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Abstract

Evaluating bed morphological evolution (specifically the scoured bed

level) accurately using computational modelling is critical for analyses

of the stability of many marine and coastal structures, such as piers,

groynes, breakwaters, submarine pipelines and even telecommunication

cables.

This thesis considers the coupled hydrodynamic and morphodynamic

modelling of the local scour around hydraulic structures, such as near

a vertical pile or near a horizontal pipe. The focus in this study is

on applying a fluid-structure interaction (FSI) approach to simulate the

morphodynamical behaviour of the bed deformation, replacing the struc-

tural (i.e. solid mechanics) equation by the sediment continuity equation

or Exner equation. Specifically, this works presents a novel method of

mesh movement with anisotropic mesh adaptivity based on optimization

for simulating local scour near structures with discontinuous Garlerkin

(DG) discretisation methods for solving the flow field. Amongst the

other goals of this work is the validation of the proposed procedure with

previously performed laboratory as well as two- and three-dimensional

numerical experiments.

Additionally, performance is considered using an implementation of the

methodology within Fluidity (http://fluidityproject.github.io/),

an open-source, multi-physics, computational fluid dynamics (CFD) code,

capable of handling arbitrary multi-scale unstructured tetrahedral meshes

and including algorithms to perform dynamic anisotropic mesh adap-

tivity and mesh movement. The flexibility over mesh structure and

resolution that these optimisation capabilities provide makes it poten-

tially highly suitable for accounting the extreme bed morphological evo-
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lution close to a fixed solid structure under the action of hydrodynamics.

Galerkin-based finite element methods have been used for the hydrody-

namics (including discontinuous Galerkin discretisations) and morpho-

logical calculations, and automatic mesh deformation has been utilised

to account for bed evolution changes while preserving the validity and

quality of the mesh.

Finally, the work extends the scope in regards of computational meth-

ods and considers scour modelling with pure Lagrangian and meshless

methods such as smoothed particle hydrodynamics (SPH), which have

also become of interest in the analysis and modelling of coastal sediment

transport, particularly in scour-related processes. The SPH modelling

is considered in a two-phase, flow-sediment fully Lagrangian scour sim-

ulation where the discrete-particle interaction forces between phases are

resolved at the interface and continuous changes in the bed profile are

obtained naturally.
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2 Chapter 1. Introduction

1.1 Motivation and objectives

In marine environments scouring is a type of erosion, which generally

involves the removal of granular material or sediment from the surround-

ings of a hydraulic structure (e.g. pipeline, pier, abutment, groyne) by

hydrodynamics forces (e.g. currents, waves, jet flow). Scour represents

a threat for coastal structures as it impacts on their long-term stabil-

ity and survivability. Scour onsets when hydrodynamic bottom shear

stresses are higher than sediment critical shear stresses [96]. There are

a whole range of hydrodynamic conditions (e.g. accelerated flow due to

constrictions, reflected waves, pressure gradients, boundary layer sepa-

ration, vortices, etc.) which by themselves or by acting in combination

result in common scour problems. Significant analytical, numerical and

experimental research has been conducted over the last three decades

to understand and analyse local scour adjacent to hydraulic structures

in coastal zones [65, 95, 103]. There are two commonly used modelling

approaches to recreate scouring profiles and sediment fluxes [109]. The

first is based on analytic theory, which produces empirical formulae and

rules of thumb for prediction of scour depth based on flow around sim-

ple two-dimensional objects, such as vertically or horizontally-oriented

cylindrical structures, while the second approach involves the numerical

solution of potential or turbulent flow models which when coupled with

sediment transport equations are able to resolve the scour profile. The

latter is more advantageous as when done properly its results are more

realistic when considering complex turbulent processes [49, 96].

One particular type of localised, constricted scour pattern due to jet
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flow which surprisingly little is know about is the phenomenon of strudel

scour, which occurs mostly during summer times in the Arctic regions

when rivers flow at flood capacity as a result of melting ice and snow

affecting the near shore bottom topography along the Arctic coast. The

melted water quickly inundates the fast ice zones located along the river

deltas, radially covering the sheet ice. The added overburden of fresh

water is extra-weight to the buoyant ice mass causing the ice to sink in

certain weak points. The fresh water then drains down through these

cracks and flaws in the ice as well as through seal breathing holes, cre-

ating a free vortex or whirlpool (in German, strudel) action as per the

draining in a bathtub. The ice buoyancy also provides the fresh wa-

ter cover with a head for free vortex drainage. The water drains down

through the ice with enough velocity to create a vortex action and thus a

water jet force on the seabed results in the scouring of bottom sediment.

This scour hole normally resembles a circular crater and can vary in size

from a few metres up to twenty metres in diameter and as deep as four

metres [87]. Research on strudel scour has been done largely based on

field observations through multi-beam sonar for bathymetric data collec-

tion in shallow waters (see figure 1.1) and compilations of strudel scour

occurrences [13].

A variety of mathematical and computational numerical models of

scour around hydraulic structures, such as offshore pipelines or wind

turbine foundations, have been developed over recent years. These seek

to describe the coupling between the hydrodynamic and morphological

components of the scouring process. Accurate modelling of scour is im-
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Figure 1.1: Bathymetry of Strudel Scour.
source by: http://www.coastalfrontiers.com

portant since this can lead to the damage and failure of hydraulic and

marine structures. Large sums of money are spent in the repair of ma-

rine structures as a result of scouring [95]. Hence, significant investment

is also made in scour protection (e.g. rock fill methods, protective mat-

tresses), guided by predictions of the potential failure mechanisms. Com-

plex numerical models can be used to simulate the (usually turbulent)

flow around the structure, ideally with fully coupled two-way interactions

with the morphology of the erodible bed. Seabed morphological models

involve a sediment transport description to calculate erosion/accretion

processes. An important element of the sediment transport description

are formulae for the bedload and suspended transport. A summary of

the range of models used is provided in section 1.2.

The aim of this research project is to develop efficient simulation meth-

ods for sediment transport and scour around hydraulic structures us-

ing Imperial College London’s, in-house developed geophysical fluid dy-

namics (GFD), Fluidity code as well as to confirm the applicability of
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smoothed particle hydrodynamics (SPH) methods (via a SPH simulator

code) to further expand their range of multi-physics applications into

scour problems which will be capable of predicting complex localised

scour induced by different hydrodynamics around different shaped struc-

tures. In order to achieve this, the following general objectives were

devised for this research project:

1. First, examine background literature thoroughly into different physics

and numerical aspects of the scour problem. Information related to

the multiple physical processes important to the problem such as

sediment dynamics, turbulent hydrodynamics and also information

connected to the various approaches used in numerical modelling

to resolve scour problems around offshore structures.

2. Develop the corresponding computational modules to account the

physics into the codes mentioned above.

3. Perform simulations to understand the benefits and/or shortcom-

ings of the various computational methods for modelling scour pro-

cesses.

1.2 Local scour modelling

As shown in figure 1.2, the numerical modelling of local scour around

offshore structures often comprises and has started its development with

single-phase models where the evolution of the scour hole is treated as a

two-way coupling phenomenon between the boundary deformation and

the flow field. In these models the flow field is firstly simulated with an
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initial bed morphology using a hydrodynamic model, the shear stresses

at the bed boundary are calculated from the flow field and by use of a

sediment transportation model where the rate of bed erosion, sediment

suspension and bed accretion are estimated and the bed morphology is

further updated. At the early stages of research in this area several, au-

thors have developed potential-flow models for the flow inducing scouring

below pipelines [49]. Clearly, potential-flow cannot handle wake flow or

rotational velocity field; therefore cannot handle the lee-wake erosion, an

important stage in the scour process where the vortex shedding convected

downstream of the passing structure and controls the rate of scour depth

until the process finally reaches a steady state (i.e. equilibrium stage).

Because of the aforementioned, advanced models have been implemented,

solving the Navier-Stokes equations numerically [8, 43] and thanks to the

increasing capacity of modern day computer power it is conceivable to

couple the numerical treatment of the continuity and momentum equa-

tions with turbulence models such as Reynolds averaged Navier-Stokes

(RANS) modelling (e.g. k − ε) or large eddy simulations (LES), as well

as applying other forms of the Navier-Stokes equations (e.g. stream-

function and vorticity) or discrete-vortex methods [96]. Another alterna-

tive for local scour modelling is through the use of a two-phase (i.e. flow

and sediment) approach discussed below in 1.2.2.

1.2.1 Single phase models

One of the earliest studies to present a holistic dynamic description of

the local scour process at submarine pipelines, taking into account both

sediment transport contributions (i.e. bedload and suspended transport),
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CFD Approach

Single-phase Multi-phase

Eulerian-Eulerian Eulerian-Lagrangian Pure Lagrangian

Figure 1.2: Approaches for CFD-based scour modelling.

was performed by Brørs [8]. In that approach the computational mesh

evolved in time in order to represent the moving bed location due to scour

under a single pipeline. A structured computational grid was utilised

with each node in the domain moved vertically, maintaining a relative

spacing. But this type of method can lead to problems with resolution

and mesh characteristics (e.g. orthogonality and skewness), especially

in the case of large bed deformations and where the grid is additionally

constrained by the presence of the structure [51, 8, 48].

With the wider development of unstructured grid-based methods in

computational fluid dynamics (CFD), a broad range of techniques for ar-

bitrary resolution specification and updating of the computational mesh

(i.e. mesh adaptivity) are available. The main motivation for these is

to impart both resolution and geometric flexibility as well as to optimise

computational efficiency: minimising computational cost for a required

accuracy, or maximising accuracy for a given cost. Here a further goal

is targeted: the use of this range of techniques to maintain an optimal

mesh when subjected to external boundary deformation.

Techniques for optimising the resolution of the mesh include those

which perform local topological operations (e.g. sub-dividing elements,
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or changing mesh connectivity through the swapping of element faces and

edges) to change the size, and potentially the shape, of mesh elements.

These techniques are variously termed adaptive mesh refinement (AMR),

h-adaptivity and mesh optimisation depending on the specifics of the

algorithm [28, 83, 84].

A common issue for the single-phase models is that for a reasonably

prediction of the bed level change, many assumptions (e.g. critical stress

for incipient motion of sediment) and a variety of empirical sediment

transport formulae have to be included into the numerical modelling.

Also, in order to compute the seabed profile formed by scouring a strat-

egy needs to be included to locally adjust the boundary in an iterative

manner and predict the boundary movement allowing a smooth transition

of the interior mesh. Computational fluid dynamics (CFD) approaches

for moving boundaries tend to fall into two categories: fixed-mesh and

moving-mesh. In fixed-mesh methods the fluid containing fraction of

each cell must be specified or computed. In the context of free-surface

flows, popular techniques include the volume-of-fluid (VOF) method [41]

where an equation is solved for the void fraction (between void fractions

0 and 1), and the marker-and-cell (MAC) method [38] where the free

surface is tracked by following the motion of particles on the interface.

The second practice (i.e. moving-mesh methods), which is explored and

adopted by the present work is that of dynamically adapting the mesh

in such a way that it is always surface-conforming, i.e. mesh cells always

contain fluid (in contrast to VOF) whilst impermeable solid walls and

free surfaces coincide with cell faces.
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In the past two decades, moving mesh methods (also known as r -

adaptive methods) are among several adaptive strategies which have been

used for CFD problems [9]. r -adaptivity consists in the r-elocation or r-

epositioning of grid points in a mesh having constant connectivity (fixed

number of nodes) in such a way that the nodes remain concentrated in

regions of rapid variation of the solution fields. Moving mesh methods

can be considered in terms of a mapping from a regular domain in a

computational or parameter space ΩC to an irregularly shaped domain

in physical space ΩP [98]. By connecting points in the physical space

corresponding to discrete points in the parameter space, the physical do-

main can be covered with a computational mesh suitable for the solution

of finite difference/element/volume equations.

1.2.2 Multiple phase models

Another modelling alternative for scour simulations makes use of mul-

tiphase approaches which are gaining popularity due to its capabilities

to better represent the flow-sediment interaction. Multiphase models are

generally categorised into three approaches:

• Eulerian-Eulerian models, where both the fluid phase and the solid

(e.g. soil or sediment layers) phase are treated as continua capa-

ble of exchanging properties such as mass and momentum, and the

Navier-Stokes equations are solved in an Eulerian frame. The par-

ticulate phase is typically consider to be a continuous fluid (approx-

imating the constitutive model for the phase normally as a highly

viscous fluid) inter-penetrating and interacting with the fluid phase.
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Eulerian models are typically based on cell-averaged quantities and

they often struggle with complex interface deformations [112].

• Eulerian-Lagrangian models, in the approach of the coupled Eulerian-

Lagrangian (CEL) description where commonly the fluid flow is

treated with Eulerian formulation while the sediment particles are

described with Lagrangian formulation and both regions continu-

ously interact with each other through a coupling module in which

computational information is exchanged either by mapping or by

special interface treatments between these two sets of grids [62].

Groups of particles are clustered together interacting with the fluid

as parcels and the particle motion (i.e. positions) is calculated by

Newton’s Laws of Motion, in which friction, collision and grav-

ity are considered. It has been found that using these parcels to

represent the particle phase reduces the computational cost signif-

icantly instead of an individual particle approach. However, this

capability is futile when there is a need to handle dense particulate

flows in challenging simulations such as soil liquefaction, for which a

pure Lagrangian approach or using Arbitrary Lagrangian-Eulerian

methods could be more accurate given that the mesh rezoning ap-

proach could offer an better interface resolution in comparison to

CEL [3].

• Pure Lagrangian models, explored in the present work in chapter 6,

treat both the flow and the particles in a Lagrangian frame of ref-

erence. These models typically use mesh-free particle (Lagrangian)

methods and have the capability to simulate boundary-interface
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deformation and fragmentations extremely well [54], hence repre-

senting the inherent discrete-particle properties of sediments. One

example of particle-based methods includes the smoothed parti-

cle hydrodynamics (SPH) for which successful implementations of

scour simulations have been promising and further development

been promoted [93]. However, these models are particularly de-

manding in computational resource and another major challenge is

that sophisticated (in terms of stability and consistency) turbulence

models are still lacking.

In the context of exploring adaptive modelling techniques with this

research, a logical extension was to investigate the implicit flexibil-

ity of using meshless methods such as SPH compared to mesh-based

methods with adaptive mesh refinement (AMR) algorithms.

1.3 Summary of contributions

Amongst the main contributions of this work are the following:

• A fully functioning hr-adaptive grid-based capability has been de-

veloped for applications with evolving external boundaries, such

as local scour near structures, where two-way dynamic coupling

between domain geometry (e.g. scour hole in the vicinity of the

structure) and resulting fluid dynamics requires the maintenance

of overall mesh quality.

• Coupling of the full Navier-Stokes model with the bed evolution

model through direct linking of the bed friction velocity to the
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tangential wall shear stress at the boundary of the computational

domain.

• These novel capabilities have been demonstrated and for some test

cases validated using in two- and three-dimensional geometrical

configurations.

• Demonstration of the SPH modelling capabilities for scour simula-

tions.

1.4 Thesis structure

The remainder of this thesis is organized as follows. Chapter 2, re-

views the governing mathematical equations which are relevant for the

physics of local scour and turbulent flows and background theory in the

computational methods towards the modelling of this phenomenon.

Chapter 3, elaborates on the hydrodynamic module of the model. The

special treatment for wall boundaries is also discussed. A preliminary

test case is introduced to test the performance of the turbulence closure

components of the hydrodynamic module.

Chapter 4, presents a grid-based numerical discretisation procedure

for solving coupled computational fluid dynamics with sediment conser-

vation laws. Also it describes the adaptivity algorithms employes, includ-

ing mesh movement and optimisation-based anisotropic mesh adaptivity.

Numerical experiments for local scour scenarios are carried out in chap-

ters 4 and 5, where validation and benchmarking against physical and
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numerical experiments are considered with an emphasis on two/three-

dimensional (2/3D) applications respectively.

Chapter 6, starts with a brief description of the formulations, math-

ematical background for the SPH application with geomaterials and af-

terwards crucial implementation aspects of SPH are noted such as: time

integration and instabilities in SPH method, initial and boundary con-

ditions, SPH neighbour search algorithm, and implementation of other

numerical aspects to finally analyse the same benchmark problem, al-

ready presented in chapter 4.

Finally, chapter 7, discusses the most relevant conclusions of this re-

search and some possible directions for further research.
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2.1 Introduction

Morphodynamics modelling is a broad subject whose fundamentals can

be found in various references [74, 33, 109, 96]. Most of these principles

have been traditionally used in the modelling of general (coastal or river

scale) and local (structural scale) scour problems. The difficulty has been

always in the coupling of the sediment modes of transport (normally

bedload and suspended load) with the hydrodynamic model (currents

and/or waves). The bed changes over time in response to variations of the

transport of sediment which is normally referred to as the total volumetric

sediment discharge flux, qt, and can be partitioned as qt = qb + qs,

where qb accounts for contributions of the bedload transport and qs for

the suspended load transport.

The development of practical engineering coastal morphodynamic mod-

elling tools (e.g. Delft3D by Deltares, Telemac by EDF and Mike by DHI)

commonly uses a finite element or volume mesh-based method to discre-

tise the hydrodynamic part comprising either the depth-averaged (two-

dimensional) shallow water equations (SWE) or in three-dimensional

models, the Navier-Stokes equations on an extruded two-dimensional

mesh with multiple layers. For morphodynamics applications this is fur-

ther coupled with the sediment transport model (described in section

2.2.3); and the bed evolution model via the Exner equation (described

in section 2.2.4).

Two-dimensional large-scale morphodynamic models are commonly

based on a depth-integration of the incompressible shallow water equa-
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tions coupled with the sediment transport discharge equation or Exner

equation.

This SWE-Exner scheme has proven to be able to offer satisfactory

results, specially in the modelling of general scour which depends pri-

marily on the sediment movement over relatively large horizontal scales,

irrespective of the presence of the structure. However, in the three-

dimensional modelling of localised scour around structures, the physics

of the flow are considerably altered due to: flow separation, formations

of lee-wake vortices, horseshoe vortices, producing streamline contraction

and local accelerations and this requires the use of a more complete model

for the fluid flow simulation, rather than a two-dimensional shallow wa-

ter model. As presented in figure 2.1, commercial packages [73, 39] for

morphodynamics are able to model local scour around structures through

a simple extrusion along the vertical direction, but their capabilities are

limited when the modelling of more complex structures is considered such

as per the scour near a horizontal pipe.

The bed shear stress around the structure bottom is the most impor-

tant factor that directly controls the pattern of scouring. Ideas of excess

shear stress-based empirical formulae have been considered for years but

still there are debates about how to express the bed shear velocity given

that the local fluid velocities are difficult to measure directly, and a depth-

averaged flow speed is often used instead. The bed shear stress can be

obtained from the flow field solution of the governing equations in several

ways, one of the simplest for example, is a linear relationship with the

square of the mean flow speed. More advanced formulations take into
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(a) Bottom scour depth (m) -
Delft3D. (b) Elevation profile (m) - Delft3D.

(c) Bottom scour depth (m) -
Telemac. (d) Elevation profile (m) - Telemac.

Figure 2.1: Example of local scour around a square abutment under a
constant current, simulated in Delft3D and Telemac (with its sediment
transport module, Sisyphe).
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account theoretical assumptions about the structure of the turbulence

which provide a local measure of the shear stress (i.e. at the bottom).

This study make use of a wall function formulation to determine the local

shear stress connected to the near wall tangential velocity which is con-

sidered an extension of the commonly used formulation from Engelund

& Fredsøe [22] to obtain the bedload contribution in the mean transport

direction.

Amongst the objectives of this work is to propose a flexible modelling

approach to simulate the scour process with a complete flow model based

on the Navier-Stokes equations coupled with the Exner equation in any

two- or three-dimensional scenario, but also considering any kind of em-

bedded geometries using a finite element mesh. This work also presents

an alternative way (to the commonly used quadratic stress law bed shear

stress formulation) to accurately model the coupling of the full Navier-

Stokes model with the bed sediment transport, linking the bottom fric-

tion velocity to the tangential wall shear stress at the boundary of the

computational domain in a near-wall modelling for turbulent flows, as

shown in chapter 3.

The next section presents the mathematical formulations for the tur-

bulent flow field model, the sediment transport and bed evolution model

and lastly, a description of the smooth particle hydrodynamics approach

for the modelling of fluid flow is included.
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2.2 Mathematical equations

2.2.1 Flow model

The approach taken here for the simulation of hydrodynamics in the

single-phase modelling approach is to consider the solution of the incom-

pressible Navier-Stokes equations, where the density of the fluid does not

change with pressure, i.e. ρf = constant, and the energy equation decou-

ples from the rest of the system resulting in the fluid flow modelled by

partial differential equations (PDEs) describing the conservation of mass

and momentum. These fundamental equations are based in conservation

laws of the flow variables considering a fixed control volume (Ω). The

rate of change in the control volume can be expressed as

d

dt

∫
Ω

ΦdΩ =

∫
Ω

∂Φ

∂t
dΩ +

∫
Γ

Φu · ndΓ =

∫
Ω

SdΩ, (2.1)

for some quantity Φ, where Ω is the domain occupied by the control vol-

ume, Γ is the surface boundary for Ω, n is the boundary surface outward

unit normal, S represents a source or sink term acting on the domain

and u = (u, v, w)T is the velocity field in Cartesian coordinates. This

is commonly known as the Reynolds transport theorem. Using the gen-

eral form of a conservation equation (2.1), the conservation of mass (in

integral form) can be written

∂

∂t

∫
Ω

ρdΩ +

∫
Γ

ρu · ndΓ = 0, (2.2)
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noting that the density is the one corresponding to the fluid and sedi-

ment mixture ρ but the fluid density, ρf is constant (incompressibility

condition) in this work resulting in a continuity equation (for the fluid

only) with a non-divergent velocity field

∇ · u = 0. (2.3)

The momentum equation in the fluid is given by ρu and the density ρ can

be expressed in terms of sediment concentration, c by using an equation

of state, ρ = ρf +
(
ρs − ρf

)
c, where ρs is the sediment particle density,

ρf = 103 kg/m3 is a reference water density (assumed for this work)

and finally ρ represents the density of the fluid and sediment mixture

(note that in the applications considered here the density variations due

to suspended sediment concentration dominate all other state variables

dependencies and they are assumed to have a linear dependence on the

sediment concentration in the equation of state)

∂

∂t

∫
Ω

ρudΩ +

∫
Γ

ρ (u⊗ u) · ndΓ =
∑

fρu, (2.4)

where u ⊗ u is a rank-2 tensor with entries uiuj (throughout this work

summation over repeated indices is implied). The right-hand side, fρu,

is based on Newton’s second law of motion and it represent the forces

acting on the whole domain, split into body forces acting in the interior

volume, such as the gravity force g = (0, 0,−g)T pointing in the negative

vertical direction and surface forces decomposed into the pressure force
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−pI and the viscous force τ · n, where τ is the Cauchy stress tensor:

∑
fρu =

∫
Ω

ρgdΩ−
∫

Γ

pndΓ +

∫
Γ

τ · ndΓ. (2.5)

It is further assumed that the viscous stress tensor is linearly related to

the strain rate (i.e. Newtonian fluids assumed)

τ = µ
(
∇u + (∇u)T

)
− 2

3
µ (∇ · u) I, (2.6)

where I is the identity matrix and µ is the molecular, or dynamic vis-

cosity. Applying the divergence theorem

∫
Ω

∇ · f (x) dΩ =

∮
Γ

f (x) dΓ, (2.7)

to the integral form of the momentum equation (2.4) together with the

incompressibility condition mentioned in equation (2.3), the momentum

equation can be simplified further to

∂ρu

∂t
+ ρu · ∇u = −∇p+∇ ·

(
µ
(
∇u + (∇u)T

))
+ ρg. (2.8)

For small density variations (i.e. here relatively diluted sediment con-

centrations), the density ρ can be treated as a constant and replaced by

ρf in all terms of the momentum equation, except where the density is

multiplied by gravity (i.e. buoyancy term). This condition, |ρ−ρf | � ρf

is known as the Boussinesq buoyancy approximation and the resulting
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form of the momentum equation is then

∂u

∂t
+ u · ∇u = −∇

(
p

ρf

)
+∇ ·

(
ν0

(
∇u + (∇u)T

))
+

ρ

ρf
g, (2.9)

where ν0 = µρ−1
f is a reference fluid kinematic viscosity, assumed to be

ν0 = 10−6 m2/s for water in this work. The formulation in (2.9) is given

in a non-conservative form and the stress divergence is expressed in its

partial stress form which is the preferred form of the viscous term for

incompressible flow with spatially varying viscosity.

Equations (2.3) and (2.9), need to be solved with appropriate initial

and boundary conditions which will be considered later with the domain

simulations from chapters 4 and 5.

The solution procedure for velocity u and pressure p, presents a math-

ematical difficulty for the determination of the pressure (since it does not

involve a time derivative) which involves the use of a projection scheme

which decouples the u and p problems, and separates the advection-

diffusion part of the momentum equation from incompressibility. The

scheme projects an intermediate velocity, u∗ onto the subspace of solenoidal

(divergence-free) functions resulting in a Poisson pressure equation (de-

rived from a pressure-correction step with an initial guess pressure) and

obtain a pressure correction ∆p to correct u∗ and finally obtain the new

velocity and update the pressure. Further details may be found in [1].
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2.2.2 Turbulence model and closure

The formulae developed for morphological calculations (e.g. bedload

sediment transport) were obtained for steady-state turbulent flows (high

Reynolds number) where the boundary layer conditions are under fully

developed turbulence [95]. In order to account for the turbulence within

the flow, a turbulence model needs to be integrated into the solution of

the Navier-Stokes equations. Describing the turbulence in the flow cor-

responds to the use of a model capable of approximating the effect of the

small scales (in space and time) of motion in the flow. Through direct

numerical simulation (DNS) all the scales (time and space) of turbulence

can be resolved without the need to average or to filter but, this requires

extremely fine grids and timesteps and so this approach is generally lim-

ited to small Reynolds numbers. In regards to turbulence modelling ap-

proximating spatial scales another alternative is the popular large eddy

simulation (LES) technique which is based on the assumption that the

large scale motions are normally more energetic than small scale so, only

large scales are resolved numerically (as per DNS) and small scales are

modelled by using a subgrid-scale model (SGS). This technique is an ac-

tive area of research and is preferred over DNS for high Reynolds number

simulations or complex geometries. LES is computationally less costly

than DNS but it is probably still too demanding for many engineering

applications.

The most common turbulence modelling used in many real-life flows

at moderate to high Reynolds number is the approach called Reynolds-

averaged Navier-Stokes (RANS) which is a simplification of the turbu-



24 Chapter 2. Background theory

lence process assuming that the separate fluctuations of the flow are not

required and mean flow fields are enough. Only time averages are con-

sidered,

ū (x, t) =
1

δ

∫ t+δ

t

u (x, τ) dτ. (2.10)

After averaging in the Navier-Stokes equations (2.3) and (2.9), the

RANS momentum equation results in

∂u

∂t
+ u · ∇u = −∇

(
p

ρf

)
+∇ ·

(
ν
(
∇u + (∇u)T

))
+

ρ

ρf
g, (2.11)

where ν = ν0 + νt represents the sum of the constant background kine-

matic viscosity plus the spatially varying turbulent eddy viscosity. Also

note that u is the averaged velocity, ū calculated by (2.10) but for sim-

plicity the overbar notation has been dropped. RANS equations are

developed from the unsteady, three-dimensional Navier-Stokes equations

considering just the time-averaged values and condensing the unsteady

structures of small sizes in space and time into an error by omission ac-

counted for through the so-called Reynolds stress term (i.e. −u′ ⊗ u′)

which contains the fluctuations u′, and this effect needs to be modelled.

These turbulent stresses have to be interpreted in terms of some known

variables in order to close the system of equations (this is the well-know

turbulence closure problem). In this work, the closure problem is tackle

with the use of linear eddy-viscosity models, where the main idea is to

represent the Reynolds stress tensor as a linear relationship with the
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mean strain rate:

−u′ ⊗ u′ = −2

3
kI + νt

(
∇ū + (∇ū)T

)
, (2.12)

where k = (u′ · u′)/2 is the mean turbulent kinetic energy and νt is the

kinematic eddy viscosity. There are many subcategories of eddy-viscosity

models, depending on the number of transport equations required to com-

puted the eddy viscosity coefficient. The standard RANS, two-equation,

k− ε turbulence model is used in this study (following the benchmarking

analysis shown in chapter 4) to parametrise unresolved mixing length

scales through a turbulent or eddy viscosity, νt. Two coupled scalar

advection-diffusion-reaction equations are solved to determine the mag-

nitude of the turbulent eddy viscosity, defined as

νt = Cµ
k2

ε
, (2.13)

where Cµ = 0.09 is an empirically chosen constant, k is the turbulent

kinetic energy (TKE) and ε is the TKE dissipation rate. The two ad-

ditional prognostic equations, which are also coupled to the momentum

equation (2.11), take the form

∂k

∂t
+∇ ·

(
ku−

(
ν0 +

νt
σk

)
∇k

)
= Pk − ε, (2.14)

∂ε

∂t
+∇ ·

(
εu−

(
ν0 +

νt
σε

)
∇ε

)
=
ε

k
(C1Pk − C2ε) , (2.15)
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where Pk = νt
2

(∥∥∥∇u + (∇u)T
∥∥∥2
)

and ε account for the production and

dissipation of turbulent kinetic energy, respectively. The values of σk =

1.0, σε = 1.3, C1 = 1.44 and C2 = 1.92 are further empirically chosen

constants.

For the applications of this work (i.e. channel flow), the turbulence

model is divided into two regions: (i) the outer or core flow turbulent

zone and (ii) the wall or near-wall layer. Near the wall, the gradients of

the properties of the fluid are much higher compared to the core region

of the flow, which requires the use of wall functions to avoid the need

to use a very fine mesh. Equations (2.14) and (2.15), need to be solved

with appropriate initial and boundary conditions which will be further

develop in chapter 3 and later considered with the domain simulations

from chapters 4 and 5.

2.2.3 Sediment transport model

Sediment transport simulations are based on the global mass conser-

vation of flux (i.e. flow, Qf and sediment rate, Qs) principle as shown in

figure 2.2.

Simulations of sediment transport coupled with boundary (i.e. bed)

evolution obey a fundamental mass balance conservation law (the Exner

equation) and they are commonly performed under the discretisation of

a particular form of the general bed level change equation [80]

∂η

∂t
= − 1

1− n

[
∇ · (qb + qs) +

∂

∂t

∫ η+H

η

c dz

]
, (2.16)



2.2. Mathematical equations 27

η

H

Qs

Qf

Figure 2.2: Schematic of the two-layer flow/sediment transport system
where Qf and Qs represents the flow and sediment fluxes respectively.

where, η(x, y, t) represents the bed level, n is the porosity of the bed, and

qb and qs are the bedload rate and suspended rate vectors, respectively.

The final term on the right-hand side represents the temporal change in

the volume of sediment in the water column of height H, where c denotes

sediment concentration. The total sediment transport is handled by split-

ting it into bedload and suspended load contributions. The approaches

for these two types of sediment transport are detailed below. The sedi-

ment transport formulations in this work are limited to compacted (i.e.

no void space, n = 0) well-graded sands.
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2.2.4 Bed evolution model

Morphological changes to a given bathymetry occur when there is an

inequilibrium between deposited and eroded material in a localised re-

gion. If the amount of deposited material exceeds the amount of eroded

material, it leads to an increase in bed level and vice versa. This mech-

anism is described by the Exner equation (2.16) for sediment transport

in a simpler form [27]:

∂η

∂t
= − 1

1− n
(
∇surf · qb + (E −D)

)
(2.17)

where, the morphological change is split into contributions from the sur-

face divergence,

∇surf· =
(
∂

∂x
,
∂

∂y
, 0

)
·, (2.18)

of the bedload transport and the suspended sediment transport, where

E and D represent erosion and deposition respectively.

It is worth noting that the rate of bed change as expressed in (2.17)

depends on scalar quantities (i.e. D and E), which results in a major sim-

plification for the suspended sediment transport given that the numerical

integration of the storage term over the vertical direction (last term in

(2.16)) is replaced by evaluating the suspended sediment deposition and

entrainment rates.
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2.2.4.1 Bedload transport

Bedload transport is the part of the sediment transport load taking

place at the bed surface resulting in the motion of particles due to rolling,

sliding or travelling in small jumps (saltation) along the bed. Many as-

pects of sediment morphodynamics are governed predominantly by the

bedload transport rate, including river erosion, bed form evolution, and

potentially the scour around structures such as pipelines or bridge abut-

ments.

Numerous bedload transport formulations appear in the literature and

generally consist of semi-empirical relations derived from flume-based

experimental data. The bedload transport rate is then calculated as

a function of the magnitude of bed/wall shear stress, ‖τw‖, above its

critical value, τc. Dimensional analysis then leads to the dimensionless

relationships (expressed with a superscript ∗) for the bedload sediment

transport rate, q∗ = f
(
τ ∗, d∗, R∗, Re∗p

)
, where,

q∗ =
qb√
R∗gd3

50

, (Einstein number)

τ ∗ =
‖τw‖
ρR∗gd50

, (Shields number)

d∗ = d50

[
R∗g

ν2
0

]1/3

, (Dimensionless particle diameter)

R∗ =
(ρs − ρ0)

ρ0

, (Submerged specific gravity)

Re∗p =

√
R∗gd3

50

ν0

. (Particle Reynolds number)
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Generally, granular bed-material will remain still in the bed until the

flow initiates incipient motion. This is termed the threshold of motion,

with the bed shear stress that induced it, referred as the critical stress,

τc. One fitting to experimental data for this critical stress is given by

Soulsby [92] in the following equation

τ ∗c =
0.30

1 + 1.2d∗
+ 0.055

[
1− e−0.020d∗

]
. (2.19)

Amongst the many bedload transport formulae proposed in the litera-

ture with an applicability range for relatively small particle diameters

190 µm < d50 < 930 µm (where d50 is the median particle diameter), the

following list in table 2.1 presents some of the most commonly used bed-

load formulation options implemented in Fluidity [1]. By any means, this

does not represent a comprehensive compilation of all transport formulas,

for further reading consult the work by Garcia [29],

Authors Transport Rate, q∗ Derivation

Meyer-Peter & Müller [1948] 8 (τ ∗ − τ ∗c )3/2 Experimental

Engelund & Fredsøe [1976] 18.74 (τ ∗ − τ ∗c )
(√

τ ∗ − 0.7
√
τ ∗c

)
Theoretical

Van Rijn [1984] 0.053
d∗

0.3
(
τ∗

τ∗c
− 1
)2.1

Experimental

Nielsen [1992] 12 (τ ∗ − τ ∗c )
√
τ ∗ Experimental

Table 2.1: Commonly used formulas to describe bedload transport in a
turbulent flow.

2.2.4.2 Bed slope control

Most bedload sediment transport formulae are derived and calibrated

for rivers with shallow slopes [33]. In excess shear stress scour conditions

where a local obstruction (e.g. pipeline or bridge pier) is present, the

localised increase in shear stress during the development of scour holes
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may lead to areas in a model where the local face slope exceeds the angle

of repose, φ, which is a geotechnical parameter to measure the stability of

sediment particles (somewhere between 30◦ < φ < 35◦ for loose sands).

Numerical algorithms have been proposed to overcome these difficulties

in modelling the over-steepening of the bed slope and allow the bed-

material to slide down through the adjustment of the bedload flux of

sediment in a conservative fashion.

Aspley et al. [2], described a flux based algorithm which prescribes

an additional avalanche flux which is added to the bedload flux, based

on the angle of the actual slope, α, and the direction of steepest slope,

b = ∇η/‖∇η‖. This takes the form,

qaval =


(1− n)

L2(tan(α)−tan(φ))
2 cos(α)∆t

b, tan (α) > tan (φ) ,

0, otherwise,

(2.20)

where L (related to the cell length) and ∆t (current timestep) are di-

mensional values arising from the problem being modelled.

This avalanche flux based approach was used in this work. Other

algorithms for sand sliding follow a more geometric approach. For exam-

ple, Liang et al. [51], described a one-dimensional method which lowers

the slope of a cell’s facet to yield a new stable slope, but this approach

leaves an open issue regarding mass conservation. Another similar idea

in Niemann et al. [76] is proposed by setting the new positions of the

vertices constituting the sliding face, derived from a function that be-

haves like the avalanche flux and raises/lowers the bed level according to
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the mass balance of sediment (i.e. area distribution). This addresses the

issue of conservation but it is a method geometrically designed just for

one-dimensional slope control.

Interesting corrections to the critical Shields parameter have been con-

sidered to account for slope effects [2]. In the case of sandy areas, τc can

be neglected and the use of simpler models [92] which do not take the

incipient motion theory into account can be satisfying. For that reason,

in this study no local slope correction was added into the bed shear stress

calculation to account for the critical shear stress reduction at incipient

motion on a sloping bed.

2.2.4.3 Suspended load transport

Suspended sediment transport involves the particulate material that is

carried within the water column. These particles are kept in suspension

due to turbulent mixing causing an upward flux which competes with the

inherent downward particle settling velocity, usi, obtained by balancing

buoyancy effect with the Stokes drag.

The sediment concentration, c, is the volume of sediment per total

volume of material (fluid and sediment). The suspended sediment con-

centration can be determined by solving an advection-diffusion equation,

with an additional convective term to represent the gravitational effect

of the settling velocity:

∂c

∂t
+∇ ·

[
c (u− usik)

]
= ∇ · (κ∇c) , where κ = κ0 +

νt
S∗c
. (2.21)
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The magnitude of the particle concentration eddy diffusivity κ, is in-

versely proportional to the Schmidt number, S∗c , which represents a ratio

of the momentum diffusivity (total viscosity) and mass diffusivity (sedi-

ment concentration) and is generally chosen to be in the range 0.7 – 1.0.

In the rest of this work S∗c = 1 is assumed.

The settling velocity is obtained from the formula for unhindered sand

particles (valid for diameters d50 > 100 µm) in clear-water [92]:

uso =
ν0

d50

[(
10.362 + 1.049d∗3

)1/2

− 10.36

]
. (2.22)

As the sediment concentration rises the settling velocity usually drops,

which is essential to account for in the actual suspended sediment con-

centration effect [88], resulting in the correction usi = uso (1− c)2.39.

The terms of the suspended sediment load can be expressed using

empirically-derived relations which describe changes in the volume of

sediment in the water column together with the suspended sediment load

vector (i.e. qs). The deposition rate, D = usic0, is calculated from the

settling velocity of the sediment particles, denoted usi, multiplied by the

near-the-bed concentration (c0). The erosion or entrainment rate,

E = −κ∂c
∂z
, (2.23)

can be expressed in terms of the local turbulent eddy diffusivity (κ) and

the vertical concentration gradient, or equivalently the turbulent flux of

particles up from the bed. Many empirical formulations are available in
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the literature for estimating the re-entrainment rate of suspended sed-

iment. Some studies [30, 102] have performed detailed comparison of

formulae and validated these against laboratory results. In this work the

model of van Rijn [102] is selected (following the benchmarking analy-

sis shown in chapter 4) where the entrainment rate can be written in

dimensionless form as

E∗ =
E

usi
= 0.015

d50Ψ1.5

Zbd∗
0.3 , where Ψ =

τ ∗

τ ∗c
− 1, (2.24)

d50 is the median particle diameter and Zb represents a reference level

very near the bed close in value to the sand roughness. The reference

level assumed was Zb = 3d90, where d90 represents the grain diameter of

the 90th percentile (90% of sediment is finer).

2.2.5 Smooth particle hydrodynamics modelling

Smoothed Particle Hydrodynamics (SPH) method is a particle method

which pioneered the mesh free idea dating back from the seventies [31, 61].

It is a pure Lagrangian particle method which uses a smoothing function

to find continuous interpolations of the fluid properties between discrete

particles. The particles carry all the quantities and no grid is needed.

The general conservation laws (for mass and momentum) for fluid motion

described in 2.2.1 can be combined with SPH approximations to derive

and solve the full Navier-Stokes equations. The basis of its approach are

in kernel estimates method [67] which produces a SPH approximation

function, to any variable (scalar or vector field) φ defined on the spatial
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coordinates r,

φ(r) ≈
N∑
b

mb
φb
ρb
Wab, (2.25)

where, Wab = W
(
‖ra − rb‖, h

)
represents a smoothing or kernel function

with smoothing length, h. This approximation (in discrete notation)

refers to the quantity (i.e. φb) being evaluated at the position of particle

b. The mass and density are denoted by mb and ρb respectively.

Similar approximations can be derived for the gradients of the function,

∇φ(r) ≈
N∑
b

mb
φb
ρb
∇aWab, (2.26)

where it is assumed that the gradient is evaluated at another particle a.

Also for the Laplacian operations,

∇2φ(r) ≈
N∑
b

mb
φb
ρb
∇2
aWab. (2.27)

The smoothing kernel, W is a key component on the performance of the

SPH method. Amongst its properties, it has a compact support domain

which value decreases monotonically as the distance between particles

increases. Its radius is defined by the smoothing length, h and they are

normalised and need to satisfy the requirement that in the limit case,

when h goes to zero, the smoothing function tends to the delta or Dirac

function. The development of kernels is an active research area [106] in
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one, two and three dimensions but the simplest kernel is the Gaussian,

W
(
‖r‖, h

)
= αde

−q2 , (2.28)

where, q = ‖rab‖h−1 is the non-dimensional distance between particles,

‖rab‖ = ‖ra − rb‖ and αd =
[
1/
√
πh, 1/πh2, 1/

(
π
√
π
)
h3
]

in [1,2,3] di-

mensions is an scaling factor. Unfortunately, the Gaussian kernel does

not possess a compact support, given that the interpolation spans the

entire spatial domain. Kernels similar to the Gaussian shape but also

with compact support which are commonly use in SPH practice are [54]:

(i) quadratic, (ii) cubic spline, (iii) quintic.

In order to approximate the conservations laws for fluid flow, the SPH

interpolation relations (2.25), (2.26) and (2.27), are used as an extension

from the work by Monaghan [68]. For the conservation of mass given by

the continuity equation (2.2) in general quasi-incompressible form, the

density (i.e. the quantity, φ) takes the form

ρa =
N∑
b

mbWab, (2.29)

and taking the (Lagrangian) time derivative, it is obtained,

Dρa
Dt

=
N∑
b

mb (ua − ub) ·Wab. (2.30)

As suggested before, this SPH model implies a slightly compressible fluid.

In order to calculated the pressure for the momentum equation an equa-

tion of state linked to the density is used and in that way an implicit
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Poisson equation for the pressure is no longer necessary. The often used

Tait equation of state is

pa = p0 +B

[(
ρa
ρ0

)γ
− 1

]
, (2.31)

where, γ = 7, B = c2
0ρ0/γ is a problem dependant parameter, ρ0 =

103 kg/m3 is a reference (e.g. water) density, p0 is the reference pressure

and c0 is the fluid speed of sound at the reference density.

The momentum conservation equation derived from (2.4) in its La-

grangian form for an incompressible Newtonian fluid is

ρ
Du

Dt
= −∇p+ µ∇2u + fρu, (2.32)

noting that the material derivative notation of velocity is used as a result

of that in smoothed particle hydrodynamics, quantities are stored in the

Lagrangian perspective making the convective term from the Eulerian

perspective effectively automatic as the moving particles travel with the

flow field. Further, following a derivation of the diffusive terms using

an artificial viscosity, the particle approximation of the Navier-Stokes

equations, inclusive viscous terms and with a symmetric pressure gradient

becomes

Dua

Dt
= −

N∑
b

mb

(
pa
ρ2
a

+
pb
ρ2
b

+ Πab

)
∇aWab + fa, (2.33)

where, fa is the acceleration due to a body force (e.g. gravity) acting on

particle a with respect to another particle b. The term, Πab is an artificial
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viscosity modelled

Πab =


−αhcab

ρab

uab·rab
‖rab‖2+0.01h2

, uab · rab < 0,

0, uab · rab ≥ 0,

(2.34)

where, ρab = (ρa + ρb) /2 is the average density, cab = (ca + cb) /2 is

the average speed of sound in the fluid and α is a free constant chosen

normally 0.01 < α < 1. There exist others formulations for the viscous

terms, ν∇2u in (2.32) for example, considering a laminar stress viscosity

[56] and resulting in a momentum conservation equation like

Dua

Dt
= −

N∑
b

mb

(pa
ρ2
a

+
pb
ρ2
b

)
∇aWab +

(
4ν0rab∇aWab

(ρa + ρb) ‖rab‖2

)
uab

+ fa,

(2.35)

where, ν0 is a reference kinematic viscosity of laminar flow (e.g. ν0 =

10−6 m2/s for water).

In chapter 6, SPH capabilities to model soil deformations as a vis-

coplastic fluid or as a elastoplastic solid material with a yield failure

criteria will be discussed together with more details about its implemen-

tations.
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3.1 Introduction

As discussed at the end of section 2.2.2 from chapter 2, in regards

to the treatment of the near wall layer region, the turbulence properties

close to the wall are generally much higher compared to the core region of

the flow. Within a RANS framework, two discretisation approaches are

typically utilised to allow for suitable representation of the near wall flow.

The first, is a low-Reynolds number model in which boundary conditions

are selected for both k and ε at all solid boundaries and the effects of the

molecular viscosity are included via damping factors in the eddy viscosity

and the dissipation equation [82]. Low-Reynolds k− ε modelling requires

very fine resolution to capture the distance to the closest solid boundary

[17] and for true environmental flows (i.e. high Reynolds numbers) with

rough surface boundaries this level of resolution adds a non-desirable

computational cost. The other option is a high-Reynolds number model

where a wall function is prescribed analytically at the bed to avoid the

need for very fine mesh. The near wall discretisation in this work is

based on a wall function formulation which will be described below in

more detail.

Both of these boundary discretisation models aim to ensure that the

boundary layer is well resolved, and in connection to sediment transport

modelling it should be emphasised that, the boundary layer is the most

important part of the flow which influences the modes of transport of the

particulate material mainly as a function of the shear stresses it induces

at the bed [74].
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3.2 Boundary conditions for high-Reynolds

number model

In near-wall modelling using the two-equation k−ε model for turbulent

flows there is an alternative approach where Law of the Wall functions are

considered, this is currently a working area in the industrial turbulence

computation.

In wall-attached boundary layers, the normal gradients of the flow

variables become large as the wall distance decreases. Significantly close

to the wall the turbulent fluctuations are suppressed and eventually vis-

cous effects become important in a region that is known as the viscous

sub-layer. In order to overcome the invalidity of the standard RANS

turbulence models in the viscous sub-layer the idea of the so-called high

Reynolds number models is to incorporate an advanced boundary condi-

tion model. In these models, the near-wall region is not explicitly resolved

with the numerical turbulent model, but is bridged using the so-called

wall functions.

Near-wall modelling is clearly critical for this application and hence

boundary conditions need to be treated carefully. In line with the imple-

mentation described in [47], a thin boundary region of fluid of width y is

conceptually excluded from the computational domain, with boundary

conditions on the velocity, tangential stress and for k and ε applied at

the interface of the excluded region. In this work, the normal component

of the fluid velocity, u · n is set to match that of the moving boundary

mesh velocity, V , i.e. there is no penetration.
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It is further assumed that the tangential component of the stress on

the boundary satisfies the relation

n · τw = −ρfu2
τ

u

‖u‖
= −ρf

uτ
νt

u

y+

, where uτ = max

{
C0.25
µ

√
k,
‖u‖
y+

}
.

(3.1)

Here τw = ρfν
[
∇u + (∇u)T

]
z=η

is the wall shear stress, uτ is a friction

velocity and

y+ =
uτy

ν0

, (3.2)

is a non-dimensional wall distance. The applicability of uτ in (3.1) de-

pends on the criterion that y is chosen at the interface between the viscous

sublayer, in which the velocity is assumed to increase linearly away from

the wall:

‖u‖
uτ

= y+, (3.3)

and the logarithmic turbulent boundary layer, in which it is assumed

that

‖u‖
uτ

=
1

κ
log y+ + β. (3.4)

Here κ = 0.41 is the von Kármán constant and β = 5.2 is another

constant for the case of smooth walls. This criterion is enforced by the

ansatz that y+ = 11.06, at the bottom of the logarithmic layer range,

11.06 ≤ y+ ≤ 300.
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Functionally, the constant y+ implementation of (3.1) acts as a con-

stant coefficient quadratic drag boundary condition applied to the veloc-

ity derived from the momentum equation (2.11). The empirically deter-

mined law of the wall boundary conditions for k and ε at the edge of the

computational domain are implemented in a weak form as the Neumann

boundary conditions:

n · ∇k = 0 and n · ∇ε =
u5
τ

σενty+

. (3.5)

3.3 OpenFOAM overview

In order to help in the model verification of the (turbulence mod-

elling) implementation in Fluidity, a benchmark problem has been stud-

ied and compared with an independent open-source software package,

OpenFOAM [35]. This CFD package achieves the spatial discretisation

by using a conventional (cell-centred) Finite Volume Method (FVM) on

arbitrary polyhedral meshes (or cells). The temporal discretisation is ob-

tained (from the many available techniques) with a Crank-Nicolson time

stepping scheme. The flow solver chosen for the pressure and momentum

equations decoupling is the pisoFOAM option which is a transient solver

for incompressible flow (but can also be used for steady-state problems)

using the PISO algorithm. The pressure-implicit with splitting operators

(PISO) is a scheme to simulate the flow in time with a predictor-corrector

(i.e. one predictor and two corrector steps) procedure for the pressure

calculation on a staggered grid arrangement. To initiate the calculation

process a pressure field is taken from the old time level to later get cor-
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rected and used to predict the velocity components in the current time

level. These velocity components are further used to second-correct the

pressure field and final velocity field [105]. The PISO algorithm can

be seen as an extension of the semi-implicit method for pressure-linked

equations (SIMPLE) solver algorithm with the advantage of allowing

faster convergence over SIMPLE, more flexibility (in terms of stability)

for irregular cells and no requirement of under-relaxation [42].

In OpenFOAM the wall functions implementation provides a range of

Dirichlet or Neummann boundary conditions for the different turbulent

quantities involved. The standard types of wall functions used in this

benchmarking for high-Reynolds conditions are chosen as:

• kqRWallFunction for the turbulent kinetic energy k,

• epsilonWallFunction for the turbulent dissipation ε, and

• nutkWallFunction for the turbulent viscosity νt, derived from k

depending of the distance of the first cell centre to the wall (i.e.

non-dimensional y+). If the cell centre lies in the viscous sublayer,

the results from wall functions approach are very inaccurate [53].

3.4 Benchmark results and discussion

The benchmark geometry is based upon the numerical study performed

by Liang et al. [50] and the corresponding two-dimensional (2D) mesh

is represented in figure 3.1 with a gap big enough to not completely sup-

press the vortex shedding behind the circular cylinder (of idealised infinite
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width). A similar geometry with the only difference being that virtually

no separation exists between the bottom of the idealised pipeline (i.e.

circular cylinder) and the bed is used in chapter 4 to analyse the effects

of scour. The computational mesh is made up of 40000 cells (used here

for the hydrodynamic studies), concentrates the mesh density towards

the cylinder (with diameter of 0.1 m) surface with a grid size of 0.003. In

both numerical models (Fluidity and OpenFOAM) with the same mesh,

a uniform boundary layer flow with logarithmic profile inlet velocity in

the vertical direction is applied. The flow has a free-stream velocity u0

resulting in a Reynolds number Re > 50000 for the flow parameters used

in the numerical experiments (with τ ∗ = 0.098) in section 4.4 in chapter

4. The side walls (for the extruded OpenFOAM model only), and top

surfaces are all set to free slip with a low Froude number to avoid free

surface effects, also a zero pressure boundary condition applied at the

outlet and a wall function boundary condition is applied in the bottom

surface since only the near bed velocity is examined at a small distance

above the bottom. At the cylinder surface, the choice of boundary con-

ditions can be specified either as a no-slip or employing a wall function

on the surface. It was observed through experimentation that the effect

of a no-slip boundary condition underestimates the velocity fluctuations

generated by the vortex shedding downstream the cylinder. Therefore,

the boundary condition selected for the cylinder surface is also based

upon a wall function.

In the benchmark calculations, the surface forces around the circular

cylinder are considered as one comparison criterion, these are calculated
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Figure 3.1: View of the unstructured triangular/tetrahedral mesh em-
ployed in the numerical simulation of flow past a circular cylinder used
in both Fluidity and OpenFOAM with the circular object positioned at
a gap from the bottom boundary.
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from the pressure and viscous forces according to,

FD =

∫ (
ρfν

∂(u · t)

∂n
ny − pnx

)
dS, (3.6)

and,

FL = −
∫ (

ρfν
∂(u · t)

∂n
nx − pny

)
dS, (3.7)

with the following notations: surface of cylinder S, normal vector x and

y components, nx and ny, and tangential velocity, u · t on S, where

t = (ny,−nx, 0).

It is observed from figure 3.2 that the Fluidity model well describes

the existence of the wake downstream of the circular cylinder, while the

OpenFOAM model underestimates the velocity profile particularly at the

upper part of the generated wake. It is also observed more evidently at

the inlet region that the effect of the boundary layer formation close to

the bed surface is underpredicted as inferred from the velocity magni-

tude. A plausible explanation for this, coming from the implementation

details, may be the use of the wall function boundary conditions on the

cylinder and bed surfaces. The k wall function is in both models provided

as a Neumann boundary but the ε boundary condition in OpenFOAM

calculates the actual quantity (i.e. turbulent dissipation rate) as the sum

of the value on each face f based on the weights – related to the number
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(a) Velocity field in the domain resulting from Fluidity.

(b) Velocity field in the domain resulting from OpenFOAM.

Figure 3.2: Visualisation of the velocity field magnitude (m/s) after 10
seconds of simulation in Fluidity and OpenFOAM.
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of faces,

ε =
1

W

W∑
fi

(
C

3/4
µ k3/2

kyi

)
, (3.8)

where W is the weight of the cell and k is based in the value at the cell

center. There is explicitly a requirement that the first cell distance must

be calculated and this is connected to a sensitivity of the grid resolution.

Therefore, the model using the dissipation rate quantity itself would be

grid-dependent.

From figure 3.3, different variations in the velocity profiles over the

channel’s height (i.e. y = 0.4m) are observed at different vertical points

along the channel and it is firstly noticed in frames (a) and (b) how the

inlet profiles differs between the models (in the OpenFOAM model the

effects of the boundary layer near the bedwall are less noticeable). By the

time the flow passed the circular cylinder the profiles seem to share more

similarities in shape between the models (in frames (c) and (d) just across

the cylinder at x = 1m and in frames (e) and (f) further downstream at

x = 1.2m) but still there is a clear underestimation of the velocity values

with the OpenFOAM simulation initialised from the upstream profile.

Also, from figure 3.4, in frames (a) and (b), differences in the bed shear

stress magnitude along the channel can be clearly noted. The turbulent

quantities (TKE and ε) comparisons show a difference of an order of mag-

nitude between models (with lower values for the OpenFOAM results)

plus an erratic profile in both quantities with the OpenFOAM simulation.
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Figure 3.3: Velocity profiles in the numerical simulation of a two-
dimensional flow past a circular cylinder.
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Figure 3.4: Bed shear stresses and turbulent quantities in the numerical
simulation of a two-dimensional flow past a circular cylinder.
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From figure 3.5, specifically in frame (c) it can noted that in regards

to the frequency of the oscillations produced in the lift force, although

the results from the previous experiments [50] were conducted with a

Re ≈ 7000, intuitively the cycles within a period of non-dimensional time

of 10 are very similar to the ones observed in figure 12 from the studies

carried out by Liang et al. [50]. This agreement provides confidence that

the Fluidity’s hydrodynamics model lies in the adequate accuracy range

to carry on the intended model verification with the posterior study [51]

also used as a benchmark result for the scour results considered in the

next chapter 4.

The comparison of the drag and lift forces suggests that OpenFOAM

is mishandling the swirling flows in the downstream wake and as a con-

sequence underpredicting the wall shear stresses at the bottom wall/bed

surface. The alternative wall function implementation within Fluidity

with a (conceptually) excluded (y+) distance to wall from the computa-

tional domain seems to produce favourable results in spite of the level of

refinement near the bottom wall and/or the cylinder surface and possibly

a mesh dependence issue that the k − ε turbulence modelling may have.
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(a) Drag force on the circle versus
dimensionless time tu0D .

(b) Drag force on the circle versus
dimensionless time tu0D .

(c) Lift force on the circle versus
dimensionless time tu0D .

(d) Lift force on the circle versus
dimensionless time tu0D .

Figure 3.5: Drag and lift forces on the circle in the numerical simulation
of a two-dimensional flow past a circular cylinder using Fluidity ( ) and
OpenFOAM ( ).
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4.1 Introduction

In the context of modelling scour around structures using single phase

models based in finite volume/element discretisations using unstructured

meshes, a full numerical model is proposed coupling the sediment trans-

port module with the turbulent hydrodynamics. The model has been val-

idated by computing the bed changes of the results of the work by Liang

et al. [51] in the modelling of scour below pipelines in currents. Amongst

the main challenges in the development of this numerical model, is that

the evolution of the boundary mesh location in response to bed morpho-

dynamics also requires changes to the internal computational mesh. If

this is not done, or is not done well, this can lead to poor quality meshes

which compromise simulation stability and accuracy. A widely adopted

approach to this problem is to use mesh movement methods to propagate

the boundary mesh movement into the domain, in an attempt to main-

tain mesh quality throughout [51, 111]. However, in the case of extreme

bed movement and/or where this movement is close to a fixed structure

in the domain (which inevitably constrains the mesh and its ideal move-

ment to some degree), it is very difficult to maintain mesh quality with

mesh movement algorithms alone.

With unstructured computational grids, it is relatively straightforward

to use variable resolution within the domain, but due to arbitrary con-

nectivity and cell shape it is also arguably more complicated to move the

mesh nodes on the bed and in the domain interior. Although the devel-

opment of moving grid techniques has been generally less well studied

than other adaptive mesh techniques, there have been a lot of progress
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in the past decades, such as partial differential equations (PDE)-based

and spring-based analogy methods [9]. From the moving mesh PDE-

based approaches, the relatively simple Laplacian smoothing has been

a common choice to tackle mesh deformation in response to local sed-

iment scour due to its robustness and ease of implementation with an

unstructured grid in a complex domain [55]. As it will be argued in this

chapter (4), movement of nodes alone may not be sufficient to maintain

an adequate mesh resolution and/or structure, especially for cases with

extreme bed deformation.

In this work it is presented a new mesh optimisation/movement (or

hr -adaptive) framework for computational morphodynamics. This in-

cludes the use of relatively sophisticated mesh movement algorithms to

account for the bed evolution, while utilising mesh optimisation meth-

ods in order to: (i) maintain mesh quality under extreme and complex

scenarios; (ii) vary the total degrees of freedom count as the problem

complexity evolves; and (iii) help track solution features in the wider do-

main. The framework will be demonstrated on a complex scour problem

with a hydraulic structure (i.e. pipeline) close to the bed; the closeness

being particularly challenging due to the constraints the structure im-

poses on the mesh movement, and the significant difference in degree of

freedom count ideally required in the gap between structure and bed as

the scour progresses at different times into the simulation. Results are

benchmarked against laboratory data and prior numerical studies which

also considered the same test case. The work in this chapter represents a

significant extension and improvement over a previous paper [78] which
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reported on the initial steps in this work resulting in a completed publi-

cation in a peer-reviewed journal [77].

4.2 Discretisation and numerical solution

procedure

This section concentrates on the numerical modelling of the physical

processes taking place in the scour area, where the key elements to cap-

ture are:

(i) An accurate modelling of the fluid flow taking account the effect of

turbulence via a RANS eddy-viscosity two-equation model (k − ε).

(ii) The combination of turbulence generation-dissipation action in the

wall linked to the bed shear stress and initiating both bedload and

suspended sediment transport, hence these processes need to be

modelled as well.

(iii) Finally, the resulting mass conservation of sediment, induces a bed

profile evolution which needs to be modelled through the incorpo-

ration of a mesh movement module plus additional benefits from a

mesh adaptivity algorithm.

The discretisation of the equations described in the previous chapter

2 are performed here within the control volume/element-based model,

Fluidity [1], upon unstructured two-dimensional (2D) triangular or three-

dimensional (3D) tetrahedral computational meshes.
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4.2.1 Flow model discretisation

Equation (2.11) has been spatially discretised using a P1DGP2 (see

figure 4.1) finite element pair in which the velocity field varies linearly

over elements (ei), and may be discontinuous between elements, while

pressure has a quadratic variation within and is continuous between el-

ements [19]. In a discontinuous Galerkin (DG) discretisation the shape

functions can be selected so that the field variables (and derivatives) are

free to be discontinuous between element boundaries [18]. A field that is

discretised using a discontinuous function space will have multiple nodal

values at element nodes and thus will have more degrees of freedom

than a continuous function of the same polynomial order on the same

mesh, since these elements do not have repeated nodes. DG methods

are locally conservative so they are a popular choice of discretisation for

advection-dominated problems as opposed to some continuous Galerkin

options such as Petrov-Galerkin-based methods which can lead to exces-

sive numerical diffusion to maintain stability. Also, thanks to their flux

representation they perform well on arbitrary meshes and have the con-

venient properties of producing a block-diagonal mass matrix that can be

easily inverted locally for each element, so it does not have to be lumped,

thereby resulting in a very efficient computational time.

The use of DG methods for the velocity discretisation requires the

choice of flux schemes for both the advective (e.g. an upwind DG for-

mulation is used here) and diffusive (e.g. the Bassi-Rebay scheme in

the local discontinuous Galerkin framework [5] is used here) terms. A

mathematical description of the discretised momentum equation is given
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(a)

e
A

(b)

Ae

Figure 4.1: Two-dimensional schematics of: (a) piecewise linear discon-
tinuous shape functions and (b) piecewise quadratic continuous shape
functions.

in section 4.3.2, where a moving reference frame is assumed. In a dis-

continuous Galerkin method of degree p > 0, it is expected potential

numerical oscillations for the advective part of the discretisation. For

P1DG elements, the over and undershoots in the slopes, derived after

the spatial reconstruction of the inter-element fluxes, û|Γe (where û is

the convective flux of a scalar quantity transported by a velocity field

through the boundary element, Γe) can be controlled in order to make

the solution bounded with a slope limiting method (e.g. the vertex-based

slope limiter [46] is used here) with the goal of not increasing the total

variation of the solution, TV (u) =
∫
‖∇u‖dΓe and thus aiding stability

and robustness. In the vertex-based limiter, the idea is to bound the

admissible slope using the maximum and minimum element values, ui at
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each vertex xi to be within the bounds of the average value, uc of each

element Ωe,

umaxi = max {uc, umaxi } , umini = min
{
uc, u

min
i

}
, (4.1)

and obtained a constrained solution,

ui (x) = uc + αe (∇u)c (xi − xc) , (4.2)

where, (∇u)c is the local gradient within the element, Ωe before the slope

limiting is applied and αe is the element-wise correction factor,

min
i

=


min

{
1,

umax
i −uc
ui−uc

}
, if ui − uc > 0,

1, if ui − uc = 0,

min
{

1,
umin
i −uc
ui−uc

}
, if ui − uc < 0.

(4.3)

In solving the incompressible Navier-Stokes equations, the mixed finite

element formulation P1DGP2 has the desirable property of satisfying the

LBB (Ladyzenskaja-Babuska-Brezzi) stability condition and therefore,

no need for stabilisation of the pressure field offering at the same time a

higher-order accuracy in the pressure solution.

The discretisation of the Navier-Stokes equations in non-conservative

form as shown in equations (2.3) and (2.11), assuming a partial stress

form which is the preferred form of the viscous term for incompressible

flow with spatially varying viscosity. They can be written in matrix form
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as,

−CT un+1 = 0, (4.4)

and for the momentum equation,

Mun+1 − un

∆t
+A

(
un+θnl

)
un+θ +Kun+θ + Cpn+ 1

2 = B, (4.5)

with matrices,

−CT , (Divergence matrix)

M, (Mass lumped matrix)

A, (Advection matrix)

K, (Viscosity matrix)

C, (Gradient matrix)

B. (Boussinesq-term matrix)

The procedure used here for solving the discretised matrix system of

equations is a pressure correction-based approach,

Mu∗ − un

∆t
+A

(
un+θnl

)
u∗

n+θ +Ku∗
n+θ + Cp∗ = B, (4.6)

where, p∗ is the best available guess for pressure and u∗ is an inter-

mediate velocity which will hold until the pressure correction is done.

This velocity solution does not satisfy the continuity equation (4.4) and
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thus a second pressure correction step is invoked to update the velocity

to be solenoidal (divergence-free) and finally the corrected velocity and

updated pressure are obtained [36]. Combining the continuity equation

(4.4) with the difference between the systems (4.5) and (4.6), the system

is reformulated into a Poisson equation for ∆p = pn+ 1
2 − p∗

CTM−1C∆p =
CTu∗ −Mbc

∆t
, (4.7)

where, Mbc accounts for the boundary conditions prescribed for the ve-

locity. Finally, after satisfying the continuity equation, the pressure, pn+ 1
2

after correction can be updated,

pn+ 1
2 = p∗ + ∆p, (4.8)

and for the velocity,

un+1 = u∗ −∆tM−1C∆p. (4.9)

The nonlinear advection term in the momentum equation (2.11) is

dealt with using two Picard iterations to ensure that only linear matrix

systems need to be solved. In each iteration, first the momentum equa-

tion is linearised with a nonlinear relaxation parameter, θnl = [0, 1] such

as un+θnl = θnlū
n+1 + (1− θnl) un, where ūn+1 is the current best guess

of un+1 possibly after calculating the pressure correction.

In regards to the temporal discretisation, the θ-scheme, time marching

algorithm employed here for the momentum equations takes an operator-
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splitting approach in which the diffusive term is solved using an implicit,

second-order accurate in time, Crank-Nicolson scheme with an adaptive

timestep chosen automatically such that the maximum Courant number

over the mesh is always below a user defined value (in this work a value

2 is used), while the advective term is solved using an explicit forward

Euler scheme with a subcycled timestep chosen such that the maximum

Courant number for the subcycling is below another user defined value

(tighter that the rest of the model, here 0.2 is used).

4.2.2 Turbulence model discretisation

Equations (2.14) and (2.15) are spatially discretised using a flux-limited,

control volume-based method [1, 83] with a characteristic element topol-

ogy as represented in figure 4.2. A vertex-centred approach on the finite

element mesh is employed, with the control volumes around each vertex

defined by the dual mesh. This dual tessellation alternative can be used

to define a volume or dual element around each vertex which can be

constructed by joining the midpoints of element edges with the centroids

of the neighbouring elements, in two dimensions while the face centroids

are introduced in three dimensions. As mentioned with DG discretisa-

tions, the choice of flux schemes across volume facets is necessary for

the control volume method. For the discretisation of the advective part

of the κ − ε transport equations, a finite element interpolation of the

basis functions on the parent mesh into the dual mesh is used which

normally is unstable (in the sense of boundedness) and requires limiting.

To ensure boundedness and affectively suppress spurious oscillation while

maintaining high-order approximations of the solution, a Sweby limiter



4.2. Discretisation and numerical solution procedure 65

[97] (mostly popular slope limiting technique for finite difference/volume

methods) is used to limit the face values of the fluxes across control vol-

ume boundaries in each element. The control volume diffusion is also

performed with the finite element interpolation calculating the gradient

of the field constructed using the basis functions of the parent finite ele-

ment mesh to form the divergence.

v A

Figure 4.2: Two-dimensional schematic of piecewise constant control vol-
ume shape functions (has value 1 at node A descending to 0 at the control
volume boundaries) and dual mesh based on parent linear finite element
mesh.

The κ − ε equations are resolved by firstly decoupling and linearising

each equation. Two discretisations are used for κ and ε and the linear

matrix system is solved using the best available values from previous non-

linear Picard iterations (generally two iterations are found to be a good

compromise between accuracy and efficiency) similarly to the nonlinear

relaxation for the velocity value, with a parameter θκε = [0, 1].

For control volume temporal discretisations, an advection subcycling

based upon an requested Courant number (i.e. 2, selected in this work)

is also available, although in this case the θ-scheme value (i.e. 1 for a

fully implicit) is applied globally without advection/diffusion splitting.
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4.2.3 Sediment transport model discretisation

The numerical treatment of the sediment transport model involves a

two-step approach in which the results of the suspended sediment (con-

centration) equation (2.21) are precomputed in the domain and served as

an input for the Exner equation (2.17) describing the boundary deforma-

tion over an (N − 1)-dimensional space corresponding to the boundary

of the N -dimensional space the flow is computed over. The following no-

tation Ωsurf for this (N − 1)-dimensional space, formed by projecting out

the vertical dimension, and Γsurf for its boundary is used. The discretisa-

tion procedure used for the sediment volume fraction advection-diffusion

equation (2.21) in this work is very similar to that (i.e. control volume

discretisation) already described for the two scalar transport equations in

the turbulence model in the previous section 4.2.2. This matrix equations

takes the form

Mcn+1 − cn

∆t
+As

(
un+θnl , usi

)
cn+θ +Kscn+θ = 0, (4.10)

where, As
(
un+θnl , usi

)
is the sediment advection matrix, which is a func-

tion of the velocity and the particle settling velocity and Ks is the sed-

iment diffusion matrix. For more details of a practical application (e.g.

turbidity currents) of the discretised mathematical model for suspended

sediment refer to [81].

As defined by (2.17), the bed level update is dependent on ∇surf · qb,

the surface divergence of the bedload flux, and the erosion and deposi-

tion of sediment at the bed boundary. For uniform, steady-state flow
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and sediment particles of moderate diameter, the variation of η(x, y, t) is

governed partially by the sediment exchange with the bed-material, but

mainly through the divergence of the bedload transport. Considering

the contributions of the bedload transport only and assuming n = 0, the

relevant portion of the sediment mass balance or Exner equation (2.17)

can be written in the form

∂η

∂t
+∇surf · qb = 0. (4.11)

This equation provides the rate of bed level change, with the implemen-

tation here utilising a Galerkin finite element-based discretisation over

the bed surface domain, Ωsurf with a bed surface boundary, Γsurf and us-

ing linear trial basis functions equal to test functions and denoted by Ψi,

for every degree of freedom indexed by i. The weak formulation of this

problem then takes the form,

Mij
∂ηj
∂t

=

∫
Ωsurf

ΨiΨj
∂ηj
∂t

dΩsurf =

−

[∫
Ωsurf

qb · ∇Ψi dΩsurf +

∫
Σsurf

qbΨi · n dΓsurf

]
. (4.12)

The literature shows that unrealistic bed profiles can be generated

due to numerical instabilities arising from the nonlinear coupling of the

flow field and the bed level update (e.g. [2, 8, 51]). Some studies [44]

have also illustrated stability issues with the Exner equation due to its

intrinsic nonlinear hyperbolic nature as shown in equation (4.11) and

concluded that measures need to be taken to avoid numerical instabilities
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which often manifest at the grid scale through surface wiggles or sawtooth

patterns as the surface boundary moves or deforms. One approach to

deal with this issue is to add a regularisation term in the matrix-based

finite element construction, acting as a diffusion-like filter with a length

parameter that can be related to the grid size. This results in the slightly

modified mass matrix

Mij =

∫
Ωsurf

[(
ΨiΨj

)
+ λ2

(
∇surfΨi · ∇surfΨj

)]
dΩsurf, (4.13)

where λ is a smoothing length scale, in this work chosen to be twice the

length of a typical line segment on the bed boundary. This implementa-

tion effectively smooths the bedload transport source term in the Exner

equation. This is in contrast to other filtering approaches which explic-

itly smooth the bed coordinate η itself, introducing a spurious restoring

force and potentially mass conservation issues.

The moving boundary (here the bed) is computed by updating the

vertical position of the vertices making up the bottom boundary at each

timestep. First, the flow field model is calculated by solving the Navier-

Stokes equations with the turbulence model. Then the obtained flow

parameters, including the bed/wall shear stress, are employed to solve the

bedload and suspended load models allowing a derivation of the boundary

displacement or mesh velocity, V at the water-sediment interface,

V =

(
0, 0,

∂η

∂t

)
, on z = η. (4.14)

This in turn triggers a mesh movement algorithm which is applied at
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every timestep and hence acts continuously, combined with a mesh op-

timisation step invoked every user-defined number of timesteps (here 15

is used). Both of these mesh update algorithms are described in the fol-

lowing section 4.3. A summary of a full time loop is included in figure

4.3.

The diagnostic algorithms for the calculation of the bedload diver-

gence, div(qb) and the net suspended load, (E − D) fluxes required to

access the mesh velocity are condensed in the pseudo-code procedure

presented in Algorithm 1.

Due to the difference in time scales governing the hydrodynamics and

bed changes, it is standard practice in computational morphodynamics

to use a morphological acceleration factor to reduce computational costs.

This can be thought of as defining a morphodynamic timestep which is

much longer than the flow timestep (often by a factor of 10 to 1000)

[51, 55]. A morphological acceleration factor (obtained through trial and

error in order to control the morphology computation) of 10 is generally

used in the early stages of the simulations performed here where bed

changes are more rapid, and up to 60 at later stages where changes are

more gradual.

4.3 Mesh adaptivity and parallelisation

4.3.1 Mesh optimisation/h-adaptivity

The primary objective motivating the use of anisotropic mesh optimi-

sation in this study is to maintain optimal spatial resolution (by which
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Algorithm 1 Mesh velocity algorithm

1: procedure GridVelocity
2: bss← bed shear stress computed from the hydrodynamics.
3: nodes← node count of N-dimensional mesh.
4: surfnodes← node count of (N-1)-dimensional mesh.
5: faces← face count of (N-1)-dimensional mesh.
6: i, j ← count of array.
7: div(qb):
8: if (N − 1) ∈ N then:
9: for j ← surfnodes do

10: qb ← qb(bss.node val(j)).
11: for i← faces do
12: div(qb)← qbΨi.face val at quad(i).
13: end for
14: div(qb)← qb∇Ψj.node val(j).
15: end for
16: end if
17: (E −D):
18: for j ← nodes do
19: cn+1

j ← derived from equation (4.10).
20: end for
21: if (N − 1) ∈ N then:
22: for j ← surfnodes do
23: for i← faces do
24: D ← D(ci.face val at quad(i)).
25: E ← E(ci.face val at quad(i)).
26: end for
27: end for
28: end if
29: loop:
30: for j ← nodes do
31: div(qb)← div(qb).node val(j).
32: (E −D)← (E −D).node val(j).
33: V ← [0, 0,−(div(qb) + (E −D))].
34: end for
35: end procedure



4.3. Mesh adaptivity and parallelisation 71

Begin
timestep loop

Compute κ
and ε to derive
νt and update
total viscosity

Compute un+1

and pn+ 1
2

with pressure
correction, ∆p

nonlinear Picard iterations, N=2

Compute
∇surf · qb

and (E − D)

Access grid
velocity, V

Perform mesh
movement

End timestep
loop

do-adapt-mesh

Re-partitioning
and update

mesh in
adaptivity
steps, N=3

Interpolate all
fields (Galerkin
projection for

DG fields)

FALSE

TRUE

Figure 4.3: A flowchart of the high-level procedures involved in the hy-
drodynamics and sediment morphodynamic internal coupling.
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is meant both the shape and size of elements) under external boundary

deformation and the associated internal mesh movement with time, so

optimal elements in physical space (K) comply with equilateral elements

in an isotropic computational space (K̂) under a coordinate transform

mapping, TK : K̂ → K [84]. Finite element adaptivity can be in element

size, h, element position, r, or in the polynomial order of the representa-

tion, p. This last (i.e. p) adaptivity is not implemented here. Probably

the most widely used form of mesh adaptivity is the approach referred

to as h-adaptivity or mesh optimisation. This involves choosing a coarse

starting mesh and estimating the error over each of the simplices. Those

elements for which the estimated error is unacceptably large are subdi-

vided into smaller ones and the process is then repeated using a new error

estimate on this new anisotropic mesh. For example, in two dimensions

it is conventional to subdivide each triangle that is being refine into at

least two children inserting a node at the center of an edge creating new

surrounding elements (i.e. edge splitting, amongst other operations). An

application of mesh optimisation is relatively costly (perhaps equivalent

to several timesteps of the underlying solver, and being dependent on

choices over interpolation scheme etc.) and so is generally applied per-

haps only every 10–20 timesteps. This is perfectly acceptable here since

mesh movement is used every timestep and thus is continuously seeking

to maintain a good quality mesh in response to boundary deformation.

Ignoring load balancing and parallelisation which will be discussed

later, the application of mesh optimisation can be divided into three

steps. The first is to decide what mesh is desired via the generation and
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use of an appropriate error metric; the second is to actually generate the

newly adapted mesh through a series of topological operations applied

to the current mesh; and the third is to transfer (or interpolate) all

necessary data from the previous mesh to the newly adapted one in order

to continue the simulation.

In the first step, to drive mesh optimisation, Fluidity makes use of

an explicit Hessian-based approach motivated by interpolation error the-

ory [28]. This gradient-based adaptation approach utilises local error

estimates based on the second gradient, or Hessian H, of one or more

scalar flow variables at some points within the flow domain to drive the

adaptation process. For finite element methods (with piecewise linear

discretisations) the computational error is bounded by the local inter-

polation error which can be bounded with the second derivative of the

variable u at any point of an element (i.e. linear simplexes) K [14],

‖u− Πhu‖ ≤ C max
v∈EK

{
vT |Hu|v

}
, (4.15)

where, Πh is the P1 interpolation operator, ‖ · ‖ is a norm acceptable

for error control (e.g. L∞ norm), v is a vector of edges, EK is the set of

edges of K and C is an O(1) constant independent of the current mesh

and related to the space dimension (R2 or R3). Hu is the Hessian of the

scalar field u, and the notation |Hu| indicates that the absolute values

of its eigenvalues have been taken (as we are simply interested in the

magnitude of errors here). This previous expression (4.15) reflects that

the estimation of the error can be interpreted as the length of the vector

measured by the Hessian and this controls the error over a mesh edge vi
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(part of the vector of edges v).

Hessian-based anisotropic adaptation aims to produce simplex meshes

with arbitrarily-oriented shapes following a metric-based stretching. The

metric tensor is derived from the Hessian by considering its absolute

value and decomposition, |Hu| = RT |Λ|R, where R are the eigenvec-

tors (giving the direction of the stretching) of the Hessian and |Λ| is the

matrix composed by the absolute values of the eigenvalues (giving the

magnitude of the stretching) of Hu. Several methods are proposed in the

literature to compute the Hessian of discrete scalar variables [12]. In Flu-

idity, a Galerkin projection procedure [79] is used to obtain the Hessian

by recovering the gradient of the solution first and then repeat it with

second variational gradient recovery, making use of lumping mass matri-

ces. These projections come from standard finite element computation

following the identity,

∫
Ω

ΦiHijdΩ =

∫
Ω

∇Φi∇uhdΩ ∀i. (4.16)

The metric tensor formed from the recovered Hessian is, in the simplest

way, obtained by taking the absolute value of the Hessian as described

above, that is,

M =
C

ε
|Hu| =

C

ε
RT |Λ|R (4.17)

with |Λ| =


|λ1| 0 0

0 |λ2| 0

0 0 |λ3|

 in R3.
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This decomposition is unique and provides an explicit bound for the

interpolation error [58]. Other authors have proposed different metric

tensor (for anisotropic mesh generation) formulations where the optimal

mesh error is controlled by another norm, e.g. Lp norm [59]

MLp =
1

εu
det
(
|Hu|

) −1
2p+n |Hu|, (4.18)

where, n is is the spatial dimension of the current mesh. The inclusion

of the determinant of the Hessian as an extra scaling factor results in

smaller spatial scales being given more weight in the metric and as a

result are better resolved [60]. The use of a p = 2 norm in this work was

found to show effective results in boundary layer simulations. In regards

to the already known interpolation error bound, ε it is prescribed as a

user-defined weight which controls how strongly the mesh adaptivity is

guided by an individual field (variable) – a smaller value leading to a

stronger weighting and overall a finer mesh. Also, the metric tensor can

be calculated for separate fields, fi, to be adapted to,

Mi =
C

εfi
|H (fi) |. (4.19)

For example, for two metrics derived from two variables, M1 and M2,

an intersection M1 ∩M2 can be defined such that the maximum inter-

polation error is minimised for all variables [14, 79]. In this work, the

velocity components only are chosen to represent the physics (boundary

layers near wall surfaces) that will drive the adaptation.

Once the metric formed from the solution fields is constructed, it can
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be useful to apply additional constraints to the mesh elements such as

imposing minimum (hmin) and maximum (hmax) edge lengths in order to

avoid uncontrolled mesh behaviour (e.g. limiting the production of ele-

ments larger than the solution domain or smaller than a certain problem

scale). This is represented by a modification of the eigenvalues as,

λi = min

(
max

(
|λi|,

1

h2
max

)
1

h2
min

)
. (4.20)

Other bounds such as maximum allowable element aspect ratios, max-

imum number of elements and gradation over the rate of element size

variation can also be introduced [1].

Once the final error metric tensor has been computed it can be used

to measure the edge lengths of the elements in the mesh, v, with respect

to the metric field via:

‖v‖M =
(
vTMv

)1/2

. (4.21)

Mesh metric-based adaptation seeks to equidistribute errors such that

local mesh modifications (described in the second step below) are per-

formed aiming at creating a unit mesh, ‖v‖M = 1 for all edges, i.e.

all elements in metric space are equilateral and of unit size therefore,

anisotropic meshes might be seen as isotropic with respect to a different

metric. Since the metric tensor is originally formulated from the Hessian

matrices of individual fields, achieving this goal has the effect of gen-

erating (anisotropic) elements in physical space which have small edge

lengths in directions and locations where the second derivative of the
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field is large, and are large in directions and locations where the field is

near linear [84].

The second step involves achieving the goal of constructing a near

equilateral and unit sized mesh in metric space (derived from the previous

step) using a Delaunay-type mesh generator [86]. The mesh generation

procedure will iteratively compute the lengths of the mesh edge based

on the specified discrete metric tensor at each mesh vertex of the current

mesh considering that they were defined to satisfied that the adapted

mesh is then a unit mesh.

Additionally, a mesh quality objective functional is commonly formed

(accounting for both, shape and size functions of the elements) and based

on how well the elements of the mesh satisfy ‖v‖M = 1 for all their edges

which can be seen an a criterion to decide which of the mesh optimisation

operations (described below) should be used to improve the quality of the

mesh. In this work, a two-dimensional functional is used [83],

QM = 12
√

3
|∆|M
|∂∆|2M

F

(
|∂∆|M

3

)
, with, (4.22)

F (x) =

min

(
x,

1

x

)(
2−min

(
x,

1

x

))3

,

where, |∆| represents the area of the element ∆ and |∂∆| its perimeter,

both measured in the metric M. A series of topological operations are

then applied to the current mesh to minimise this mesh quality func-

tional based on different techniques and algorithms for construction of
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an adapted conformal triangulation, T hk+1. The overall mesh optimisa-

tion algorithm constructs a sequence of meshes through local element

modification, T h0 , . . . T hk+l, . . . T hk+1, where l are the number of local mod-

ifications, so that the quality functional is minimised throughout the

whole mesh, QT = min {QK , K ∈ T }. In this work, the two-dimensional

library ani2d [104] (http://ani2d.sourceforge.net/) is used to formu-

late the mesh quality functional and perform the mesh operations. These

operations include: (i) node creation or edge splitting, (ii) node deletion

or edge collapsing, (iii) diagonal swapping common edges between two

elements. Note that in three dimensions more operations are possible

(e.g. edge to edge, edge to face, and face to edge swapping) [85].

The third and final step involves transferring field data from the old

mesh to the new mesh in an interpolation process. The simplest option to

transfer data is called consistent interpolation which simply involves eval-

uating the finite element solution (by basis functions) on the old mesh at

the nodal locations defining the fields on the new (adapted) mesh. This

is is a trivial way for any finite element method to regenerate data on

the new mesh, but it is non-conservative and is unsuited to discontinuous

function spaces such as is used here to represent the velocity field. These

issues may be overcomed using a conservative Galerkin projection inter-

polation scheme to map solution fields between meshes. Solving the finite

element discretisation of the optimal interpolant in the L2 norm between

finite element spaces equation must satisfy the orthogonality condition,

〈u − uP ,Ψi〉 = 0, where, u is the approximated solution in the parent

finite-dimensional space and uP , is the orthogonal projection of u onto



4.3. Mesh adaptivity and parallelisation 79

the target finite-dimensional space. Solving this equation requires the

computing of the integrals of the inner products of the basis functions

of the two meshes, parent, T Φ and target, T Ψ. To efficiently compute

this integral associated equation in an exact manner, a supermeshing al-

gorithm (constructed from the union of the nodes of the elements from

the old/parent/donor – K ∈ T Φ mesh and the new/adapted/target mesh

– K̂ ∈ T Ψ) is used in Fluidity [26, 25]. This algorithm makes uses of

a constrained Delauney triangulation (CDT) procedure plus other in-

tersection algorithms for the construction of an extra mesh, K ∪ K̂ in

which for the intersection, K ∩ K̂ where if two elements do intersect,

then the inner product of the basis function in particular, the mixed

product ΦKj
ΨK̂i

must only be non-zero over the region of intersection

and subsequently added to the computation of the projection matrix P ,

MuP = Pu, where, M is the mass matrix commonly appearing in finite

element methods. Additional advantage of this interpolation scheme is

that it could be parallelised.

4.3.2 Mesh movement/r-adaptivity

In a fundamentally different manner to mesh optimisation, mesh move-

ment or r -adaptivity methods locally redistribute the physical locations

of vertices of the mesh while maintaining its structural connectivity. In

this work this is performed continuously over the course of every timestep

and thus the underlying discretisation is formulated within an arbitrary

lagrangian-eulerian (ALE) framework [21]. This process is purely ge-

ometrical, keeping a regularised computational mesh during the whole

calculation, avoiding excessive distortions and resisting mesh elements
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becoming squeezed or entangled. These methods locally improve the

quality of patches of elements rather than constructing of an optimal

mesh in a transformed space such that the adapted mesh equidistributes

a measure of error as with mesh optimisation procedures, such as h-

adaptivity.

In the Fluidity implementation of mesh movement, this requires that

for each simulation timestep, tn → tn+1, a continuous, piecewise linear

vector field, or mesh velocity, V , is specified whose action defines the

rate of change of the vertices of the elements such that the physical co-

ordinate, xi, of the ith mesh vertex varies as xi(t) = xi(t
n) + (t− tn)Vi,

with the physical motion of the rest of the mesh following via linearity of

the coordinate field. The mesh velocity modifies the convective fluxes in

the moving reference frame for the continuity, momentum and sediment

concentration equations as per the ALE formulation. This implicitly de-

fines a (fixed) mesh coordinate, χ = x(tn+θ), on which the finite element

equations are constructed. The time derivative in the inertial terms in the

PDEs describing the evolution of the prognostic variables then transform

as

∂a

∂t

∣∣∣∣
χ

=
∂a

∂t

∣∣∣∣
x

+
∑
i

dxi
dt

∣∣∣∣
χ

∂a

∂xi
=
∂a

∂t

∣∣∣∣
x

+ V · ∇xa. (4.23)

For the momentum equation, application of integration by parts, the

Crank–Nicolson timestepping, the Bassi–Rebay diffusion operator and

choice of an upwinded numerical flux gives a weak form in Ω being a

bounded open domain with boundary Γ representing the general Dirich-
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let (ΓD)–Neumann (ΓN) problem; using tests functions w and τ , respec-

tively, integrating over an element e,

∑
e

∫
Ω(e)

w · u
n+1 − un

∆t
−∇x · (u∗w) ·

(
1

2
un+1 +

1

2
un − V

)
dVχ

+

∫
Ω(e)

∇xw : σn+ 1
2 +∇x ·wpn+ 1

2 dVχ

+

∮
Γe
I

w ·


{

un+1 + un

2

}u∗ · J −1 · nx +w · σ · J −1 · nx + dSχ

+

∮
Γe
D

uD ·wuD · J −1 · nxdSχ −
∮

Γe
N

u ·wu∗ · J −1 · nx +w · σdSχ = 0,

(4.24)

where u∗ is the advective velocity guess from the Picard iteration, pro-

jected onto a continuous P1 space, and σ is the P1DG Bassi–Rebay aux-

iliary stress term satisfying a local finite element equation

∫
Ωe

τ : σdVχ =

∮
(ν + νt) τ : (un+ nu) dSχ

−
∫

(ν + νt) u∇ · τ + (ν + νt) (∇ · τ )T udVχ. (4.25)

Interfacial averaging and upwinding operators in the interior faces subset

ΓI , are defined as

a =
1

2

(
a− + a+

)
, {{a}} =

1

2

(
a− + a+

)
− u∗ · n

2‖u∗ · n‖
(
a− − a+

)
,

where a+ is the value of a variable in the eth element and a− is the value

from the element across the interface. Finally, Jij = ∂xi
∂χj

is the Jacobian

matrix of the moving mesh transformation at the time level the gradient

operator applies.
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This mesh velocity may be explicitly chosen by the user, or as is the

case here determined algorithmically. In this study the mesh velocity

of the moving boundary is obtained from the rate of bed level change

arising from the Exner equation (2.17) and propagated into the interior

of the mesh, under a specified smoothness criterion, and with the other

boundaries held fixed. In this way, the moving mesh method is used to

continuously adjust interior node locations in response to bed deforma-

tion, while seeking to keep the mesh of high quality and resisting the

tangling of elements.

Since the mesh velocity is chosen explicitly, it is possible to choose the

mesh coordinate as χ = x
(
t0
)
+ 1

2
∆tV , i.e. the physical coordinate at the

time level of the right hand side of the PDE. This allows the substitutions

∇x = ∇χ, J = I in the weak form above, so that the DG method takes

essentially the same form as for fixed-mesh problems. A similar method

is applied for the control volume discretisation of the tracer quantities

(sediment, turbulent kinetic energy and turbulent dissipation). In prac-

tice, since the timestepping operator is split and advection solved using

an explicit method, this introduces a small discrepancy, of equal order

to the use of an explicit timestepping method. Since the bed movement

is slow relative to the fluid velocity, we neglect the advection sub-cycling

in the wall boundary conditions for the turbulence model.

Some implementations were considered and tested in order to achieved

a high enough measure of mesh quality. The Laplacian smoothing is

achieved through the solution of an elliptic PDE. For example a two-

dimensinal computational domain with coordinate vector (ξ, η) and map
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it to the time-evolving physical domain with coordinate vector (x, y)

where the underlying physical solutions (i.e. pressure and velocities) are

computed. The mapping T : (ξ, η) → (x, y) is defined as the solution of

the system of PDEs,

∇2x = xξξ + xηη = 0 ; (4.26)

∇2y = yξξ + yηη = 0 ; (4.27)

where the Laplacian operator ∇2 is applied in the computational domain

and with boundary conditions given by the current position of the phys-

ical domain boundaries. Applying this to the mesh velocity itself will

result in solving,

∇ · γ∇V = 0, (4.28)

with some mesh deformation parameter, γ. Solutions to this mapping

are generally very smooth leading to equipotential contours where the

interior grid points are relocated in response to boundary deformation.

However, this technique has an important drawback, in a nonconvex

domain, nodes may run outside it. For example, if an external boundary

moves inwards too much and creates a nonconvex domain this smoother

will most likely produce a tangled mesh.

Previous scour studies, e.g. [51, 111, 55], have typically applied an

approach equivalent to a pure Laplacian smoothing criterion for the nu-

merical modelling of local scour. This simple scheme is appropriate on

vertically structured, quadrilateral-based meshes, or to small displace-
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ments in which tangling is a minor issue. In this work, the advantages

of a lineal elasticity approach are demonstrated, specifically a torsional

spring-based smoother [24]. This smoother is derived from a discrete

analogy to the deformation of an elastic material kept in constant quasi-

equilibrium acting over the whole mesh domain and driven by an ex-

ternally applied boundary displacement. The individual vertex displace-

ments (and thus the mesh velocity) are assumed to satisfy equations

analogous to linear elasticity equations with a fictitious spring attached

to each edge connecting two vertices i and j,

Kij
[
xj(t

n+1)− xj(tn)
]

= (tn+1 − tn)KijVj = 0, (4.29)

along with the boundary condition (4.14). The lineal torsional stiffness

matrix, K, may be partitioned as

K =
∑

k∈edges

Klineal
k +Ktorsional

k . (4.30)

Here the lineal term, Klineal
k applies equal and oppositely directed lin-

ear Hookean pseudo-forces at the two vertices sharing an edge, k, with a

spring constant inversely proportional to the edge length. This term thus

resists possible displacements which collapse the edge and acts to equipar-

tition changes in edge length across the whole mesh. Similarly the tor-

sional term, Ktorsional
k , applies an angular Hookean force on the third node

of each of the two elements sharing an edge (assuming two-dimensional

triangular elements), with a torsional spring force inversely proportional

to the element area, thus resisting displacements which would cause the
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mesh to tangle by moving that vertex through the edge. The sparse

matrix equation (4.29) for the Vi is solved using the same solvers as the

discretised fluid model. This method provides a more robust smoother

on unstructured meshes than the Laplacian smoother, at the cost of more

expensive assembly.

4.3.3 Load balancing and parallelisation

In order to parallelise the model (both the discretisation as well as

the application of mesh adaptivity), the first step is to divide the whole

mesh into a number of sub-domains through a process referred to as

domain decomposition; here this is a pre-processing step. After the ini-

tial decomposition of the mesh, each message passing interface (MPI)

process then reads their local mesh and performs local finite element

assembly to form global discretisation matrices which are solved using

linear solvers and preconditioners available here through interfacing with

the PETSc library (http://www.mcs.anl.gov/petsc/). Since the mesh

optimisation step (described above) alters the local degrees of freedom

count on each sub-domain, and consequently leads to each MPI process

taking a different amount of time to complete impacting on overall solver

efficiency, a dynamic load balancing step is a necessity. This involves ex-

changing elements (or migrating data) between sub-domains and here a

parallel graph partitioner algorithm is utilised to achieve this via inter-

facing with the Zoltan library (http://www.cs.sandia.gov/zoltan/).

The load balancing step is additionally used to parallelise a serial mesh

optimisation algorithm. Each process optimises the mesh locally with

halo regions between sub-domains locked, and hence the overall mesh
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contains unoptimised elements. Edge weighting is then applied at the

graph partitioning step to encourage the load balancing to perturb up-

dated halo regions away from previously locked elements. Local mesh

optimisation, and load balancing, steps are then repeated several times

resulting in a parallelised mesh adaptivity algorithm as well as a load-

balanced mesh where all elements have been considered for optimisation

[85, 32].

4.4 Numerical results and discussion

In order to demonstrate and validate the modelling approach devel-

oped in this work, a test case of current-induced scour around a circular

object in 2D (which can be thought of as an infinitely long horizontally-

lying pipe) is considered. This is an important problem since scour can

affect the stability of pipelines, and serves as a simple yet representative

example of further real-world problems which may involve more complex

geometries. It is also a very challenging problem for two reasons: (i)

the presence of the circular void representing the structure significantly

constrains the mesh and its movement; and (ii) the initial thin clearance

between the pipe and the bed leads to high stresses and strong scour, and

thus the need for a high degree of mesh movement and also significant

differences in the number of degrees of freedom required to accurately

model the currents (and hence scouring processes) between the early and

late stages of a simulation. This problem also benefits from the availabil-

ity of experimental data [63] as well as prior modelling studies [51].
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4.4.1 Simulation configuration

A two-dimensional initially rectangular flow domain is considered, as

shown in figure 4.4. The domain is L = 30D long and H = 4D high,

where D is the pipe diameter. The pipe centre was located 10D down-

stream of the inlet boundary. The height of the pipe was such that its

bottom just touches the location of a flat bed.

When the pressure gradient in the bed-material between the upstream

and downstream zones around a bottom-lying pipe reaches a critical value

for seepage failure, tunnel erosion may initiate and the current velocity in

the gap then increases rapidly [96]. As with similar modelling studies, e.g.

[51], this onset phase was skipped here because the physics of the seepage

flow within the porous soil underneath the pipeline is not accounted for in

this modelling approach. The starting bottom boundary location/shape

was therefore adjusted to yield a small initial clearance of size e between

pipe and bed. Following the work from Liang et al. [51] the initial bed

location was given an initial negative half cycle sinusoidal shaped small

perturbation to yield a localised gap between the bottom of the pipe and

the bed of amplitude e = 0.1D.

H

e
D

L

x

y

Figure 4.4: Schematic of the two-dimensional domain configuration. The
grey area indicates a region of infinite sediment excluded from volume
calculations. e is the gap between the pipe and the bottom erodible
boundary.
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In terms of initial and boundary conditions, the simulated flow is as-

sumed to be a hydrostatic pressure-balanced rigid lid flow (i.e. no free

surface is present in the model). At the inlet (left-hand side) bound-

ary, a logarithmic velocity profile with a mean inlet velocity was applied

(commonly developed in channel geometries) and the turbulent initial

quantities were approximated from CFD formulae used for free-stream

conditions and based on the turbulence intensity (I = 5%) and the tur-

bulent length scale l, estimated as a small percentage of the channel

height (i.e. l = 0.07H). At the outlet boundary the pressure perturba-

tion is set to zero. The bottom erodible boundary and the pipe surface

are defined with a standard turbulence wall functions reproducing the

behaviour of the boundary layer as described in chapter 3. For sediment

concentration boundary conditions the flux of sediment through all sur-

faces, except the bottom, is set to zero while for the bottom boundary

the suspended sediment flux is derived as the net upward normal flux

such that qs · n = E − D. Within the bottom boundary, the sediment

concentration is assumed to be uniform and the volume of sediment is in-

finitely available such that the bed is always erodible, i.e. the simulations

here cannot hit bedrock.

4.4.2 Discussion

The numerical simulations were compared to the laboratory experi-

mental results of Mao [63]. While the set-up of this problem is uniform

in the cross-flume direction, some three-dimensional effects will of course

still be present in reality. However, following the approach taken suc-

cessfully by a number of authors studying this problem numerically, and
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the same two-dimensional approach was utilised. An overview of the

system parameters is given in table 4.1. The simulations conducted here

correspond to the experiments with conditions for a Shields parameter

of τ ∗ = 0.048 (low value close to clear-water scour regime) and a Shields

parameter of τ ∗ = 0.098 (in live-bed scour regime). With regards the nu-

merical parameters for mesh adaptivity, the simulations were performed

with an unstructured mesh of triangular elements with the parameters

as given in table 4.2. All computations were conducted in parallel using

16 processor cores.

Parameter Experiment τ ∗ = 0.048 Experiment τ ∗ = 0.098

Geometry and Flow

Diameter D 0.1m 0.1m
Maximum gap height e 10mm 10mm
Mean inlet velocity ‖u‖ 0.35m/s 0.5m/s

Sediment Transport

Angle of repose φ 30◦ 30◦

Submerged specific gravity R∗ 1.65 1.65
Particle median diameter d50 360 µm 360 µm

Particle diameter 90th percentile d90 480 µm 480 µm
Unhindered settling velocity uso 0.055m/s 0.055m/s

Table 4.1: Parameters used for simulations of the horizontal pipe scour
test case. These parameters correspond to those used in Liang et al. [51].

Adaptivity
Method

Options summary

h-adaptivity The maximum and minimum edge lengths were specified with val-
ues of 0.04 m (corresponding to the initial element characteristic
length) and 1 x 10−3 m respectively. The number of timesteps
between optimisation of the mesh was chosen to be 15 as it was
found (through experimentation) as the best compromise between
cost and robustness. The weights for the error metric construc-
tion (efi in section 4.3), chosen to provide good results in terms
of overall mesh quality were: εu1 = 0.035 ms−1, εu2 = 0.0035 ms−1

for experiment τ ∗ = 0.048 and εu1 = 0.05 ms−1, εu2 = 0.005 ms−1

for experiment τ ∗ = 0.098 where u1 and u2 represent the velocity
components.

r -adaptivity A lineal-torsional-spring method was used driven entirely by bed
deformation.

Table 4.2: Parameters used for mesh adaptivity in the horizontal pipe
scour test case.

Based upon laboratory experiments, and corroborated by consistent



90 Chapter 4. Local scour around a horizontal pipeline

numerical results, during the early stages of scour the erosion rate is very

high (due to the tunnel erosion), so that the scour depth reached ∼ 4 cm

after 1.5 minutes for the τ ∗ = 0.098 case and approximately 2.5 cm after

10 minutes for the τ ∗ = 0.048 case. A higher Shields parameter means

that the scour hole reaches an equilibrium state faster. The equilibrium

stage for the τ ∗ = 0.098 case began to develop at approximately 30

minutes of simulation time, with a maximum scour depth of ∼ 8 cm.

Figures 4.5 and 4.6 illustrate experimental bed profiles around the pipe

at different times, along with the numerical results of Liang et al. [51]

(for their medium mesh k–ε based results which they found to represent

a good compromise between accuracy and efficiency).

For the Fluidity results in figure 4.5, which corresponds to the case

with τ ∗ = 0.048, it is observed that at the very early stages of scour

(frame (a) – profile I), the scour depth is slightly deeper than that ob-

served experimentally. This could be a result of the assumptions made

with regards to the initial bed profile employed to emulate the tunnel ero-

sion stage (and also noting that the Liang et al. [51] results this set-up

is based upon show something similar). The seepage flow phase early in

the experimental setup would have led to a slight mismatch between the

timings of the experimental and numerical results, with the experimen-

tal profiles potentially lagging the numerical ones which are effectively

initiated at the end of the seepage phase. It should be noted that the

omission of this (i.e. seepage process) could also be a result on an under-

prediction of sediment transport rates (at the lee side of the pipe) in this

model.
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(a) (10 min)

(d) (370 min)

(b) (30 min)

(c) (200 min)

Figure 4.5: Bed evolution at different times for the Fluidity model using
experimental data from case τ ∗ = 0.048. Also shown are the correspond-
ing experimental data from Mao [63] and numerical results from Liang
et al. [51]. (a) Profile I at t = 10 min, (b) Profile II at t = 30 min, (c)
Profile III at t = 200 min, (d) Profile IV at t = 370 min. The dashed
line shows the initial bed profile.
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In frame (b) – profile II, after the tunnel erosion has created a scour

hole underneath the pipe, the scour rate decreases as the gap grows. This

subsequent stage is referred to as lee-wake erosion, where vortex shed-

ding from the pipe controls the scour. Experimentally, it was observed

that during this phase more scour will occur on the upstream side. This

model is able to predict a faster upstream erosion and also a character-

istic bedform (dune-like) formation due to accretion of sediment in the

downstream section.

In frame (c) – profile III, the scour hole has deepened and the flow

below the pipe has slowed, and the vortices have weakened and finally

vanished. A consequence of this is that the mean velocity in the gap

and the bed shear stress reach a quasi-equilibrium and remain approx-

imately constant; as a result, no major changes in the bed profiles are

observed apart from a slow downstream migration of the dune. A good

match is observed in the scour depth with respect to the other numerical

model results and the experimental result, and this agreement is main-

tained until the end of the simulation. Frame (d) – profile IV shows both

models agreeing very well with the experimental result both in terms of

maximum scour depth below the pipe as well as the downstream profile.

For results with τ ∗ = 0.098, shown in figure 4.6, it can be seen that

most of the scour occurs rapidly in the earliest times of the experiment.

This model results show fairly good agreement with the experimental

results throughout the initial tunnel erosion phase and the subsequent lee-

wake erosion phase, noted by a generally good profile match in frames (a)

and (b). However, the downstream accretion seems to be over-predicted
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at the later simulation times. This is considered to be a consequence of

the formation of bedforms, which shield the flow and encourage sediment

deposition behind the pipe. At the final time (frame (d)) the Fluidity

result shows a better scour depth agreement than the other numerical

result, while there are similarities in the two models’ disagreement with

the downstream experimental profile.

Figure 4.7 shows the progression of the mesh as the bed profile evolves

for the case with τ ∗ = 0.098 (n.b. very similar images and discussion

would be obtained for the τ ∗ = 0.048 case in figure 4.9) in which changes

in the adapted mesh due to the optimisation process are shown (frames

(a), (c), (e) and (f)). Also displayed are some frames ((b) and (d)) show-

ing the evolution of a coarse mesh undergoing mesh movement alone (i.e.

no mesh optimisation and so fixed degree of freedom count and element

connectivity). Mesh quality at the time of profile II at t = 5 minutes is

compared in figure 4.8 with a zoomed view of the scour gap for the cases

with and without mesh optimisation in frames (a) and (b) respectively.

It can be observed that while the early time fixed mesh looks reason-

able, the elements have become poorly shaped and sized by the time of

frame (b). In can also be observed that the poor quality mesh (as coarser

mesh resolution was initialised in the fixed mesh downstream of the pipe

and this can not evolve as the simulation develops) is impacting on the

numerical result in terms of the lack of the formation of appropriate

downstream bedform profiles (e.g. downstream dune). The mesh quality

measure plotted is the edge ratio (the ratio of the longest edge length to

the shortest) and provides information similar to the element aspect ra-
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(a) (1.5 min)

(d) (217 min)

(b) (5 min)

(c) (30 min)

Figure 4.6: Bed evolution at different times for the Fluidity model using
experimental data from case τ ∗ = 0.098. Also shown are the correspond-
ing experimental data from Mao [63] and numerical results from Liang
et al. [51]. (a) Profile I at t = 1.5 min, (b) Profile II at t = 5 min, (c)
Profile III at t = 30 min, (d) Profile IV at t = 217 min. The dashed line
shows the initial bed profile.
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tio. As observed in frames (c) and (e) and (f) from figure 4.7, the use of

a mesh optimisation approach results in elements that are generally more

appropriately shaped and sized. Completely opposite to the mesh move-

ment only result, individual elements are only stretched anisotropically

in the direction of flow as would be expected from the mesh optimisation

algorithm and the fact that the metric formed is based upon the velocity

field; thus, providing an optimal approach for the resolution of bound-

ary/shear layers and fronts. In terms of the quality again, in frame (a)

from figure 4.8, the majority of elements in the gap are actually close

to isotropic; here anisotropic elements are not seeing within the bottom

boundary layer as might be expected. This is a result of the fact that

the bed is not flat, while using (isoparametric) elements with flat edges.

This results in a constraint on the ability of the mesh optimisation op-

erations to strictly achieve what the error metric is requesting of a fully

optimised mesh, e.g. it is unable to remove nodes without modifying the

representation of the boundary geometry.

Figure 4.10 shows a zoomed in view (in frame (c)) of a squashed el-

ement from a mesh movement only simulation with a finer refinement

than was shown above. A thin sliver element can be seen to have formed

due to the extreme bed deformation and the simulation is very close to

failing. Although the lineal-torsional smoothing method used here offers

very robust performance for external moving boundaries, the addition

of a mesh optimisation process clearly helps to avoid both the excessive

stretching and inversion of the near boundary elements, which would

otherwise compromise mesh quality and thus impact the accuracy and
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(a) Profile I at t = 1.5 min. (b) Coarse at t = 1.5 min.

(c) Profile II at t = 5 min. (d) Coarse at t = 5 min.

(e) Profile III at t = 30 min.

(f) Profile IV at t = 217 min.
Figure 4.7: Mesh visualisations of the adaptive mesh simulation (profiles
I–IV), including the mesh results of the fixed coarse mesh simulation for
the τ ∗ = 0.098 case.
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2.71 4.42 6.131.00 7.84

Quality

(a) Adapted mesh with mesh
optimisation.

1.02 2.04 3.06 4.081.01 5.08

Quality

(b) Fixed mesh with mesh
movement only.

Figure 4.8: Mesh quality visualisations of the adaptive mesh simulation
(profile II) for the τ ∗ = 0.098 case.

(a) Profile I at t = 10 min. (b) Profile II at t = 30 min.

(c) Profile III at t = 200 min. (d) Profile IV at t = 370 min.

Figure 4.9: Mesh visualisations of the adaptive mesh simulation (profiles
I–IV) for the τ ∗ = 0.048 case.
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robustness of the solver.

Bed slope instabilities were satisfactorily controlled with the avalanche

flux (sand-sliding-type) model that prevents the local boundary slopes

significantly exceeding the angle of repose or maximum friction angle

normally reported for loose sands.

(a) Fine mesh.

(b) Zoomed fine mesh.

20.9 40.8 60.61.00 80.51

Quality

(c) Mesh quality.

Figure 4.10: Mesh visualisations and mesh quality diagnostic for a mesh
movement only simulation at t = 1.5 min for the τ ∗ = 0.098 case, demon-
strating element collapse and near inversion.
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5.1 Introduction

Local scour near vertical piles and piers, or commonly known in civil

engineering research as bridge scour, has been studied mainly through

experimental investigation for more than one hundred years [64]. A ma-

jor feature of the flow structure near the obstacle are vortex systems

including principally, horseshoe vortices and wake vortices amongst oth-

ers, it is the effect of these systems that lead to the scour of sediment

from around the base of the vertical structure [66]. In a flow field with an

isolated cylinder, the vortex shedding phenomenon is a dominant feature

for this flow configuration in which periodic vortices are shed alternately

at either side of the cylinder structure depending of the flow regime (i.e.

the Reynolds number, Re) and this problem has attracted a lot of the-

oretical and practical research interest in the practice of computational

fluid dynamics (CFD) [75]. For flow near a cylinder mounted on a rigid

flat or an erodible bed, the major flow structures present are composed

of two basic systems: (i) the horseshoe vortex formed due to the adverse

pressure gradient on the upstream face of the vertical cylinder capable of

promoting a downward flow of the boundary layer of the incoming flow

and (ii) the wake vortex formed at the structure itself with a mechanism

similar to the vortex shedding around an isolated circular cylinder. The

intensity of the wake vortex depends on the cylinder geometry and the

Reynolds number (Re). A circular cross section pier or pile will create a

weaker or (for a streamlined shape) virtually no wake, whereas a blunt

profile produces a stronger one [65].

The discretised numerical model devised in section 4.2 from chapter 4
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in combination with the mesh adaptivity framework described in section

4.3 from the same chapter is applied here to study the three-dimensional

flow field and scour formation around an obstacle in the flow, (i.e. around

a cylindrical, circular cross section pile) on a live-bed (entire bottom may

be mobilised with locally higher stresses) in steady current conditions.

In the remainder of this chapter some of the differences with respect to

the previous implementation will be pointed out in the next section and

finally the performance of the model will be compared with simulation

results of a previously validated model for local scour around a single

circular cylinder.

5.2 Notes on implementation

5.2.1 Mass-lumping regularisation

In the implemented numerical model, when calculating the bed level

change from the Exner equation (2.17) a particular matrix-based regu-

larization technique was applied to the bedload transport contribution to

avoid instability caused by the non-linear relationship between the sed-

iment transport rate and bed level change. Despite the computational

advantage accrued with this scheme, in three-dimensional configurations

slopes of the developing scour holes presented peculiar effects due to the

nature of the bed load calculation. Generally, this formula dismisses the

influences of the bed slope on the direction of the bed load transport and

assumes that the direction of the bed load transport is the same with

the direction of the wall shear stress on the bed. In two-dimensional

simulations, this formula is applicable without problems. However, in
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three-dimensional simulations, the effects of the bed slope on the direc-

tion of the bed load transport can be included to improve the accuracy of

the model. Some modifications to the original (i.e. bedload) formulation

have been proposed [90] taking into consideration a force balance on the

sediment particles assuming that they move in uniform mean velocity Ub

for the cell surface in the bottom boundary. Consequentially, in order to

maintain the idea of linking the bed velocity directly with the tangential

bed shear stress at the computational boundary, together with reducing

the bed slope three-dimensional effects, a numerical filter in time is ap-

plied to the bed level elevation change itself. This will act as a sort of

averaging operator for the displacement of the surface mesh nodes,

∆hn = 0.25(∆hn−1 + ∆hn+1) + 0.5∆hn, (5.1)

where, n indicates the current surface level and ∆h the variation of the

bed level elevation.

The proposed numerical filtering may be additionally combined in each

time step with a spatial regularisation on the bed evolution profile based

in a global mass-lumping technique, resulting in a linear system of equa-

tions given by,

N∑
j=1

Mijη
∗
i = fi for i = 1, 2 . . . N, (5.2)

where, η∗ are the (unknown) N nodal values of the unsmoothed bed level

field η(x, y, t) and Mij (the lumped mass matrix) together with fi (the

total bedload and suspended sediment transport contributions) are the
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global quantities formed by assembling element-wise, Ωe,

M e
ij =

∫
Ωe

ΨiΨjdΩe and f ei =

∫
Ωe

fiΨidΩe, (5.3)

where, Ψi is a set of linear piecewise polynomial global basis functions.

The nodal values of the smoothed bed level are obtained by the solu-

tion of the previous linear system of equations (5.2). This scheme has

the benefit of acting as a global smoothing without the need to specify

an appropriate smoothing length parameter (as per the previous mass

matrix regularisation for the bedload term) and with the use of lumped

mass matrix the solution is almost trivial due to the matrix inversion.

The mass lumping scheme is performed at the element level and is

based on a row sum method traditionally used for many years [110, 37].

It is obtained by summing across each row of the consistent mass matrix,

M e
ii =

∑
j

M e
ij =

∑
j

∫
Ωe

ΨiΨjdΩe =

∫
Ωe

ΨidΩe. (5.4)

The triviality of the inverse of the mass matrix operation in the linear

system Mx = b,

xi =
bi∫

Ωe
ΨidΩe

=

∫
Ωe

ΨifidΩe∫
Ωe

ΨidΩe

, (5.5)

which suggests a physical interpretation as a weighted nodal averaging

that if 4-node rectangular elements were used, this scheme becomes a

simple area-weighted average as expressed in the generalised coordinate

filter in (5.1).
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5.2.2 Lineal elastic mesh movement

The lineal elasticity approach is an alternative methodology to the

spring analogy for mesh movement, described in the previous chapter

(section 4.3) which has been investigated for the mesh adaptation anal-

ysis [99, 15]. It is an equivalent analogy based on the discretisation of

the computational domain as the simplest mathematical model (with a

elliptical differential equation) of a linear elastic solid body. Hooke’s

law, relating the stress and strain tensors and assuming an isotropic and

homogeneous material, which represents spatially constant elastic prop-

erties for the mesh movement, can be expressed as,

σ = λtr(ε)I + 2µε. (5.6)

where, µ and λ are Lamé’s elastic coefficients, relating to Youngs modulus

of elasticity E and Poisson’s ratio ν as,

µ =
E

2(1 + ν)
, (5.7)

and (for plane strain conditions),

λ =
νE

(1 + ν)(1− 2ν)
. (5.8)

The infinitesimal strain tensor ε, is related to the displacement gradients

by the expression,

ε =
1

2

(
∇x+ (∇x)T

)
. (5.9)
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The motion of the mesh is then governed by the equilibrium equation in

the computational domain Ω,

∇ · σ(x) + f = 0 on Ω, (5.10)

x = xD on Γ, (5.11)

where x denotes the deformed coordinates vector of the current mesh

and xD are Dirichlet boundary conditions completing the system. For

cases where the motion of the mesh is driven purely by the displacement

of the boundaries (as in this scour model), the body force is zero, i.e.

f = 0.

A Galerkin-based weak form for linear static elastic can be used in

analogy with the previous expression (5.11) prescribing (as adopted in

this work) that the Dirichlet boundary conditions are satisfied at the out-

set (i.e. surface boundary Γ). Also, knowing that the displacement of the

mesh coordinates is from a fixed reference vector X, the implementation

can be performed directly for the grid velocity, V . Taking into account

the previous conditions, the system can be rewritten as,

∫
Ω

∇Ψ : σ(V )dΩ = 0, (5.12)

where ∇Ψ : σ(V ) denotes the contraction of the tensors ∇Ψ and σ(V ),

expressed in component form as, ∇Ψαβσβγ. The preceding bilinear form

is symmetric and may be also be expressed in another tensorial quantities
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related to the stress-strain law,

σ(V ) = Kε or σij = Kijklεkl, (5.13)

where, K represents the stiffness or elasticity matrix resulting in a new

bilinear form,

∫
Ω

εT (Ψ)Kε(V )dΩ = 0. (5.14)

The finite element assembly is performed using standard P1 finite ele-

ments and the linear system is solved using an preconditioned restarted

conjugate gradient method, using the PETSc library.

This node movement scheme has proven to be much more robust

than commonly used spring analogy or velocity diffusion techniques (i.e.

Laplacian smoothing), as representing the full stress tensor allows mesh

deformations to be propagated farther into the domain, particularly for

shearing motions. Also, it has been conveniently tested in solving these

elastic equations in parallel on decomposed domains [16].

5.3 Numerical results and discussion

In this test case a current-induced scour simulation around a cylindrical

pile was compared against experiments and numerical results from the

work of Roulund et al. [90]. Flow around vertical (circular and square

cross sections) cylinder mounted on a rigid bed has been extensively

investigated by experimental and numerical models, and flow structures

such as the horseshoe vortex have been explored and directly correlated
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as the possible mechanism leading to the scouring around the base of the

vertical cylinder [66]. However, the analyses (particularly the numerical

studies) of local scour due to hydrodynamic action around a pier are more

complex and particular studies ([89, 90]) are still offering more guidance

about the principle of this phenomenon.

5.3.1 Simulation configuration

A three-dimensional (3D) calculation domain is selected, as shown in

figure 5.1. Different to the calculation of local scour around a horizontal

pipeline in chapter 4, a cubical box is specified as the domain for the

simulation of local scour around a vertical cylinder mounted on a bed.

The experimental set-up (from Roulund et al. [90]) to investigate scour

of an erodible bed was conducted in a current flume with a sand bed

located in a pit of length L = 5.65 m and width W = 3.6 m. The water

depth was H = 0.4 m and the circular pile with diameter D = 0.1 m

was placed downstream of the inlet section in the middle of the sand pit

channel at a distance of 3.85 m from the point where the incoming flow

becomes undisturbed.

The boundary conditions for the flow field are defined with a rigid lid at

the top and including only the water region and a slip boundary condition

(at the top boundary) for the water surface resulting in free surface effects

being neglected (also not considered in the work from Roulund at al.

[90]). This is justified since the development of the scour hole around the

cylinder does not have an obvious influence on the free surface position

[6]. At the inlet, the velocity (in the vertical direction) is set to be
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H

W

L

x

y
z

Figure 5.1: Schematic of the three-dimensional domain configuration con-
sidered in this chapter. The grey area indicates a region of infinite sed-
iment excluded from volume calculations and the blue hatched region
indicates the flow inlet.

uniform (i.e. undisturbed) and fully-developed into a logarithmic profile

while the pressure is set to be zero gradient. For the initial turbulent

properties, the turbulence intensity at the inlet boundary is set to 5%

and the turbulent length scale is estimated as a small percentage of the

channel height (i.e. l = 0.07H). At the outlet boundary the pressure

field is set to a fixed value of zero and the velocity is zero gradient in

the normal direction. The lateral boundaries together with the cylinder

surface are defined with a no normal flow (where the component of flux

in the direction normal to the boundary is zero) velocity condition.

The bottom boundary (analogous to the erodible bed) is set to a fric-

tion velocity condition (linked to a wall function) and the k and the ε

fields are specified with its corresponding wall function boundary condi-

tions as described in section 3.2 from chapter 3. The boundary condition

for suspended load concentration is set to be zero for all inflow boundaries

except for the bottom boundary where is defined using the entrainment

rate and deposition rate presented in section 2.2.4 from chapter 2.
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5.3.2 Discussion

Figure 5.2 illustrates the way in which the scour develops in front and

at the back of the pile for a computational mesh with a number of cells of

approximately 705,000 (details about the grid description are showed in

table 5.2). In regards to the grid velocity in frame (a), the high intensity

(red colour) visualisation represents the area where the scour hole is

increasing in shape around the structure while the low intensities (blue

colour) account for lower grid velocities promoting less scour. From the

simulation parameters shown in table 5.1, it is noticed that the particle

diameter 85th percentile value is assumed instead of the 90th percentile

for the entrainment rate calculation based on the information available

from the compared laboratory experimental setup presented in Roulund

et al. [90]. As the test is in live-bed conditions, the bed is covered

with ripples which can be appreciated with the small fluctuations of the

grid velocity (red and blue) field in the bottom (bed) surface. With

regards the numerical parameters for mesh adaptivity, the simulations

were performed with an unstructured mesh of tetrahedra elements with

the parameters as given in table 5.2. All computations were conducted

in parallel using 16 processor cores.

A time sequence of frames illustrating the evolution of the scour hole

area obtained in the present simulation is shown in figure 5.3 where the

flow is approaching the pile from the left to right. It can be observed (via

the figures’ color map) the increasing magnitude of the bed elevation with

time, presented here as the changes in the scour depth to pile diameter

ratios z
D

, where z is the scour depth in the z-direction. Amongst the
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Parameter Experiment live-scour

Geometry and Flow

Diameter D 0.1m
Mean inlet velocity ‖u‖ 0.46m/s

Sediment Transport

Angle of repose φ 30◦

Submerged specific gravity R∗ 1.65
Particle median diameter d50 260 µm

Particle diameter 85th percentile d85 390 µm
Unhindered settling velocity uso 0.038m/s

Table 5.1: Parameters used for simulations of the live-bed scour around
a pile test case. These parameters correspond to those used in Roulund
et al. [90].

Adaptivity
Method

Options summary

h-adaptivity The maximum and minimum edge lengths were specified both: (i)
radially from the center of the cylinder with values of 0.06m to 0.2m
for the minimum and 0.06m to 0.3m for the maximum edge length
as the radius increases and (ii) along the vertical elevation with
values of 0.08 m to 0.04 m respectively. The number of timesteps
between optimisation of the mesh was chosen to be 10 as it was
found (through experimentation) as the best compromise between
cost and robustness. The weights for the error metric construction
(efi in section 4.3 from chapter 4), chosen to provide good results
in terms of overall mesh quality were: εu1 = 0.002 ms−1, εu2 =
0.0002 ms−1 εu3 = 0.0002 ms−1 where u1, u2 and u3 represent the
velocity components.

r -adaptivity A lineal elastic method was used driven entirely by bed deformation.

Table 5.2: Parameters used for mesh adaptivity in the live-bed scour
around a pile test case.
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(a) Grid velocity visualization at t = 5 min. Higher values in
red colour ( ) and lower values in blue colour ( ).

(b) Mesh visualization at t = 5 min.

Figure 5.2: Domain visualisation of the adaptive mesh simulation for the
three-dimensional scour around a cylindrical pile case.
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main features seen, and which compare well with previous laboratory

and numerical experiments [6, 90] are: (i) the scour hole starts to form

with a semi-circular (in plan view or x− y plane) erosion pattern around

the upstream part of the pile which then expands to the downstream side

of the pile, (ii) an indication of the onset of downstream dune formation

can be seen in two symmetric mounts of deposited sediment migrating in

the direction of the flow (evidenced with the yellow colour representing

the transition of the scour hole to dune formation) and (iii) the formation

of a small ridge downstream of the cylinder noted as a missed part in the

scenario (a) at t = 1 min. with its height becoming smaller as the scour

hole deepens.

Comparing more quantitatively the maximum scour depth ratios from

figure 5.3, in the scenario (b) at t = 2 min. the z
D

= 0.467 underpre-

dicts the existing data reported from figure 33 in the benchmark results

of Roulund et al. [90] at the same time frame, being z
D

= 0.63 and

the discrepancy is increased by almost 30% in the scenario (d) at t =

5 min and clearly larger differences between the simulated scour depth

and the equilibrium scour depth at the downstream side of the cylin-

der are to be expected. No trivial explanation can be inferred for this

lack of similarity in scour depths, nevertheless, some evident reasons

(also expressed in previous numerical studies [6, 90]) are attached to the

more complex three-dimensional flow field results. The horseshoe vortex

causing an increase in shear stress in the bottom erodible bed has a sig-

nificant influence in the development of the scour hole depth. From the

hydrodynamics and possibly the turbulence modelling, the lack of vortex
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shedding (as part of the horseshoe vortex) causes an underestimation of

the maximum bed shear stress amplification and the differences mainly

occur in the lee-wake region, this could prevent the model from repro-

ducing correctly the scour depth (particularly on the central plane) in

the early stages of the scour.

-0.24 -0.18 -0.12 -0.06-0.293 0.000

z/D

(a) t = 1 min.

-0.4 -0.3 -0.2 -0.1-0.467 0.000

z/D

(b) t = 2 min.

-0.4 -0.3 -0.1-0.524 0.000

z/D

(c) t = 3 min.

-0.4 -0.3 -0.1-0.575 0.000

z/D

(d) t = 5 min.

Figure 5.3: Non-dimensional scour depth, z
D

visualisations of the adap-
tive mesh simulation for the three-dimensional scour around a cylindrical
pile case. Red colour ( ) indicates no scour depth and blue colour ( ) in-
dicates deepest scour depth. Flow from left to right.

From figure 5.4, contrasting with the results of Roulund et al. [90] at

early times from the equilibrium stage (after around t = 60 min.), the bed
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Figure 5.4: Contour map of bed shear stress amplification at t = 5 min.

shear stress amplification for the initial plane bed with a maximum value

of α = ‖τw‖
τw∞

= 6 (where τw∞ is the undisturbed bed shear stress) in figure

36(a) (of Roulund et al. [90]) is comparable with the bed shear stress

amplification of α = 5.329 (at t = 5 min. at still early scour stage) close

to the upstream part of the cylindrical pile wall obtained in the current

simulation. However, in the wake region close to the cylinder wall area

the values of bed shear amplification are around half in magnitude lower

than the Roulund et al. [90] results.

Furthermore, looking at the influence of scour on the flow field in figure

5.5, which represents a cut view of the x − z plane at y = 0 m which

corresponds to the central plane, we observe in frame (c) the velocity

component in the z-direction which shows that there is flow circulation

across the central plane of the upstream part of the cylinder which seems

to have an important influence on the flow field in the simulation, as

an initial indication of the down-flow process preceding the generation

of horseshoe vortices in the scour hole. The strong vertical velocity on

the central plane in the downstream of the cylinder seems to cause an
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upward deflection of the flow and transport of the sediment (suspended

load) such that it gathers behind the cylinder and forms a (previously

mentioned) ridge there. Upstream of the cylinder, the slope angle of

the scour hole appears approximately equals to the repose angle of the

sediment, also justifying the averaging imposed for the regularisation

mechanism (described in section 5.2.1) aiding to control the sand-sliding.

However, the presence of a gentle slope produced at the downstream

side of the cylinder in this simulation suggests an underestimation of

scour hole depth possibly due to a lack of bed shear stress amplification

mainly in the wake region which could be associated to the limitations in

capturing near-wall resolution when using a k − ε model for turbulence

modelling.

The main objective of the present scour simulation is to investigate

and validate the proposed framework combining the benefits of mesh op-

timisation and mesh movement techniques. The simulation results from

Roulund et al. [90] were performed using a steady-state solver to simulate

the flow field with k−ω turbulence closure and also pointed out that the

equilibrium scour depth obtained from this simulation slightly disagrees

with the experimental data observed for scour downstream of the pile pos-

sibly due the lack of intensity of unsteady effects (i.e. horseshoe vortex

and lee-wake vortex flows). Further, it is speculated with this work that

mesh distortion and limitation of the mesh resolution around the scour

area could also be responsible for the difference between the simulated

and measured (experimentally) scour depth in the results from Roulund

et al. [90]. In the current simulation presented here, likewise, the vortex
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(b) Velocity in the y-direction.
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Figure 5.5: Visualisation of the velocity field in the vertical plane passing
through the pile at t = 5 min.
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shedding is not clearly reproduced due to inadequate resolution of the

mesh and the simulation gives directly the mean flow field but the overall

control of the mesh offered by the combination of optimisation methods

with mesh movements is robust. However, the hydrodynamic module

requires a further investigation in the sensitivities of wall functions for

the near-wall turbulence modelling. A guidance in future research will

be given in section 7.2.
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6.1 Introduction

Since its inception in the seventies, the use of smoothed particle hy-

drodynamics (SPH) has been extended into applications in both fluid

and solid mechanics and further scientific arenas. However, in some

problems concerning soil-water-structure interaction, such as scour and

erosion where the essential physics are related to simulate the sediment

transport process, the advantages of SPH are still in exploratory phase

[93]. In contrast to conventional mesh-based methods, SPH offers a good

capability to deal with large deformation and different phases, which

makes it useful for simulating the large deformation and displacements

of the soil-water interface that are associated with scour around struc-

tures. There are different approaches to model geomaterials (e.g. soils)

behaviour in the SPH framework and they are discussed in more detail

below. This chapter should be read in conjunction with a precedent

background on SPH given in section 2.2.5 from chapter 2.

6.2 Approaches to model geomaterials with

SPH

There are two main approaches which will be considered in order to

model a soil material using the SPH method. In the first approach the

soil model considers the granular material to be a fluid with a variable

viscosity, where a non-Newtonian-type constitutive model is proposed

based on a yield-stress (plastic) criterion and the viscosity is derived

from geotechnical parameters (i.e. the cohesion and friction angle) [100].
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The other approach is the use of a non-linear material constitutive model

in the framework of solid mechanics. In the current study, both of these

approaches are discussed and adapted into simulations to evaluate their

performance.

6.2.1 Viscoplastic fluid

The main idea consists in approximating the behaviour of the soil as a

highly viscous non-Newtonian fluid with yield properties (i.e. viscoplastic

material). Viscoplasticity is conceptualised by a yield stress under which

no deformation occurs. When the yield stress is exceeded, the material

starts to flow. This has been successfully tested in another applications

using finite-volume-based commercially available CFD software [23]. As

expressed in equation 2.6 (described in the previous section 2.2.1), the

shear stress tensor depends on the strain rate tensor of the viscous fluid.

This constitutive model relates the deviatoric stress to the shear strain

rate (i.e. the deviatoric rate of the deformation tensor), which for a

generalised Newtonian viscous fluid results in

τ ′ = 2µ0

(
‖γ̇‖

)
γ̇, (6.1)

where, τ ′ is the deviatoric viscous stress tensor, γ̇ = D − 1
3
tr(D)I, is

the deviatoric strain rate tensor, where D =
(
∇u + (∇u)T

)
/2 and µ0

represents the viscosity as a function of the measure of the strain rate

given by ‖γ̇‖ =
√

2γ̇ij γ̇ij approximated from the second invariant of the

symmetric rate-of-strain tensor.

Amongst the many rheological models which incorporate non linear
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stress/strain-rate relationships, the Bingham plastic model, considered

in this work, can be obtained by selecting the following constitutive equa-

tion which in simple shear flow takes the form

τ ′ = τ0 + µγ̇ for ‖τ ′‖ > τ0, (6.2)

where, τ0 is a specified yield stress possibly based on a yield criterion (e.g.

Mohr-Coulomb used here) and µ is a constant plastic viscosity which is

numerically chosen and has to be large enough (limiting at high strain

rate) to guarantee that no significant motion occurs in unyielded regions.

Also considered, the Herschel-Bulkley model, which combines the plastic

forces along with the power-law model, in simple shear flow takes the

form

τ ′ = τ0 + kγ̇n for ‖τ ′‖ > τ0, (6.3)

where, k is the consistency index and n is the flow index. These equations

(6.2) and (6.3) must be fully invariant constitutive relations in tensorial

form applicable in three dimensions and they could be expressed as

τ ′ =

(
µ+

τ0

‖γ̇‖

)
γ̇ for ‖τ ′‖ > τ0, (6.4)

and,

τ ′ =

(
k‖γ̇‖n−1 +

τ0

‖γ̇‖

)
γ̇ for ‖τ ′‖ > τ0. (6.5)

These constitutive equations (6.4) and (6.5) can be seen as a purely vis-
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cous generalised Newtonian fluid with an effective or apparent viscosity

µeff , following the equation 6.1, where the effective viscosity considering

a yield stress τ0 based on a Mohr-Coulomb criterion is given by

µeff =


µ+ c+ptan(θ)

‖γ̇‖ if µeff < µmax,

µmax if µeff ≥ µmax.

(6.6)

where, c is the cohesion, θ is the internal friction angle (both parameters

for the Mohr-Coulomb criterion) and p is the pressure. For the Herschel-

Bulkley model the effective viscosity takes the form,

µeff =


k‖γ̇‖n−1 + c+ptan(θ)

‖γ̇‖ if µeff < µmax,

µmax if µeff ≥ µmax.

(6.7)

For both of these models we have,

γ̇ = 0 for ‖τ ′‖ ≤ τ0, (6.8)

which means that strictly speaking the effective viscosity could reach an

infinite value when the strain rate vanishes thus the material is always

liquid and mimics the ideal model behaviour for all rates of deformation.

Therefore, to circumvent this issue numerically, a maximum viscosity

with a huge but finite for a given soil µmax is introduced as a cut-off for

the limiting value.

Finally, the SPH representation of the momentum equation for a gen-
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eral Newtonian viscous fluid can be expressed as,

Dua

Dt
=
∑
b

mb

(
σija
ρ2
a

+
σijb
ρ2
b

)
∇aWab, (6.9)

considering the total stress tensor σ,

σ = −pI + τ ′. (6.10)

It may be needed to add some additional artificial terms to (6.9) such

as: i) artificial viscosity term , Πab discussed in section 2.2.5 and/or

ii) artificial stress term discussed in the following section to avoid some

numerical issues of the algorithm.

6.2.2 Elastic-plastic solid

In this work, another approach considered for the modelling of the

soil in the SPH framework is one based on solid mechanics. The goal is

to include lineal terms (elastic deformation) using Hooke’s law for the

stress tensor and to describe the non-diagonal terms of the stress tensor

by a yielding relation (e.g. Drucker-Prager used here), when beyond

the elastic limit (i.e. for permanent deformation) [34]. Starting from

the equilibrium equation, the partition of the total Cauchy stress tensor

(assumed in the context of infinitesimal strain theory) for the soil consists

of two parts: i) the isotropic pressure and ii) the deviatoric shear stress,

σ = −pI + σ′. (6.11)
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The pressure is normally derived from the equation of state as described

in section 2.2.5 and the incremental form of the deviatoric stress–strain

relationship in the solid mechanics framework can be represented as the

constitutive model given by,

σ̇′ = 2Gγ̇, (6.12)

where, σ̇′ is the deviatoric stress rate (the ’.’ on top of the deviatoric

shear stress σ′ denotes the time derivative), G is the shear stress modulus

and γ̇ is the deviatoric strain rate. This strain rate relationship considers

the small strain tensor (implying that actually rotations that need to

be small, not the strains themselves). But when considering velocities

gradients rather that deformation (displacements) gradients it is possible

to account for the extra terms directly related to the rate of rotation of an

object as the velocity gradient is a calculation over an infinitesimal time

step and during this time step, an object’s orientation and level of strain

only changes by an infinitesimal amount hence, using small time steps

increments it is possible to consider for large finite rigid body rotations

of the stress. The full velocity gradient can be written as

L = D +W =
1

2

(
∇u + (∇u)T

)
+

1

2

(
∇u− (∇u)T

)
, (6.13)

where, the second term, W represents the antisymmetric (velocity gra-

dient) tensor, which is directly related to the rate of rotation of an ob-

ject, but not its deformation at all. The stress-strain relationship of the

Hooke’s deviatoric stress rate (6.12), in SPH formulation can be expressed
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as,

Dσ′a
Dt

= 2G

(
˙εij − 1

3
δij ˙εij

)
− Ω̇ikσ′kja + σ′ika Ω̇jk, (6.14)

where, δij is the Kronecker delta, ε̇ and Ω̇ are respectively, the strain and

rotation rate tensors. The previous relation for the deviatoric stress rate

tensor is derived considering the following,

o
σ = σ̇ −W · σ + σ · W = 0 when D = 0 (6.15)

where,
o
σ is the Jaumann derivative of the Cauchy stress, and σ̇ is its time

derivative. This objective stress rate form is needed since the Cauchy

stress and rate of deformation tensor behave incompatibly (i.e. constitu-

tive equations should be frame indifferent – objective) in the presence of

rigid body rotations.

Also, the strain and rotation rate tensors are defined in terms of the

coordinates directions and expressed in SPH formulation as,

˙εij = D =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
=

1

2

∑
b

mb

ρb
(uib − uia)∇aWab


+

∑
b

mb

ρb
(ujb − uja)∇aWab

 , (6.16)

Ω̇ij =W =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
=

1

2

∑
b

mb

ρb
(uib − uia)∇aWab


−

∑
b

mb

ρb
(ujb − uja)∇aWab

 . (6.17)
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From (6.14) the change of deviatoric stress due to deformation of the

solid body can be obtained and the resulting momentum equation for

the soil phase becomes,

Dua

Dt
=
∑
b

mb

(
σija
ρ2
a

+
σijb
ρ2
b

+Rij
abfab

n

)
∇aWab, (6.18)

where the last term inside the parenthesis represents a stabilisation term

optionally utilised to keep the simulation stable in SPH solid mechanics

[57]. This artificial stress term acts as a repulsive force between particles

which is increased when the separation between particles decreases and

is considered to remove a well known spurious phenomenon called the

tensile instability,

fab =
Wab

W (‖r0‖)
, and Rij

ab = Rij
a +Rij

b . (6.19)

fab represent a scaling function defined by the ratio of the smoothing

function values for the actual distance between the pair of particles and

their initial spacing and R is defined, for each particle such that

Rij
a =


−εσ

ij
a

ρ2a
if σija > 0,

0 otherwise,

(6.20)

the strength of this force is controlled by the exponent n and the factor

ε. The values suggested by Monaghan [69] are ε= 0.2 and n = 4, in

which case the force is sufficient to improve the particle spacing without

degrading the accuracy of the SPH method.
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This previous elastic solid model described in equation 6.14 can be

extended and these shear stress components should be restricted to the

failure surface when plastic strain takes place. This plastic behaviour

can be introduced in the equations using a yielding criterion, such as the

Drucker-Prager. Yield will occur at a particle when some combination of

the stress components (usually invariants of the principal and/or devia-

toric stress which are independent of material orientation) reaches some

critical value

fY (I1 , J2 , J3 ) = m, (6.21)

where, m some material property which can be determined experimen-

tally (e.g. yield stress in tension) and fY is a yield potential function (e.g.

Drucker-Prager condition) that will dictate when plastic deformation will

occur computed from,

fY (I1 , J2 ) =
√

J2 − A
1

3
I1 −B, (6.22)

where, I1 = tr(σ) is the first invariant of the stress tensor, σ and J2 =

1
2
σ′ijσ

′ij represents the second invariant of the deviatoric stress tensor, σ′.

The dimensionless constants A and B are determined from experiments

and in the case of soil models, they are related to the cohesion, c and the

angle on internal friction, θ. The flow rule for plastic strain is represented

as

γ̇p = λ̇
∂g

∂σ
if λ̇ > 0, (6.23)
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where, γ̇p is the plastic strain rate tensor, λ̇ is the rate form of a plastic

multiplier (dependent on the state of stress and load history) and g is the

plastic potential function that when the yield surface (described before

for the Drucker-Prager model in (6.22)) coincides with the plastic poten-

tial surface, the yield function can act as the plastic potential function.

Accordingly, the plastic deformation will occur only if the following yield

criterion is satisfied,

fY (I1 , J2 ) = g =
√

J2 − A
1

3
I1 −B = 0. (6.24)

Note that a plastic multiplier λ̇ = 0 corresponds to elastic or plastic

unloading.

The extended – from (6.14) – stress-strain relationship (of the total

stress tensor) for the current elastic-plastic soil model, at particle a, can

be expressed as,

Dσa
Dt

= 2G

(
˙εij − 1

3
δij ˙εij

)
+Kδij ˙εkk

− Ω̇ikσkja + σika Ω̇jk − λ̇

[(
K − 2G

3

)
∂g

∂σmna
δmnδij + 2G

∂g

∂σija

]
,

(6.25)

where, m,n are dummy indexes and K is the elastic bulk modulus. Once

the yield function and the plastic potential function are specified for

a particular material of interest (e.g. Drucker-Prager yield criterion)

and total strain rate tensor is prescribed, the rate of change of plastic

multiplier can be then obtained. In the case of an associated plastic
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flow rule (i.e. which indicates that the plastic potential function of the

Drucker-Prager material has the same form with the yield criterion), the

the final stress-strain relationship of the Drucker-Prager elastic-perfectly

plastic soil model can be expressed as

Dσa
Dt

= 2G

(
˙εij − 1

3
δij ˙εij

)
+Kδij ˙εkk

− Ω̇ikσkja + σika Ω̇jk − λ̇
[
3AKδij +

G√
J2

σ′ija

]
. (6.26)

Numerical errors in the computation of the plasticity of the soil consti-

tutive model described in this study are also taken into consideration.

A correction for a yield surface drift meaning when an elastic-perfectly

plastic material experiences plastic deformation, the stress state could lie

outside the yield surface during plastic loading. In such cases, a stress-

scaling back procedure is adopted to return the stress state to the yield

surface. For the Drucker-Prager, the scaling factor is applied past yield-

ing after few iterations and it has the following expression

rn =
−A1

3
I1
n −B

√
J2

n
. (6.27)

For further details refer to Bui et al. [11].

6.3 Notes on implementation

6.3.1 Time integration

In regards to the numerical implementation of the semi-discrete equa-

tions described before in section 2.2.5 together with the soil stress-strain
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relationships presented in this chapter, an appropriate time integration

scheme is required. Standard techniques such as leapfrog, predictor-

corrector and runge-kutta (RK) methods can be use to integrate the

field variables at every particle [107]. In this thesis, a leapfrog time in-

tegration scheme is chosen and frequently used in particle simulation

algorithms because of its explicit nature, making it simple to code in the

computational sense, also offers a second-order accuracy in time and it is

symplectic, which means that it conserves certain properties (i.e. energy

conservation) of dynamical systems. Leapfrog integration updates the

velocities on half steps and the positions on integer steps. The whole

time step is given below,

un+ 1
2 = un−

1
2 +

Du

Dt

n

∆t, (6.28)

rn+1 = rn + un+ 1
2 ∆t. (6.29)

An alternative form used where variable time stepping is required,

un+ 1
2 = un +

Du

Dt

n∆t

2
, (6.30)

rn+1 = rn + un+ 1
2 ∆t, (6.31)

un+1 = un+ 1
2 +

Du

Dt

n+1 ∆t

2
. (6.32)
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In this scheme the field variables and positions of particle are updated

at half a time step (n+ 1
2
) by using the following equations,



ρ
n+ 1

2
a = ρ

n− 1
2

a + ∆t(Dρa
Dt

)n,

ua
n+ 1

2 = ua
n− 1

2 + ∆t(Dua

Dt
)n,

σ
n+ 1

2
a = σ

n− 1
2

a + ∆t(Dσa

Dt
)n,

ra
n+1 = ra

n + ∆tûa
n+ 1

2 ,

(6.33)

where, ûa = Dra
Dt

represents the average velocity of the particle.

The pressure p is linked to the density via the equation of state (EOS)

(2.31). Note that the density of a particle also could be calculated from

the mass of neighbouring particles with equation (2.29) but then a par-

ticle near the free surface would miss the contribution of particles above

the free surface and the density would become too low. The calculation

via the integration of the time derivative of the density is preferable as

it does not lead to densities that are too low at the free surface [68].

In the above expressions n indicates the current time t; and (n + 1)

indicates the advanced time (t + ∆t). The time step ∆t needs to be

limited for stability purposes. The time step is taken as a variable time

step controlled by the Courant-Friedrichs-Levy (CFL) condition,

∆tmax = CCFLmin(∆tCFL,∆tF ), (6.34)
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where, CCFL is an specified CFL coefficient value, usually 0.2,

∆tCFL = min
i

{
h

c

}
, (6.35)

represents a time step based on the sound speed of the media c and,

∆tF = min
i


√

h

‖Dui

Dt
‖

 , (6.36)

which connects the time step with the particle acceleration and is useful

to prevent overshoot of particles in a single time step between decom-

posed domains (as will be explained in the parallelisation section below)

[4]. More time step criteria can be considered depending of the physics

of the problem to be explored.

6.3.2 Link list

A key component of any Lagrangian method is the neighbour search

algorithm. To calculate a smoothed value of a property of a particle in

SPH form, information from its neighboring particles is needed. In the

worst case, if each particle has to interact with all others N particles,

the computational time scales as O(N2) and this would decrease the

practicality of SPH simulations. The reason why finite compact support

is introduced in the definition of the smoothing kernel (see 2.2.5) is to

constrain the radius/sphere of action that each particle can affect their

neighbours particles, Nneighbour. In this way, the number of calculation

per time step and computational time would diminish considerably to

approximately O(N ·Nneighbour), assuming that the number of neighbours
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is the same for every particle in the domain. In practice, to perform this

sweeping of particles around a neighbourhood, a procedure known as the

linked-cell grid method is utilised. At every time step all the particles are

binned into cells of side length equal to the radius of the kernel function,

so that all neighbouring particles are binned in the surrounding cells. The

domain is divided into cells with side length of radius of kernel function

2h, therefore only need to search the current cell and neighbouring cells

[72]. When searching the neighbouring particles, only the surrounding

cells need to be checked, with considerable saving in computation time.

To avoid double counting (i.e. while checking a’s neighbours we see b and

while checking b’s neighbours we see a) only certain neighbouring cells

are checked following a topological stencil structure in 2D and 3D [4].

6.3.3 Initial and boundary conditions

Many types of initial and boundary conditions implementations exist

in the literature for SPH [108]. In terms of (fluid) particles that come

close to contact with a closed boundary, for example a wall, its properties

(like density) should not change and they are called closed boundaries.

Traditionally, the boundary particles with repulsive forces have been used

for particles which approach the wall boundary [91]. Lennard-Jones-

type potential are often used which are analogous to the repulsive force

between two molecules. An expression of the boundary force based on

the distance (i.e. along the centreline of the fluid and boundary particle)
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between particles was presented by Monaghan [67],

f(rab) =


D

((
‖r0‖
‖rab‖

12
)
− ‖r0‖
‖rab‖

4
)

rab
‖rab‖2

if ‖rab‖ ≤ ‖r0‖,

0 if ‖rab‖ > ‖r0‖,
(6.37)

where D, is a problem parameter chosen considering the physical con-

figuration, e.g. problems involving dams, bores, weirs. The distance

‖r0‖, represents a cut-off usually selected to be approximately equal to

the initial particle spacing. The Lennard-Jones potential formulation for

repulsive forces avoids particle penetration into the boundary, ensuring

that the velocity component normal to the boundaries vanishes. How-

ever, this (i.e forces acting normal to the wall) can be a drawback since

the particles moving parallel to the boundary are subjected to a non-

uniform normal force leading to ripples in the flow near the wall which

also make it difficult to capture shear stresses due to velocity gradients

near the wall. Because of this, some work [71] has been done to actually

calculate a boundary force approach in which the forces from neighbour-

ing boundary particles should give rise to a force normal to the boundary

and in this way the boundary experience a constant repulsive boundary

force. Unfortunately, another problem arises in regards of the compli-

cated calculation of the outward normal to a surface and particularity in

corner particles situations where ambiguity may be present. Latest work

[70], has been proposed to adopt repulsive boundary forces with radial

direction which removes the need of computing the outward unit normals

to the boundaries.
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Another alternative in regards to the repulsive forces on fluid particles,

which is the preferred choice for this work, is that instead of using a real

line of boundary particles that exerts forces on the fluid, an imaginary set

of particles (i.e. ghost particles) outside of boundary symmetric to the

inside fluid particles is used. The main idea behind these ghost particles

are that when a fluid particle is coming within the influence domain, e.g.

2h of a closed boundary, an identical ghost particle is mirrored at the

other side of the boundary. These particles are a reflection of the real

(fluid) particle in the sense that they have the same density and pressure

as the corresponding fluid particles, but an opposite velocity−u, ensuring

that the smoothed velocity field, u goes to zero at the domain boundaries

(i.e no-slip condition) [52]. Additionally, the reflected particles can also

be given the same tangential velocity with the mirrored particle but

opposite normal velocity thereby producing free slip boundary conditions.

This approach has the advantages to restore the SPH consistency (it can

require larger time steps to ensure stability) near the boundaries and

to prevent non-physical penetration through the solid boundary, has a

better ability to capture shear stresses and surface tension if needed, but

it requires extra computational effort in regards to the generation of these

virtual particles [4].

In terms of the inlet and outlet initial or boundary conditions, referred

as an open boundary where the fluid can flow in or out the model. Open

boundaries are normally implemented using periodic boundary condi-

tions in which particles near an open boundary interact with the particles

near the complementary open boundary on the other side of the domain
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[101]. In this way the kernel support/area of influence extends beyond

the open boundary and continued through the opposite open boundary

so that particles interaction is sustained. A periodic boundary is a good

way to model an open boundary without disturbing the fluid, but unfor-

tunately it can only be applied to a limited number of cases. Generally,

at an open boundary only one parameter can be fixed, either the ve-

locity, or the pressure but to put particles in the system in the correct

way, one needs both position and velocity of each particle. Some ideas to

solve these demands are to impose the inflow/outflow velocity conditions

driven by true Dirichlet boundary conditions of the projected pressure

field [40, 45].

6.3.4 Load balancing and parallelisation

The computation of SPH model can be benefit from parallelisation.

The message-passing interface (MPI) parallel programming model is used

in this SPH implementation where each processor has its own private

memory and smaller sub-regions are assigned to separate processors,

which complete the task independently. In parallel code, the whole com-

putational domain is decomposed into sub-domains or blocks and as-

signed to each processor. Every processor deal with its own block. After

domain decomposition, each cell of the linked-cell grid needs to check for

its neighbouring cells so the exterior or outermost cells of that block for

each process should be able to communicate and exchange information at

each time step between neighbouring processes, so for that reason buffer

arrays in overlapping regions are created to transfer data between these

edge cells. The sizes of the blocks are determined via load balancing in
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order to ensure that each processor has roughly the same number of par-

ticles. The shape of the blocks is periodically resized based generically on

a ratio of the total number of particle in every block to the total number

of processors.

6.4 Numerical results and discussion

6.4.1 Simulation configuration

In this section, the test case from section 4.4 in chapter 4 for a current-

induced scour simulation around a two-dimensional (2D) circular cylin-

der (horizontal pipeline) which was validated against experiments and

numerical results from [51] is recycled for the purposes of testing the

SPH multiphase (water-sediment) framework.

6.4.2 Discussion

The work shown in this chapter while is work-in-progress it continues

to explore the possibilities of SPH as a tool for modelling in geotechnical

engineering particularly local scour around hydraulic structures.

In figure 6.1 a representative example is used to illustrate the capabil-

ities of SPH modelling of scour around a structure using a viscoplastic

model consisting of two fluid phases (i.e. water and soil). It is observed

that although the flow (phase) direction is disturbed by the presence of

the structure (circular cylinder), there is an initial difference between

these results and those reported in the previous methodologies (refer to

chapter 4). These current analyses showed higher soil (phase) deforma-

tions and it is speculated that the difference is due to the assumptions in
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the treatment of the soil particles as a non-Newtonian viscous fluid. Re-

garding in the context of sediment transport modelling, the viscoplastic

approach is generally well adapted for highly dynamic responses but may

exhibit severe limitations regarding small strain-rates and deformations

[7], meaning that regions with low stresses may underestimate the bed

profile during the scour process as noticed in areas close to the circu-

lar cylinder gap where an abrupt change of the scour hole is observed

in frames (c) and (e), instead of a gentle downslope featured in the up-

stream region. Although this approach is suitable to simulate scour of

soil, the material non-linear behaviour of soil may not be accurately mod-

elled compared to an approach using a material (i.e. soil) constitutive

model in a solid mechanics framework. The significant issues observed

with the overestimation of the soil deformations are partially related to

the interaction model of the particles which reside in the interface water-

sediment layer. This can be achieved in the simplest way by a balancing

of strain-rate gradient across the interface with an weighted arithmetic

mean between the different effective viscosities in the phases but other

techniques consider modelling the interface between water and soil intro-

ducing fictitious suspension layers depending on the concentration of soil

[100]. Further studies are required to calibrate this approach and study

the post-yield strain-rate dependence of the soil. Additionally, it is noted

that the Herschel-Bulkley model, which combines the Bingham plastic

model for modelling the plastic forces along with the power-law mode

shows a better compactness of the soil at the formation of the down-

stream bedforms evidenced in the lesser particle splatter in the cusp of

the deposited sediment mount.
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(a) SPH simulation, fluid phase
(blue) and soil phase (red) at
t = 0 sec.

(b) Bingham soil phase (red)
t = 5 sec.

(c) Bingham soil phase (red)
t = 10 sec.

(d) Herschel-Bulkley soil phase
(red) at t = 5 sec.

(e) Herschel-Bulkley soil phase
(red) at t = 10 sec.

Figure 6.1: SPH visualisations for the non-Newtonian soil material sim-
ulation.
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In the present work the description of the existing implementation of

the elastic-plastic solid SPH model (see section 6.2.2) was presented and

an initial numerical test was performed to analyse its applicability in

a current-induced local scour around a structure with a circular cross-

section and particularly the interaction in the water-sediment interface.

In figure 6.2, preliminary results showed compatibility issues between

the liquid and the solid mechanics models producing interpenetration

between phases (solid and liquid). These are managed via the viscous

force interactions on the liquid state and repulsion forces based on the

distance apart similar to the boundary condition treatment with solid

boundaries. The solid state requires a balance in the repulsion which

can be difficult to achieve but managed finding a small enough Courant

number. In contrast with the previous viscoplastic simulations, each

phase (the liquid/water and the non-Newtonian liquid/soil) can handle

a viscosity parameter which makes more manageable the control of the

numerical stability at the interface boundary.

(a) Particle colours: fluid phase ( ) and soil phase ( ) at t = 10
sec.

Figure 6.2: SPH visualisations for the elastoplastic soil material simula-
tion.

The Drucker-Prager model was selected as the yield criterion in the

elastic-plastic approach because of its suitability for materials such as

rock or soils. It is a smoothed version of the Mohr-Coulomb yield sur-

face, whereby the hydrostatic-dependent first invariant I1 is introduced
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to the Von Mises criteria which is independent of hydrostatic pressure

and more suitable for the modelling of plasticity in metals. The Drucker-

Prager’s yield criterion is thus a pressure-dependent model and the failure

occurs when the shear stress second invariant square root
√
J2 reaches

the following yield stress,

τ0 =
2
√

3sinθ

(3− sinθ)
peff , (6.38)

where the effective pressure peff is defined as:

peff = p− ppw, (6.39)

with ppw being the pore water pressure. This pore pressure affects the

effective stress behaviour effect on the yield criterion. According to Terza-

ghi’s principle, the pore water pressure exerts stresses isotropically, and

decomposing the Cauchy stress tensor in,

σ = σeff − ppwI, (6.40)

allows the effective stress to be written in matrix form as,

σeff =


σ1 + ppw 0 0

0 σ2 + ppw 0

0 0 σ3 + ppw

 .

As a consequence, the effect of the effective pressure needs to be properly

evaluated in the case of a saturated and submerged material by subtract-

ing the pore pressure (assumed to be hydrostatic for simplicity) in the
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Drucker-Prager model as otherwise, the water pressure above the sub-

merged soil might always stop the yielding. This translates into including

a term of pore water pressure to the general momentum equation in SPH

method for saturated soil problems such as soil-water coupling. The pore

water pressure for soil is calculated from solving the SPH discretization

of the gradient of the pore-water pressure for the soil model [10]. In the

future work section 7.2 a comment about this next implementation detail

will be addressed.
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7.1 Summary of the present study

Based on the published literature for single-phase, mesh-based ap-

proaches to model local sediment scour, the use of mesh deformation

methods (i.e. r-adaptive moving meshes) for updating the mesh in re-

sponse to boundary movement (representing morphology changes) can of-

ten result in excessive mesh distortion. This invariably leads to deteriora-

tion of numerical solution quality and even to blow up. This present work

sought to address this issue with and to the best of the author’s knowl-

edge, the first demonstrated approach combining robust mesh move-

ment methods within an arbitrary Lagrangian-Eulerian (ALE) frame-

work along with anisotropic adaptive mesh refinement. This new hr-

adaptive approach was described in detail in chapter 4, robustly demon-

strated on a geometrically challenging two-dimensional problem involv-

ing significant local scour of well-graded loose sands around a horizontal

pipe and further tested in a more complex three-dimensional problem in

chapter 5. From the range of techniques available for introducing mesh

adaptivity, h-adaptive or mesh optimisation methods were applied, in

which the shape and size of mesh elements are improved through a series

of topological operations dictated by an error metric.

The sediment transport rate, qt = qb + qs, includes not only the

transport of bed load qb, but also of suspended load qs. Although the

aspect of bed load transport is relatively well understood with the ideas

of excess bed shear stress-based empirical formulae, there are debates

about how to express the shear velocity at the bottom of the channel

given that the local fluid velocities are difficult to measure directly, and
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averaged flow speeds are often used instead. Most (commercial) codes

developed for the numerical modelling of sediment transport with dy-

namic bathymetry are based on a mathematical model consisting of the

depth-averaged (two-dimensional) shallow water equations (SWE) cou-

pled with the bed morphology model (i.e. Exner equation). This work

presented a more accurate strategy by coupling the full Navier-Stokes

model with a morphological module in a manner which links the friction

velocity to the tangential wall shear stress at the boundary of the com-

putational domain using near-wall modelling for turbulent flows with the

help of a conceptually different wall function implementation as described

in chapter 3.

The limitations of using a k − ε model for turbulent modelling repre-

sented a challenge in the capture of near-field unsteady flow features in

the scouring simulations, as evidenced especially in the three-dimensional

results from chapter 5, resulting in possible underestimation of the bed

shear stress amplification factors.

In the context of multi-phase modelling with SPH, the idea of simulat-

ing soil as a viscous (strain-rate dependent) fluid where a Bingham type

constitutive model is proposed based on Mohr-Coulomb yield-stress cri-

terion, and the viscosity is derived from the cohesion and friction angle as

presented in chapter 6, has been demonstrated here with preliminary re-

sults that are applicable to the scour problem. A second approach where

the soil phase is modelled as an elastic-plastic material with deformation

with constitutive equations based upon Hooke’s law of linear elasticity

and Drucker-Prager yield criterion is also a feasible and probably more
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accurate method, but some modifications (i.e. hydrostatic pore-water

pressure) needed to be included in the current implementation presented

in this work in order to robustly apply it to industrial (e.g. scour) prob-

lems. In future numerical studies, SPH models could be used to deliver

full scale models so that the scour and erosion around more complex

hydraulic structures can be investigated under realistic conditions.

7.2 Recommendations for future research

• In both chapters 3 and 5, difficulties in handling swirling flows were

emphasised, for example the (three-dimensional) horseshoe vortex

with turbulence parametrisation using a two-equation model (i.e.

k− ε) due to rapid changes of flow (particularly high-Re) not being

able to be captured. Although the conventional wall functions can

be used with fine near-wall meshes, some might not be able to

account for the low-Reynolds-number effects in the laminar/viscous

sublayer. Future work could consider different strategies that could

be used as alternatives such as Reynolds Stress-based model (RSM)

or Large eddy simulation (LES) to handle anisotropic turbulence

that an eddy-viscosity model will not take into account.

• A key limitation in this work that would be seen in the real world,

which has been not considered is the externally-generated turbu-

lence on the sediment transport classic formulations. This effect

consists in investigate the influence of turbulence-driven external

flow features (i.e. horseshoe vortex and/or other lee-wake flow pro-

cesses formed around the hydraulic structure) on the bedload and
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suspended-load sediment transport, therefore the sediment trans-

port descriptions need to be modified to account for this additional

externally-generated turbulence effect. Studies with this consid-

eration have shown in their results (particularly in 3D) that the

scour depth increases and time scale decreases when the effect of

externally-generated turbulence is incorporated in the calculations

[20].

• As discussed in chapter 6, the SPH solid model based on elastic-

plastic constitutive model for soil was initially implemented and

tentatively tested but presented some immediate issues that need

to be addressed in the current implementation available in https:

//github.com/ImperialCollegeLondon/sph (supervised by Prof.

Stephen Neethling), in regards to the error if the gradient of pore

water pressure is not included using the standard SPH formulation.

Amongst further topics to explore in the modelling of sediment

transport through granular flow in SPH, there is the considera-

tion that generally the elastoplastic constitutive model for soil with

Drucker-Prager yield function is mainly developed for cohesionless

soils. However, most soils show cohesion to some extent and this

brings the challenge of solving the fluid flow through the porous

medium. In this previous approach, water flow (i.e. seepage)

through the porous medium is also neglected but the interactions

between solid soil particles and water calculated by means of the

seepage force, could be integrated via introducing them into the

momentum equation as an external force.
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Also, granular flow (i.e. soil phase) by itself is a multi-phase prob-

lem and ideally considers the fluid-solid interactions as well as the

collisions and deformation processes which can be accurately mod-

elled directly using the discrete element method (DEM). With the

continuum assumption made in the approaches discussed in chapter

6, the forces between the grains nor their individual displacement

are neither considered, but the stress field and the strain field within

the continuous material [94]. Such a model is beyond the scope of

this thesis but it is a interesting project for future research.
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