to the large number of equations introduced, let us summarize the main features
of this work so far. The problem is to determine conditions for which the first-order finite volume
Lagrangian scheme

Un+1
i = Uni −

∆tn

mi

[
F
n
i+ 1

2
− F

n
i− 1

2

]
,

where the numerical flux F
n
i+ 1

2
= (−un

i+ 1
2

, pn
i+ 1

2

, pn
i+ 1

2

un
i+ 1

2

)t is evaluated through the two-states solver

un
i+ 1

2

=
z̃−
i+ 1

2

uni + z̃+
i+ 1

2

uni+1

z̃−
i+ 1

2

+ z̃+
i+ 1

2

− 1

z̃−
i+ 1

2

+ z̃+
i+ 1

2

(pni+1 − pni ),

pn
i+ 1

2

=
z̃+
i+ 1

2

pni + z̃−
i+ 1

2

pni+1

z̃L + z̃R
−

z̃−
i+ 1

2

z̃+
i+ 1

2

z̃−
i+ 1

2

+ z̃+
i+ 1

2

(uni+1 − uni ),

ensures numerical solutions to be admissible, namely at all time in the admissible set

G =
{
U = (τ, u, e)t, τ ∈ ]τmin, τmax[ and ε̂(U) > εmin

}
.

To that end, two different techniques are employed. The first one relies on ensuring the intermediate
states involved in the approximate Riemann solver to be in G. And it has been seen that the
wavespeeds z̃∓

i± 1
2

have to necessarily be a function of un
i± 1

2

. We have then made use of the following

definition

z̃∓
i± 1

2

= ρni

(
ani + σ−1

v

∣∣ui± 1
2
− uni

∣∣
)
.
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Finally, a sufficient condition to ensure the numerical solution to be in G is the use of such wavespeed

definition with σv ≤ min
(

1− τmin
τni

, τmaxτni
− 1, (1− εmin

ε̂ni
)
ρni ε̂

n
i

p̂ni

)
, and the following CFL condition

with σe ≤ 1

∆tn ≤ σe
mi

z̃−
i+ 1

2

+ z̃+
i− 1

2

.

The second technique relaxes this particular definition of the wavespeeds. The approximate Riemann
intermediate states will not necessarily to be in G this time, only Un+1

i will. To that purpose, in
addition to the previous CFL condition with σe ≤ 2, we make use of a supplementary time step
constraint relative to the volume variation as follows

∆tn < σv
∆xni

|ui+ 1
2
− ui− 1

2
| .

Finally, if σv ≤ min
(

1− τmin
τni

, τmaxτni
− 1, (1− εmin

ε̂ni
)
ρni ε̂

n
i

p̂ni |

)
, the scheme is ensured to produce solu-

tions in G. These two techniques involve a constant σv which has proved to be the same.

In the end, one can now wonder how constraining this new time step condition (39) is in comparison
with the CFL condition (26). Let us consider the modified Dukowicz solver case. Then, by means
of z̃∓

i± 1
2

definition (33), one can write

z̃−
i+ 1

2

+ z̃+
i− 1

2

=
mi

∆xni

[
2ani + σ−1

v (|un
i+ 1

2

− uni |+ |uni− 1
2

− uni |)
]
,

>
mi

σv

|un
i+ 1

2

− un
i− 1

2

|
∆xni

.

Thanks to this last relation, one can state that

mi

z̃−
i+ 1

2

+ z̃+
i− 1

2

< σv
∆xni

|un
i+ 1

2

− un
i− 1

2

| . (48)

This second method seems then to be optimal in term of simplicity and time step, the CFL number
σe being twice bigger and the new time step condition (39) being always less constraining than the
CFL condition in the Dukowicz or modified Dukowicz solver cases. Of course, only the purpose of
positivity has been tackled here. There might be quality resolution differences between the original
Dukowicz solver, the modified one and the Godunov acoustic scheme, especially in strong shock
regime. However, as it will be shown in the numerical results section, this difference is dramatically
reduced going to higher-order accuracy.

The additional time step restriction technique does not seem limited to the numerical flux used in
this paper. A similar procedure can potentially be applied to any other Riemann solvers in the
Lagrangian framework. For instance, such technique could ensure the positivity of the Roe scheme,
or relax any wavespeed constraint required in the HLLC solver. It might thus be applied in a
straightforward manner to the schemes presented in [22]. Furthermore, it seems reasonable to say the
two positivity-preserving techniques developed here could be generalized to other Lagrangian system
of equations, as those involved in the magneto-hydrodynamics or elastic-plastic flow simulation for
instance.
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8. High-order schemes

We now consider a general high-order extension of the first-order scheme presented in the previous
section, equation (18). Such extension can be obtained by means of a large number of different meth-
ods as, among others, the Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL)
method [56, 57], the essentially non-oscillatory (ENO) finite volume schemes [50, 80], the weighted
ENO (WENO) finite volume schemes [60, 54], or the discontinuous Galerkin (DG) method [25, 26].
The only fundamental assumption is the high-order scheme must satisfy the following equation on
the mass averaged values

Un+1
i = Uni −

∆tn

mi

[
F(U−

i+ 1
2

,U+
i+ 1

2

)− F(U−
i− 1

2

,U+
i− 1

2

)

]
, (49)

where U+
i− 1

2

and U−
i+ 1

2

are the high-order values respectively within cell ωi at points xi− 1
2

and xi+ 1
2

in an updated Lagrangian frame, and within cell Ωi at points Xi− 1
2

and Xi+ 1
2

in a total Lagrangian

frame. In these two different frameworks, let us introduce Unh,i(x) and Unh,i(X) the piecewise poly-
nomial solutions of degree K on respectively cells ωi and Ωi. These polynomials can either be
reconstructed from the cell averages of neighboring cells in a finite volume method or evolved in a
DG method. Let us highlight that working in a total Lagrangian frame, as it is done for instance
in [83, 82, 84], the polynomial Unh,i(X) in the initial configuration may not be a polynomial in the
actual configuration Unh,i(X(x, t)). From now on, for sake of conciseness, when not specified, x
should be replaced by X in a total Lagrangian frame, as well as ω by Ω. Then, the high-order
values at the cell boundaries read as U+

i− 1
2

= Unh,i(xi− 1
2
) and U−

i+ 1
2

= Unh,i(xi+ 1
2
). Working on the

moving configuration, the grid position is still advanced in time such that xn+1
i+ 1

2

= xn
i+ 1

2

+ ∆tn un
i+ 1

2

.

Let us emphasize that the high-order in space scheme (49) still relies on a first-order forward Euler
time integration. The issue of high-order time integration will be addressed in section 12.

Let us note that different techniques can be employed to get high-order accuracy. For instance,
because the high-order point values are only required in the numerical fluxes F(U−

i+ 1
2

,U+
i+ 1

2

) =

(−ui+ 1
2
, pi+ 1

2
, pi+ 1

2
ui+ 1

2
)t, defined through solver (22), one might be tempted to choose to build

the high-order approximation only on the flux variables, namely the velocity and pressure. This is
however only possible for up to second order accuracy, as one does not know the cell averages of
these flux variables, only those of the conserved variables (mass, momentum and energy). Within
this flux variable high-order reconstruction, the specific volume and the total energy remain con-
stant inside the cells. To avoid this second-order accuracy bound, the high-order reconstruction
may be applied on the conserved variables. In both cases, the reconstructions could be obtained
from the averaged values on the neighboring cells ωi−1, ωi and ωi+1, by either an ENO, a WENO
or a simple least square method, see [19, 65] for this latter choice in the Lagrangian case. See
[20, 21, 59, 22, 23] for examples of second and third orders ENO and WENO reconstructions in
the gas dynamics Lagrangian framework. Finally, one can opt for a discontinuous Galerkin dis-
cretization. We have previously used such discretization in the total Lagrangian framework, namely
working on the initial configuration, system (6), to develop third-order methods, see [83]. In this
case, the conserved variables are approximated through polynomial basis functions, for which the
corresponding moments are evolved through the governing equations. The pressure is then defined
pointwisely through the use of the equation of state.
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Now, for high-order finite volume schemes on the moving configuration, such as those presented
in [19, 65, 20], the following relation between the high-order polynomial approximation and the
averaged value holds

Uni =
1

∆xni

∫

ωi

Unh,i(x) dx. (50)

For the total Lagrangian DG method introduced in [83], this relation writes

Uni =
1

mi

∫

Ωi

ρ0(X)Unh,i(X) dX. (51)

These relations will help us to extend the positivity-preserving proof to the high-orders of accuracy.
To this end, we make use of the seminal work of Zhang and Shu presented in a series of papers,
[89, 90, 91, 92], which has also been used by Cheng and Shu in [22]. This method relies on a
decomposition of high-order discretization as a convex combination of first-order schemes. Provided
with a particular limitation, the numerical solution can be ensured to be positive while maintaining
its originally designed high-order accuracy. For this purpose, let us first introduce the following
high-order quadrature rule on [−1, 1]

∫ 1

−1
φ(y) dy =

N∑

α=1

wα φ(yα), (52)

where {(wα, yα)}α=1,...,N are the N positive quadrature weights and quadrature points, with y0 =
−1 and yN = 1. For practical applications, we employ Gauss-Lobatto rules which are exact for
polynomial of degree up to 2N − 3, see Figure 3.

−1 −
√

3
7 0 1

√
3
7

Figure 3: Five points Gauss-Lobatto quadrature rule.

Because we need the quadrature rule to be exact for relations (50) and (51), for high-order finite
volume schemes on the moving configuration formula (52) has to be exact for polynomial up to
degree K, hence N ≥ K+3

2 , while for the total Lagrangian DG method it has to be exact up to
degree 2K, hence N ≥ K + 3

2 . Through the use of (52) on definitions (50) and (51), the following
relation can be derived

Uni =
1

mi

N∑

α=1

mα i Uα i, (53)

where, for finite volume schemes on moving cell, mα i = wαmi, Uα i = Unh,i(xα) and xα = xi− 1
2

+
1
2(yα + 1) (xi+ 1

2
− xi− 1

2
), while for the DG scheme on initial cell, mα i = wα ρ

0(Xα) ∆Xi, Uα i =

Unh,i(Xα) and Xα = Xi− 1
2

+ 1
2(yα + 1) (Xi+ 1

2
−Xi− 1

2
). Noticing that U1 i = U+

i− 1
2

and UN i = U−
i+ 1

2

,
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equation (53) immediately rewrites

Uni =
1

mi

N−1∑

α=2

mα i Uα i +
m1 i

mi
U+
i− 1

2

+
mN i

mi
U−
i+ 1

2

,

=
m?
i

mi
U?i +

m1 i

mi
U+
i− 1

2

+
mN i

mi
U−
i+ 1

2

, (54)

where m?
i =

∑N−1
α=2 mα i and U?i = 1

m?i

∑N−1
α=2 mα i Uα i. This last equation expresses Uni as a con-

vex combination. Now, substituting (54) into the high-order scheme (49), along with adding and
subtracting the artificial flux Fi yields

Un+1
i = Uni −

∆tn

mi

[
F(U−

i+ 1
2

,U+
i+ 1

2

)− F(U−
i− 1

2

,U+
i− 1

2

)

]
±∆tn

mi
Fi,

=
m?
i

mi
U?i +

m1 i

mi
V+
i− 1

2

+
mN i

mi
V−
i+ 1

2

, (55)

where V+
i− 1

2

and V−
i+ 1

2

are defined as follows

V+
i− 1

2

= U+
i− 1

2

− ∆tn

m1 i

[
Fi − F(U−

i− 1
2

,U+
i− 1

2

)

]
, (56a)

V−
i+ 1

2

= U−
i+ 1

2

− ∆tn

mN i

[
F(U−

i+ 1
2

,U+
i+ 1

2

)− Fi

]
. (56b)

Equation (55) writes Un+1
i as a convex combination of three different terms. Consequently, if these

terms belong to the convex admissible set G, then so do Un+1
i . Among these three terms, U?i is only

made of the contribution of the polynomial solution at time level n, Unh,i, at some quadrature points.
And to ensure this quantity to be in G, a particular limitation will be designed in Section 10. Now,
for V+

i− 1
2

and V−
i+ 1

2

, we would like to apply the same analysis as for the first-order scheme. The

artificial flux Fi = (−ui, pi, pi ui)t, where ui stands for some artificial velocity and pi some artificial
pressure, plays this role. It will help us identify V±

i∓ 1
2

with the first-order scheme (18), namely to

be put into the following form

V = U− ∆t

m
(F(U,X)− F(Y,U)).

To that end, we have no choice but to set the artificial flux as Fi = F(U+
i− 1

2

,U−
i+ 1

2

). With this

particular definition of Fi, one can now apply the exact same techniques as the ones presented in
the first-order case to ensure V∓

i± 1
2

to be in the admissible set G.

9. High-order positivity-preserving schemes

In this section, we focus on the conditions to enforce V∓
i± 1

2

∈ G. Similarly to the first-order case,

one may choose to use particular non-linear definitions of the local acoustic impedances, or simply
an additional time step constraint.
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9.1. Modified Dukowicz solver

The high-order extension of the original and modified Dukowicz definitions of z̃∓
i± 1

2

, introduced in

(32) and (33), can be expressed as follows

z̃∓
i± 1

2

= ρ∓
i± 1

2

(
a∓
i± 1

2

+ Γ̃ |ui± 1
2
− u∓

i± 1
2

|
)
, (57)

where ρ∓
i± 1

2

, a∓
i± 1

2

and u∓
i± 1

2

are the high-order values of the density, sound speed and fluid velocity

at node xi± 1
2

within cell ωi, respectively at Xi± 1
2

within Ωi in a total Lagrangian frame. In the

case where Γ̃ = Γ, one recovers the high-order extension of the Dukowicz solver, while for Γ̃ = σ−1
v ,

equation (57) reads as the extension of the modified one. Given (56) where the artificial flux
F(U+

i− 1
2

,U−
i+ 1

2

) = (−ui, pi, pi ui)t has been introduced, we also need to define the artificial local

wavespeeds relative to this term, z∓,u
i± 1

2

, as

z∓,u
i± 1

2

= ρ∓
i± 1

2

(
a∓
i± 1

2

+ Γ̃ |ui − u∓i± 1
2

|
)
, (58)

where the artificial velocity ui reads

ui =
z+,u

i− 1
2

u+
i− 1

2

+ z−,u
i+ 1

2

u−
i+ 1

2

z+,u

i− 1
2

+ z−,u
i+ 1

2

−
p−
i+ 1

2

− p+
i− 1

2

z+,u

i− 1
2

+ z−,u
i+ 1

2

. (59)

Each element of equations (56) having been defined explicitly, one may now apply in a straightfor-
ward manner the analysis performed on the first-order scheme. But before, let us first make the
following remark.

Remark 9.1. In the first-order case, the original Dukowicz wavespeed definition (32), for which
the constant Γ has been determined in the strong shock limit, has proved to ensure the positivity of
the intermediate specific volumes and internal energies. This proof relies on the fact that pressure
and sound speed are explicitly defined through the equation of state, namely in the ideal gas case
pni = (γ−1) ρni ε

n
i and ani =

√
γ(γ − 1)εni . This is no more the case when the high-order polynomial

reconstruction is performed on the flux variables. In this particular case, the EOS is only ensured
in mean value, and thus p∓

i± 1
2

6= p(U∓
i± 1

2

). This is the reason why, for schemes employing slope

reconstruction on the flux variables, as in [19, 65], one cannot hope the high-order extension of
the Dukowicz wavespeed (57) to ensure the positivity of the intermediate states. Nonetheless, the
modified version of it, (58), introduced in this paper, is ensured to produce intermediate states in
the admissible set, by construction of the constant Γ̃ = σ−1

v .

Proposition 9.2. For any high-order discretization relying on (49), assuming Uni ∈ G along with
U?i ,U

+
i− 1

2

,U−
i+ 1

2

∈ G, the averaged value Un+1
i is ensured to be admissible provided the numerical

fluxes (22) and the particular wavespeeds definition (58) with Γ̃ = σ−1
v under the following time

step limitation

∆t ≤ σe
m1 i

z̃+
i− 1

2

+ z+,u

i− 1
2

and ∆t ≤ σe
mN i

z̃−
i+ 1

2

+ z−,u
i+ 1

2

,
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where σe ≤ 1 and if

σv ≤ min


1− τmin

τ∓
i± 1

2

,
τmax

τ∓
i± 1

2

− 1,
(

1− εmin

ε̂∓
i± 1

2

) ρ∓
i± 1

2

ε̂∓
i± 1

2

|p̂∓
i± 1

2

|


 .

Now, if one rather wants to use a simpler solver as the acoustic Godunov one, or any specific
definitions of wavespeeds as for example z̃∓

i± 1
2

= ρni (ani + Γ |ui± 1
2
− u∓

i± 1
2

|), which is generally used

in the high-order extension of the Dukowicz solver, one needs to add additional limitations on the
time step.

9.2. Generic wavespeeds

In this case, the choice in z̃∓
i± 1

2

> 0 is free. Thus, one can either use zni or ρni (ani + Γ̃ |ui± 1
2
− u∓

i± 1
2

|)
or even ρ∓

i± 1
2

(a∓
i± 1

2

+ Γ̃ |ui± 1
2
− u∓

i± 1
2

|) for any Γ̃, or any other definition. The artificial wavespeeds

z∓,u
i± 1

2

have to be chosen consistently. Similarly to the first-order case, we can state

Proposition 9.3. For any high-order discretization presented earlier, assuming Uni ∈ G along with
U?i ,U

+
i− 1

2

,U−
i+ 1

2

∈ G, the averaged value Un+1
i is ensured to be admissible provided the numerical

fluxes (22) for any positive wavespeed definition z̃∓
i± 1

2

under the following time step limitations

∆t ≤ σe
m1 i

z̃+
i− 1

2

+ z+,u

i− 1
2

and ∆t ≤ σe
mN i

z̃−
i+ 1

2

+ z−,u
i+ 1

2

,

with σe ≤ 2, as well as

∆t ≤ σv
τ+
i− 1

2

m1 i

|ui− 1
2
− ui|

and ∆t ≤ σv
τ−
i+ 1

2

mN i

|ui+ 1
2
− ui|

,

where σv has to be such that

σv ≤ min


1− τmin

τ∓
i± 1

2

,
τmax

τ∓
i± 1

2

− 1,
(

1− εmin

ε̂∓
i± 1

2

) ρ∓
i± 1

2

ε̂∓
i± 1

2

|p̂∓
i± 1

2

|


 .

The remark claiming that the second technique is optimal in term of time step still holds in this
high-order case. Indeed, in the modified Dukowicz solver case, thanks to definitions (57) and (58),
it is very easy to prove that

m1/N i

z̃∓
i± 1

2

+ z∓,u
i± 1

2

< σv

τ∓
i± 1

2

m1/N i

|ui± 1
2
− ui|

. (60)

So far, we have proved that assuming Uni ,U
?
i , U

+
i− 1

2

and U−
i+ 1

2

lie in the admissible set, there exists a

time step ensuring the new numerical solution Un+1
i to be admissible in averaged value. To ensure

the required assumptions, we make use of the particular limitation introduced in [90].
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10. Positivity-preserving limiter

In the remainder, x should be replaced by X in a total Lagrangian frame. At time level n, the
averaged value Uni is assumed to be in G. Then, we modify the polynomial reconstruction Unh,i to
ensure the desired properties, as follows

Ũnh,i(x) = Uni + θ (Unh,i(x)− Uni ), (61)

where θ ∈ [0, 1] is to be determined. Obviously, such a constant exists because in the worst case, with
θ = 0, one recovers the first-order scheme with Uni ∈ G. However, the strategy to choose θ below will
ensure the original high order accuracy of the solution polynomial is not destroyed. The purpose of
the limiter is to yield Ũ+

i− 1
2

≡ Ũnh,i(x
+
i− 1

2

), Ũ−
i+ 1

2

≡ Ũnh,i(x
−
i+ 1

2

) and Ũ?i ≡ 1
m?i

∑N−1
α=2 mα i Ũnh,i(xα) in the

admissible set G. Let us note that ensuring Ũnh,i(xα) ∈ G, for all α = 2, . . . , N−1, will imply to have

Ũ?i ∈ G. However, this procedure being over-limiting regarding the requirement, the enforcement

of only Ũ?i in the admissible set has been preferred. First, let us enforce the admissibility of the
specific volume as follows

τ̃nh,i(x) = τni + θτ (τnh,i(x)− τni ), (62)

where the coefficient θτ = min(θminτ , θmaxτ ) is computed such that

θminτ = min
(

1,
τni − τmin
τni − τminm

)
with τminm = min(τ+

i− 1
2

, τ−
i+ 1

2

, τ?i ),

θmaxτ = min
(

1,
τmax − τni
τmaxm − τni

)
with τmaxm = max(τ+

i− 1
2

, τ−
i+ 1

2

, τ?i ).

Then, for the positivity of the internal energy, the limited polynomial reconstructions of the velocity
and total energy are computed through

ũnh,i(x) = uni + θε (unh,i(x)− uni ), (63)

ẽnh,i(x) = eni + θε (enh,i(x)− eni ), (64)

where θε is evaluated in an optimal manner to ensure ε̃m > εmin, where ε̃m = min(ε̃+
i− 1

2

−
ps τ̃

+
i− 1

2

, ε̃−
i+ 1

2

−ps τ̃−i+ 1
2

, ε̃?i −ps τ̃?i ) for the stiffened gas EOS, and ε̃m = min(ε̃+
i− 1

2

, ε̃−
i+ 1

2

, ε̃?i ) otherwise.

In order to determine θε, let us develop the limited polynomial approximation of the internal energy

ε̃nh,i(x) = ẽnh,i(x)− 1

2

(
ũnh,i(x)

)2
,

= εni + θε (εnh,i(x)− εni ) +
θε(1− θε)

2
(unh,i(x)− uni )2. (65)

Because θε(1−θε)
2 (unh,i(x) − uni )2 ≥ 0, one could decide to limit ε̃nh,i(x) ≥ εni + θε (εnh,i(x) − εni ) in a

similar way to the specific volume. However, such procedure will limit more than necessary, except
in the case unh,i(x) = uni . Then, to pick θε in an optimal manner for unh,i(x) 6= uni , in the light of

equation (65), we solve the quadratic equation ε̃nh,i(x) = εmin. This equation leads to two roots of
opposite signs. We finally set θε to be the minimum between 1 and the positive root. That being
said, we will presently show how the positivity of the numerical scheme yields stability properties.
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11. Positivity-preserving stability

Let us define the piecewise polynomial numerical solution Uh(x, t) defined on ω × [0, T ] such that

Uh(x, t) = Unh,i(x), for x ∈ ωi and t ∈ [tn, tn+1[. (66)

A similar definition can be introduced in the total Lagrangian frame by substituting in (66) x by
X, and ω by Ω. We assume the following initialization of the numerical variable mean values

U0
i =

1

mi

∫

Ωi

ρ0(X)U0(X) dX, (67)

where U0(X) = ( 1
ρ0(X)

, u0(X), e0(X))t, with ρ0(X) the initial fluid density, u0(X) the initial fluid

velocity and e0(X) the initial total energy. Let us introduce the L1 and L2 norms of a function φ,
respectively in the case of finite volume schemes on moving frame

‖φ‖L1 =
mc

∆xni

∫

ω
|φ(x)|dx and ‖φ‖L2 =

(
mc

∆xni

∫

ω
(φ(x))2 dx

) 1
2

, (68)

and for DG schemes in a total Lagrangian frame

‖φ‖L1 =

∫

Ω
ρ0(X) |φ(X)|dX and ‖φ‖L2 =

(∫

Ω
ρ0(X) (φ(X))2 dX

) 1
2

. (69)

For the sake of simplicity, we set ourselves either in a periodic boundary case, or in the particular
case where Fb = Fe = 0, with Fb and Fe read for the left and right boundary fluxes. Then, summing
the high-order scheme (49) on each cell leads to

Ii∑

i=1

mi U
n+1
i =

Ii∑

i=1

mi U
n
i . (70)

Because the high-order scheme has proved to produce positive mean values under some constraints,
the polynomials τh and εh = eh − 1

2(uh)2 are assumed to be positive for any x ∈ ω, which is always
feasible by limiting enough. Then, by means of relation (70) we are able to derive the following L1

stability statements on the specific volume and total energy

‖τh‖L1 = ‖ 1

ρ0
‖L1 and ‖eh‖L1 = ‖e0‖L1 . (71)

No similar result can be obtained for the velocity. However, we can derive relations bounding the
L2 norm of the velocity, namely the kinetic energy K = 1

2u
2. Indeed, one knows that 0 ≤ Kh < eh.

Then, making use of the Cauchy-Schwarz inequality, the following stability results can be ensured

‖Kh‖L1 < ‖eh‖L1 and ‖uh‖2L2
< mω + ‖eh‖2L2

, (72)

where mω =
∑

imi corresponds to the constant total mass of the domain ω. Let us recall that
only the case of the first-order time integration has been tackled so far. In the next section, the
high-order time extension will be discussed.
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12. High-order time discretization

In Section 8, high-order space discretization has been used, while the time integration was carried
out by a simple first-order forward Euler method. To reach a global high-order scheme, we make use
of Strong Stability Preserving (SSP) Runge-Kutta method, see [80]. For instance, at the third-order,
the used algorithm writes as follows

Stage 1) mi U
(1)
h,i = mi U

n
h,i + ∆tn L(Unh,i),

x
(1)

i+ 1
2

= xn
i+ 1

2

+ ∆tn un
i+ 1

2

;

Stage 2) mi U
(2)
h,i =

3

4
mi U

n
h,i +

1

4
[mi U

(1)
h,i + ∆tn L(U

(1)
h,i)],

x
(2)

i+ 1
2

=
3

4
xn
i+ 1

2

+
1

4
[x

(1)

i+ 1
2

+ ∆tn u
(1)

i+ 1
2

];

Stage 3) mi U
n+1
h,i =

1

3
mi U

n
h,i +

2

3
[mi U

(2)
h,i + ∆tn L(U

(2)
h,i)],

xn+1
i+ 1

2

=
1

3
xn
i+ 1

2

+
2

3
[x

(2)

i+ 1
2

+ ∆tn u
(2)

i+ 1
2

];

where L(Uh,i) is the operator corresponding to the space discretization. In light of the fact that
these multistage time integration methods write as convex combinations of first-order forward Euler
schemes, they will be positivity-preserving as soon as the first-order steps are. Thus, the positive
limitation introduced previously, in Section 10, has to be applied at each Runge-Kutta stage. Let us
highlight that even though in the first-order time integration case time steps ensuring an admissible
numerical solution have been explicitly defined, in the multistage high-order time discretization, one
can only be certain that there exists a time step small enough ensuring the global high-order scheme
to be positive. Consequently, for the numerical applications we make use of an iterative procedure
to determine the time step to be used. Practically, at each time level n, we start from an initial time
step ∆tn, for instance defined with the first-order restrictions emphasized in Propositions 7.2 and
7.4 with a smaller CFL coefficient as σe = 0.2. Then, after any Runge-Kutta stage, we assess the
average of the new numerical solution to see if it belongs or not to the admissible set G. If it is the
case, then after having applying the positivity limitation we go forward to the next Runge-Kutta
stage. Otherwise, we return to time level n and take ∆tn/2 as the new time step. In propositions
9.2 and 9.3, the time step restrictions enable us to be sure that this iterative time step selection
process admits a positive limit.

13. Numerical results

In this numerical results section, we make use of several challenging test cases, with different
equations of state, to demonstrate the performance and robustness of the cell-centered positivity-
preserving Lagrangian schemes presented. In the previous successive sections, it has been demon-
strated that for the cell-centered Lagrangian schemes considered to be positive, particular definitions
of the local acoustic impedance approximation z̃ have to be used, or an additional constraint on the
time step has to be ensured. For the sake of simplicity and computational time, in most of cases
presented we make use of the simple Godunov acoustic solver, where z̃ = z ≡ ρ a. Consequently,
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if it is not specified, the numerical results displayed are obtained with this acoustic approximation.
For the high-order extension, the case of a DG polynomial approximation of the system variables,
in a total Lagrangian formulation, will be used, as it is done in [83]. The first-order and third-order
versions of this scheme will be used to demonstrate the robustness of these positivity-preserving
methods, for different accuracy. In the total Lagrangian frame, the whole calculation is performed
on the fixed initial grid. However, for a better understanding of the numerical results, the solutions
will be displayed on the actual deformed mesh. Let us emphasize that most of the test cases assessed
here have been taken from those addressed in [22].

In this paper, the conditions to ensure the averaged numerical solution to be admissible in the
sens (τ, ε̂) ∈]τmin, τmax[×]εmin,∞] have been derived. For practical applications, in the ideal and
stiffened gas cases, we make use of τmin = εmin = 10−14 and τmax = 1014, while for the detona-
tion product gas τmin = 0.999 τ0. Working with the Mie-Grüneisen equation of state, we employ
τmin = Sm−1

Sm
τ0 and τmax = τ0

η? .

Even if the time step constraints developed in this paper along with the positive limitation intro-
duced previously are enough to ensure the solution to be admissible, an additional limitation might
be required in some cases. Indeed, the use of an high-order discontinuous Galerkin discretization
leads, in the vicinity of discontinuities, to the apparition of strong spurious oscillations. Obviously,
under the constraints derived along this article, these oscillations cannot produce non-admissible
solutions. Nonetheless, strong spurious oscillations on the specific volume may lead to a drastic de-
crease in the time step selection if we want to maintain the admissibility of the numerical solution.
To avoid such phenomenon, an additional and more classical limitation may be used. When needed
or when we want to improve the global quality of the numerical solution by reducing this spurious
oscillation phenomenon, we will turn on the additional limiting procedure. And even though, a
simple limitation of the specific volume will succeed in avoiding the occurrence of very small time
steps, we make use of a slightly more complex one. Indeed, it has been proved in [25] that to enforce
the monotonicity of the system variables, the limitation has to be performed on the characteristic
variables. To that purpose, we make use of a combination between the characteristic variables
limitation procedure presented in [83, 84] and a standard limitation on the piecewise polynomial
specific volume. Finally, for the specific volume, we choose the most limiting procedure, while for
the other variables only the characteristic variable limitation is used.

13.1. Numerical convergence study

To test the accuracy of these schemes, we make use of a smooth test case initially introduced in
[83]. This example has been derived in the isentropic case, with the polytropic index γ = 3. In
this special situation, the characteristic curves of the Euler equations become straight lines, and the
governing equations reduce to two Burgers equations. It is then simple to solve analytically this
problem. Similarly to [22], we modify the initial data to yield a more challenging example, as

ρ0(X) = 1 + 0.9999995 sin(2πX), u0(X) = 0, p0(X) = ρ0(X)γ , X ∈ [0, 1],

provided with periodic conditions. In Figure 4, the first-order and third-order numerical solutions
are depicted at time t = 0.1, using 50 uniform cells. In Table 1, we gather the global errors as
well as the rates of convergence related to the third-order scheme provided with Godunov acoustic
solver. The results confirm the expected third-order rate of convergence.
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Figure 4: Comparison between first and third-order computations on a smooth isentropic problem at time t = 0.1 on
a 50 cells mesh.

L1 L2 L∞

h EhL1
qhL1

EhL2
qhL2

EhL∞ qhL∞
1
50 9.69E-5 3.02 9.31E-5 3.01 2.75E-4 3.01
1

100 1.19E-5 3.01 1.16E-5 3.00 3.40E-5 3.01
1

200 1.48E-6 3.00 1.44E-6 3.00 4.923E-6 3.00
1

400 1.85E-7 3.00 1.80E-7 3.00 5.26E-7 3.00
1

800 2.30E-8 - 2.25E-8 - 6.56E-8 -

Table 1: Rate of convergence computed on the pressure in the case of the smooth isentropic problem at time t = 0.1,
for the third-order Lagrangian scheme.

13.2. The Leblanc shock tube

By means of the extreme shock tube problem, we will assess the resolution difference of the three dif-
ferent solvers presented, namely the acoustic solver, the Dukowicz solver and the modified Dukowicz
solver. The Leblanc shock tube problem is characterized by a [0, 9] domain filled by a perfect gas
with γ = 5/3, and by large ratio jumps for the initial energy and density as follows

(ρ0, u0, e0) =

{
(1, 0, 0.1), 0 < X < 3,
(0.001, 0, 10−7), 3 < X < 9.

It is quite challenging for a gas dynamics scheme to obtain accurate positions of the contact and
shock discontinuities in this severe shock tube problem. In Figure 5, the first-order density and
internal energy obtained at time t = 6, with respectively the acoustic, Dukowicz and modified
Dukowicz solvers, are depicted. One can see in Figure 5 that the Dukowicz solver yields a slightly
better resolution than the acoustic solver in this case. This comes from the fact such solver has
been built to mimic the exact Godunov solver in the infinite strength limit. The Dukowicz solver
should thus handle in a better way the approximation of strong shocks compared to the acoustic
solver. The modified Dukowicz solver relying on the same type of definition produces similar
results. However, let us note that, besides its great simplicity, the use of the acoustic solver leads
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Figure 5: Comparison between solvers on the Leblanc problem at time t = 6 on a 500 cells mesh with first-order
schemes.

to smaller computational times, see Table 2. This difference comes from the iterative fixed point

Acoustic solver Dukowicz solver modified Dukowicz solver

h Comp. time Comp. time Ratio (× acoustic) Comp. time Ratio (× acoustic)
1

400 9 sec 10 sec 1.11 10 sec 1.11
1

1000 53 sec 1 min 2 sec 1.17 1 min 2 sec 1.17
1

2000 3 min 17 sec 3 min 52 sec 1.18 3 min 51 sec 1.17

Table 2: Computational times in the case of the Leblanc shock tube problem, for the first-order Lagrangian schemes.

procedure used in the Dukowicz and modified Dukowicz solvers to resolve the coupled system
on the velocity u and the acoustic impedance local approximation z̃. Furthermore, even if the
difference in the solver resolutions seems substantial in Figure 5, it will dramatically be reduced
when the mesh is refined, which is not the case of the difference in the computational times involved.
Indeed, in Figure 6 the three different solvers yield almost the same discontinuities localization.
This difference in the resolution quality will also decrease by going to high-order of accuracy. In
Figure 7, limited third-order DG schemes with third-order Runge-Kutta time integration have been
used on a grid made of 500 cells. And compared to Figure 5, the numerical solution obtained
with the different solvers are now a lot more alike. Finally, we end this Leblanc test case section
by assessing the difference in the resolution between the first-order scheme and the limited third-
order scheme, in the acoustic solver case, Figure 8. As expected, the shape and position of the
contact discontinuity and shock are approached in a lot better way when the high-order scheme
is used. Furthermore, due to the too large numerical dissipation produced through a first-order
computation, the numerical solution will be very slow to converge to the correct shock localization,
regardless the solver employed. Figure 9 depicts this phenomenon for the Godunov acoustic solver.
The high-order extension permits to overcome this difficulty. Indeed, in Figure 10, one can clearly
see the shock convergence to the expected position. Thanks to this extreme shock tube problem, we
were able to point out slight differences in the discontinuity resolution between the different solvers
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Figure 6: Comparison between solvers on the Leblanc problem at time t = 6 on a 2000 cells mesh with first-order
schemes.
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Figure 7: Comparison between solvers on the Leblanc problem at time t = 6 on a 500 cells mesh with third-order DG
schemes.

presented. Nonetheless, such difference only appear in problems involving very severe shocks or
expansion waves, and further become insignificant when the mesh is refined or when the scheme is
upgraded to high-order accuracy. In most cases, the difference yielded by the solver choice being
very slight, we make use of the simplest and most computational efficient one of the three, namely
the Godunov acoustic solver.

13.3. The 123 problem - double rarefaction

We now consider the following low density and low pressure problem on the initial domain [−4, 4],
where the initial condition writes

(ρ0, u0, p0) =

{
(1, −2, 0.4), −4 < X < 0,
(1, 2, 0.4), 0 < X < 4.
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Figure 8: Comparison between first and third-order schemes on the Leblanc problem at time t = 6 on a 1000 cells
mesh.
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Figure 9: Convergence of the first-order scheme on the Leblanc problem at time t = 6.

The fluid considered is described through the ideal gas EOS with γ = 1.4. The left and right domain
boundaries are enforced to move at a velocity respectively equal to -2 and 2. As it has been done in
the Leblanc shock tube problem, we compare at time t = 1 the exact solution with the first-order
numerical solutions obtained on a 400 cells grid with the different solvers, see Figure 11. One can
see the quite bad resolution of the Lagrangian schemes near the vacuum. This strong heating phe-
nomenon is well known, and come from the scheme entropy production even in rarefaction waves,
along with the very few number of grid points near the origin in this case. However, in the light
of Figure 11, the acoustic solver clearly yields a better resolution compared to the Dukowicz solver
in the strong expansion problem. Like in the Leblanc test case, this difference becomes insignifi-
cant with high-order approximations, see Figure 12. Without the positivity-preserving limitation
introduced in Section 10, the high-order Lagrangian schemes blow up for this example. Finally, to
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Figure 10: Convergence of the third-order scheme on the Leblanc problem at time t = 6.
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Figure 11: Comparison between solvers on the 123 problem at time t = 1 on a 400 cells mesh with first-order schemes.

assess the benefit of the high-order extension, we compare the first-order and third-order numerical
solutions, see Figure 13. We can distinctly see how the high-order extension improves the global
resolution of the solution and reduces the heating phenomenon observed on the internal energy in
the vicinity of vacuum.

13.4. Interaction of blast waves

The blast waves interaction problem is a standard low energy problem involving shocks, generally
used to assess the robustness of gas dynamics schemes. The initial data read

ρ0(X) = 1, u0(X) = 1, p0(X) =





103, 0 < X < 0.1,
10−2, 0.1 < X < 0.9,
102, 0.9 < X < 1.0.

, X ∈ [0, 1].
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Figure 12: Comparison between solvers on the 123 problem at time t = 1 on a 400 cells mesh with third-order DG
schemes.
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Figure 13: Comparison between first and third-order schemes on the 123 problem at time t = 1 on a 400 cells mesh.

The fluid under consideration is described by the ideal gas EOS with γ = 1.4, and reflective
conditions are applied to the left and right boundaries of the domain. In Figure 14, the density and
internal energy computed with 400 uniform cells at time t = 0.038, respectively with the first-order
and third-order schemes, are compared with the reference “exact” solution. This reference solution
has been obtained using a first-order scheme with 10000 grid points. In this strong shocks problem,
we make use of the additional limitation described in the introduction of this section to avoid to
occurrence of extremely small time steps, as well as improve the global quality of the third-order
numerical solution. It is clear in Figure 14 that the density as well as the internal energy remain
positive for both first-order and high-order schemes. One can also distinctly observe the better
resolution yielded by the third-order scheme in comparison with the first-order one. The overshoots
visible in the numerical solution are independent of the limitation, being present from the first-

33



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

solution

1st order

3rd order

(a) Density profiles.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

solution

1st order

3rd order

(b) Internal energy profiles.

Figure 14: Comparison between first and third-order on a blast wave problem at time t = 0.038 on a 400 cells mesh.

order. This phenomenon is inherent to the Lagrangian formulation used, and is due to the very
strong difference in the cell aspect ratio before and after discontinuities.

13.5. The gas-liquid shock tube

So far, only the case of the ideal gas equation of state has been issued. To address the case of
the stiffened gas EOS, we make use the following severe water-air shock tube. This problem yields
a density ratio of 200 and will enable us to illustrate the performance of the Lagrangian schemes
presented for multi-material flows presenting strong interfacial contact discontinuity. In this shock
tube test case, the fluid on the left side of the membrane located at x = 0.3 is considered to be
a perfect gas, while on the right side water is considered. The perfect gas is modeled by the ideal
EOS with γ = 1.4, while the water is described through the stiffened gas EOS with γ = 4.4 and
ps = 6× 108. The initial states of the two fluids are defined as follows

(ρ0, u0, p0) =

{
(5, 0, 105), 0 < X < 0.3,
(103, 0, 109), 0.3 < X < 1.0.

We display in Figure 15 the numerical solutions at time t = 0.00024 obtained by means of the
first-order scheme and the limited DG third-order scheme provided with the acoustic solver, on a
grid made of 200 cells. These results prove the good agreement between the exact solution and the
numerical ones, despite of the extreme initial conditions. In both first-order and high-order cases,
the density and internal energy are maintained positive at all time. Furthermore, the third-order
scheme again demonstrate to yield a better resolution than the first-order one, as expected.

13.6. The underwater TNT explosion

To assess the case of the Jones-Wilkins-Lee equation of state, we make use the multi-material test
case initially introduced in [41]. This problem has been modified in [22] to increase the stiffness
of the problem and thus to produce a more challenging problem, namely where the appearance of
negative density and internal energy are more likely. In this latter case, the initial data read

(ρ0, u0, p0) =

{
(1.63× 10−3, 0, 8.381× 103), 0 < X < 0.16,
(1.025× 10−3, 0, 1), 0.16 < X < 3.0.
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Figure 15: Comparison between first and third-order on the water-air shock tube problem at time t = 0.00024 on a
200 cells mesh.

On the left of the interface initially located at x = 0.3, the gaseous product of the detonated
explosive is modeled by the JWL EOS with A1 = 3.712 × 105, A2 = 3.23 × 103, R1 = 4.15,
R2 = 0.95, ρ0 = 1.63 × 10−3 and γ = 1.3. On the right of the interface, the water is described
through the stiffened gas EOS with γ = 7.15 and ps = 3.309 × 102. In Figure 16, the density and
pressure profiles of the first-order and limited third-order Lagrangian schemes with 400 cells are
compared to the reference “exact” solution obtained using the first-order scheme with 5000 grid
points. The use of a Lagrangian formulation permits the sharp capture of the interface of the gas
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Figure 16: Comparison between first and third-order on the one-dimensional underwater TNT explosion at time
t = 0.00025 on a 400 cells mesh.

and condensed phases of this underwater explosion. Furthermore, in the light of the analytical
demonstrations and constraints developed in this paper, the Lagrangian schemes presented are
ensured to produce admissible solutions. Again, the third-order scheme produces better resolution
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for both density and pressure.

13.7. The Wilkins problem

To end with the numerical results, we consider the Wilkins test case. This problem has been
introduced in [88] and addressed in a Lagrangian frame in [63]. It consists in computing the flow
resulting from a flying aluminum plate that strikes a target aluminum plate. The equation of state
used to describe the material under consideration is the Mie-Grüneisen EOS, with the following
parameters: ρ0 = 2785, a0 = 5328, Γ0 = 2 and Sm = 1.338. The computational domain is [0, 0.05]
and the initial data are prescribed by

ρ0(X) = 2785, p0(X) = 10−6, u0(X) =

{
800, 0 < X < 0.005,
0, 0.005 < X < 0.05.

A free boundary condition is impose at the left domain boundary, while at the right domain bound-
ary a wall condition is enforced. We run this test case until the final time t = 5×10−6. Analytically,
the flying plate impact produces a flow that will be characterized at the final time by an elastic
rarefaction wave followed by a plastic rarefaction wave, and an elastic shock followed by a plastic
shock, see for instance [63]. Obviously, because the schemes presented in this paper are meant
to resolve the gas dynamics system of equations, there are not able to capture the elastic waves,
see Figure 17. We only use this elastic-plastic test case to assess to robustness of the presented
schemes in the case of the Mie-Grüneisen EOS. In Figure 17, we compare the first-order and lim-
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Figure 17: Comparison between first and third-order on the one-dimensional flying plate impact problem at time
t = 5 × 10−6 on a 100 cells mesh.

ited third-order numerical solutions with a reference “exact” solution computed with the first-order
scheme with 5000 cells. As expected, even using complex equation of state as the Mie-Grüneisen
one, these Lagrangian schemes are able to produce admissible numerical solution and thus to run
the computation through the final time without any crash of the code. Furthermore, one can see
how the high-order scheme improves the captures of the shock and rarefaction wave. Obviously,
this accuracy is limited by the model used, here the compressible gas dynamics one.
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14. Conclusion

The aim of this paper is to determine different conditions and constraints under which a class of
cell-centered Lagrangian schemes solving the one-dimensional compressible gas dynamics equations
would be positivity-preserving, and thus be assured to produce admissible solution. This study has
been tackled for both first-order and high-order numerical methods, on both ideal and non-ideal
equations of state. Basically, this positivity-preserving property relies on two different techniques:
either a particular definition of the local approximation of the acoustic impedances arising from the
approximate Riemann solver, or an additional time step constraint relative to the cell volume vari-
ation. A wide number of challenging test cases have been used to depict the good performance and
robustness of the Lagrangian schemes presented. It important to point out that even if this paper
is concerned with purely Lagrangian schemes, the theory developed is of fundamental importance
for any methods relying on a purely Lagrangian step, as ALE methods or non-direct Euler schemes.

This paper being the first part of a series of two, the present schemes and analysis are extended to
the two-dimensional case in the second paper [85]. In this 2D paper, the study has been carried out
on a general procedure to develop first-order finite volume schemes on polygonal meshes defined
either by straight line edges, conical edges, or any high-order curvilinear edges. Such formulation
will cover the numerical methods introduced in [19, 64, 15, 82, 84].

In the future, we intend to include to this admissible numerical framework the issue of entropy
stability. The same two techniques should be employed to assess such goal. We also plan to extend
the different schemes and tools, we have developed these past years in the frame of the Lagrangian
gas dynamics, to the Eulerian case. The first step will be to adapt the numerical solvers presented to
the Euler system of equations. Finally, we also have in mind to extend the capability of the positive
discontinuous Galerkin discretization presented here in the gas dynamics case to the non-linear
elasticity equations, and magneto-hydrodynamics systems.
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Appendices

A. Equations of state

This appendix aims at giving further details related to the equations of state employed in this
article, as well as deriving the corresponding domains of validity.

A.1. Gamma gas law for perfect gas

For perfect gas, the thermodynamic pressure is defined as

p = ρ(γ − 1)ε, (A.1)

where γ > 1 is the polytropic index of the gas. In this particular case, the sound speed writes

a2 = γ
p

ρ
= γ(γ − 1)ε. (A.2)

With these particular definitions, it is clear that:
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Remark A.1. If ρ ∈ ]0,∞[ then ε > 0 ⇐⇒ a2 > 0 (⇐⇒ p > 0).

The domain of validity of such EOS is (ρ, ε) ∈ ]0,+∞[×]0,+∞]. Thus, we would like to ensure the
numerical scheme produces solutions lying in this validity domain.

A.2. Stiffened gas EOS

For stiffened gas, the pressure reads

p = ρ(γ − 1)ε− γ ps, (A.3)

where ps is a positive constant representing the molecular attraction between water molecules. The
sound speed now writes

a2 = γ
p+ ps
ρ

= γ(γ − 1)(ε− ps τ). (A.4)

The existence of real a is such that:

Remark A.2. If ρ ∈ ]0,∞[ then ε̂ = ε− ps τ > 0 ⇐⇒ a2 > 0 (⇐⇒ p̂ = p+ ps > 0).

The domain of validity of such EOS is then (ρ, ε̂) ∈ ]0,+∞[×]0,+∞].

A.3. Jones-Wilkins-Lee (JWL) EOS for detonation-product gas

This equation of state is used to describe explosions. Here, the pressure reads

p = ρ(γ − 1)ε+ fj(ρ), (A.5)

where the positive function fj(ρ) writes

fj(ρ) = A1

(
1− (γ − 1)ρ

R1ρ0

)
exp
−R1ρ0

ρ +A2

(
1− (γ − 1)ρ

R2ρ0

)
exp
−R2ρ0

ρ , (A.6)

with A1, A2, R1, R2 being constants depending on the material. ρ0 is the density of the explosive
before detonation, and thus the solution should ensure that ρ ≤ ρ0 at all time. With this definition
of the pressure, the sound speed writes

a2 =
γp− fj(ρ) + ρf ′j(ρ)

ρ
= (γ − 1)(γε+

fj(ρ)

ρ
+
f ′j(ρ)

γ
). (A.7)

It follows that the sound speed is defined if and only if, for ρ 6= 0, the internal energy yields

ε ≥ −1

γ
(
fj(ρ)

ρ
+
f ′j(ρ)

γ
) = −gj(ρ)

γ
. (A.8)

The function gj(ρ) is positive for ρ > 0. Similarly to the work presented in [22], we restrict ourselves
to the case where ε > 0 and thus, one can state:

Remark A.3. If ρ > 0 then ε > 0 =⇒ a2 > 0 (=⇒ p > 0).

The chosen domain of validity is then (ρ, ε) ∈ ]0, ρ0]×]0,+∞]. The condition ρ ≤ ρ0 comes from a
physical interpretation of the studied problems and thus can be relaxed without risking any crash of
the code. For example, in the numerical applications this condition can be relaxed as ρ ≤ ρ0 (1+ ε),
where ε ≥ 0 is small. This can be useful in some extreme applications to avoid having too small
time steps in the early computational time.
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A.4. Mie-Grüneisen EOS for solids

For shock-compressed solids, the pressure reads

p = ρ0 Γ0 ε+ ρ0 a
2
0 fm(η), (A.9)

where the function fm(η) writes

fm(η) =
(η − 1)[η − 1

2Γ0(η − 1)]

[η − Sm(η − 1)]2
, (A.10)

with η = ρ
ρ0

, ρ0 being the density of the unstressed material, Γ0 the Grüneisen constant, and a0 and
Sm being the coefficients relating the shock speed and the particle velocity, see [66, 63] for more
details. Because the Mie-Grüneisen EOS gives thermodynamic relations for compressed solids, we
can without loss of generality assume that η ≥ ηm at all time, with ηm a positive constant. By the
definition of the function fm(η), we also consider η < Sm

Sm−1 under the assumption that Sm > 1.
Using definition (A.9), one can write the sound speed definition as

a2 = a2
0 f
′
m(η) +

Γ0 p

ρ0 η2
=

1

η2

(
Γ2

0 ε+ a2
0

(
Γ0 fm(η) + η2 f ′m(η)

))
. (A.11)

It follows that the sound speed is defined if and only if, for η < Sm
Sm−1 , the internal energy yields

ε ≥ −a
2
0

Γ2
0

(
Γ0 fm(η) + η2 f ′m(η)

)
= −a

2
0

Γ2
0

gm(η). (A.12)

In (A.12), the function gm(η) can yield negative values for small η. Actually, gm(η) ≥ 0 if η ∈
[η?, Sm

Sm−1 [, where gm(η?) = 0. We assume here that ηm ≥ η?. Similarly to what has been done for
the JWL equation of state, we restrict our study to the case ε > 0. Consequently, if gm(η) ≥ 0,
ε > 0 =⇒ a2 > 0. It immediately follows that:

Remark A.4. If ρ ∈ [η? ρ0,
Sm
Sm−1 ρ0[ then ε > 0 =⇒ a2 > 0 (⇐⇒ p > ρ0 a

2
0 f(η)).

In the compression case, i.e. η ≥ 1, the pressure remains positive. For this particular equation of
state, we set the domain of validity to be (ρ, ε) ∈ [η? ρ0,

Sm
Sm−1 ρ0 [×]0,+∞]. The evaluation of

η? involves very complex algebra. Thus, for the sake of simplicity we give the definition of η? in
the special case where Γ0 = 2. This is the value of the Grüneisen constant used in our numerical
applications, or in those presented in [63]. In this case, η? writes

η? =
4− 3Sm +

10− 6Sm − 3S2
m

Cm
+ Cm

3(Sm − 1)
, (A.13)

where Cm =
(
−28 + 36Sm − 9S2

m + 3
√

3
√
S6
m + 6S5

m + 5S4
m − 56S3

m + 60S2
m − 8Sm − 8

) 1
3
. Here

are some values of η? for different Sm used in the literature: Sm = 1.49 → η? = 0.766531905...,
Sm = 1.338→ η? = 0.756983366..., Sm = 1.124→ η? = 0.741878192....
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