5 research outputs found

    A Higher Order Local Linearization Method for Solving Ordinary Differential Equations

    No full text
    The Local Linearization (LL) method for the integration of ordinary differential equations is an explicit one-step method that has a number of suitable dynamical properties. However, a major drawback of the LL integrator is that its order of convergence is only two. The present paper overcomes this limitation by introducing a new class of numerical integrators, called the LLT method, that is based on the addition of a correction term to the LL approximation. In this way an arbitrary order of convergence can be achieved while retaining the dynamic properties of the LL method. In particular, it is proved that the LLT method reproduces correctly the phase portrait of a dynamical system near hyperbolic stationary points to the order of convergence. The performance of the introduced method is further illustrated through computer simulations

    Advances in Vibration Analysis Research

    Get PDF
    Vibrations are extremely important in all areas of human activities, for all sciences, technologies and industrial applications. Sometimes these Vibrations are useful but other times they are undesirable. In any case, understanding and analysis of vibrations are crucial. This book reports on the state of the art research and development findings on this very broad matter through 22 original and innovative research studies exhibiting various investigation directions. The present book is a result of contributions of experts from international scientific community working in different aspects of vibration analysis. The text is addressed not only to researchers, but also to professional engineers, students and other experts in a variety of disciplines, both academic and industrial seeking to gain a better understanding of what has been done in the field recently, and what kind of open problems are in this area
    corecore