876 research outputs found

    Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology

    Get PDF
    The presented paper includes the design and implementation of a 65 nm CMOS low-noise amplifier (LNA) based on inductive source degeneration. The amplifier is realized with an active balun enabling a single-ended input which is an important requirement for low-cost system on chip implementations. The LNA has a tunable bandpass characteristics from 4.7 GHz up to 5.6 GHz and a continuously tunable gain from 22 dB down to 0 dB, which enables the required flexibility for multi-standard, multi-band receiver architectures. The gain and band tuning is realized with an optimized tunable active resistor in parallel to a tunable L-C tank amplifier load. The amplifier achieves an IIP3 linearity of -8dBm and a noise figure of 2.7 dB at the highest gain and frequency setting with a low power consumption of 10 mW. The high flexibility of the proposed LNA structure together with the overall good performance makes it well suited for future multi-standard low-cost receiver front-ends

    A 1.2 V and 69 mW 60 GHz Multi-channel Tunable CMOS Receiver Design

    Get PDF
    A multi-channel receiver operating between 56 GHz and 70 GHz for coverage of different 60 GHz bands worldwide is implemented with a 90 nm Complementary Metal-Oxide Semiconductor (CMOS) process. The receiver containing an LNA, a frequency down-conversion mixer and a variable gain amplifier incorporating a band-pass filter is designed and implemented. This integrated receiver is tested at four channels of centre frequencies 58.3 GHz, 60.5 GHz, 62.6 GHz and 64.8 GHz, employing a frequency plan of an 8 GHz-intermediate frequency (IF). The achieved conversion gain by coarse gain control is between 4.8 dB–54.9 dB. The millimeter-wave receiver circuit is biased with a 1.2V supply voltage. The measured power consumption is 69 mW

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Survey on individual components for a 5 GHz receiver system using 130 nm CMOS technology

    Get PDF
    La intención de esta tesis es recopilar información desde un punto de vista general sobre los diferentes tipos de componentes utilizados en un receptor de señales a 5 GHz utilizando tecnología CMOS. Se ha realizado una descripción y anålisis de cada uno de los componentes que forman el sistema, destacando diferentes tipos de configuraciones, figuras de mérito y otros paråmetros. Se muestra una tabla resumen al final de cada sección, comparando algunos diseños que se han ido presentando a lo largo de los años en conferencias internacionales de la IEEE.The intention of this thesis is to gather information from an overview point about the different types of components used in a 5 GHz receiver using CMOS technology. A review of each of the components that form the system has been made, highlighting different types of configurations, figure of merits and parameters. A summary table is shown at the end of each section, comparing many designs that have been presented over the years at international conferences of the IEEE.Departamento de Ingeniería Energética y FluidomecånicaGrado en Ingeniería en Electrónica Industrial y Automåtic

    Linearity vs. Power Consumption of CMOS LNAs in LTE Systems

    Get PDF
    This paper presents a study of linearity in wideband CMOS low noise amplifiers (LNA) and its relationship to power consumption in context of Long Term Evolution (LTE) system. Using proposed figure of merit to compare 35 state-of-the-art LNA circuits published in recent years, the paper shows a proportional but relatively weak dependence between amplifier performance (that is combined linearity, noise figure and gain) with power consumption. As a result, the predicted increase of LNA performance, necessary to satisfy stringent linearity specifications of LTE standard, may require a significant increase in power, a critical budget planning aspect for both handheld devices and base stations operating in small cells

    Integrated phased array systems in silicon

    Get PDF
    Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-ÎŒm silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-ÎŒm CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications

    Low-power CMOS front-ends for wireless personal area networks

    Get PDF
    The potential of implementing subthreshold radio frequency circuits in deep sub-micron CMOS technology was investigated for developing low-power front-ends for wireless personal area network (WPAN) applications. It was found that the higher transconductance to bias current ratio in weak inversion could be exploited in developing low-power wireless front-ends, if circuit techniques are employed to mitigate the higher device noise in subthreshold region. The first fully integrated subthreshold low noise amplifier was demonstrated in the GHz frequency range requiring only 260 ÎŒW of power consumption. Novel subthreshold variable gain stages and down-conversion mixers were developed. A 2.4 GHz receiver, consuming 540 ÎŒW of power, was implemented using a new subthreshold mixer by replacing the conventional active low noise amplifier by a series-resonant passive network that provides both input matching and voltage amplification. The first fully monolithic subthreshold CMOS receiver was also implemented with integrated subthreshold quadrature LO (Local Oscillator) chain for 2.4 GHz WPAN applications. Subthreshold operation, passive voltage amplification, and various low-power circuit techniques such as current reuse, stacking, and differential cross coupling were combined to lower the total power consumption to 2.6 mW. Extremely compact resistive feedback CMOS low noise amplifiers were presented as a cost-effective alternative to narrow band LNAs using high-Q inductors. Techniques to improve linearity and reduce power consumption were presented. The combination of high linearity, low noise figure, high broadband gain, extremely small die area and low power consumption made the proposed LNA architecture a compelling choice for many wireless applications.Ph.D.Committee Chair: Laskar, Joy; Committee Member: Chakraborty, Sudipto; Committee Member: Chang, Jae Joon; Committee Member: Divan, Deepakraj; Committee Member: Kornegay, Kevin; Committee Member: Tentzeris, Emmanoui

    Développement d'une architecture innovante de récepteur radar à 77 GHz et démonstration en CMOS 28 nm FDSOI

    Get PDF
    GrĂące Ă  sa capacitĂ© Ă  dĂ©tecter des cibles Ă©loignĂ©es malgrĂ© une mauvaise visibilitĂ©, le radar automobile Ă  77 GHz joue un rĂŽle important dans l'aide Ă  la conduite. L'utilisation des frĂ©quences millimĂ©triques offre une bonne rĂ©solution et une importante capacitĂ© d'intĂ©gration des circuits. C'est aussi un dĂ©fi car il faut satisfaire un cahier des charges exigeant sur le bruit et la linĂ©aritĂ© du rĂ©cepteur. Les technologies SiGe BiCMOS ont Ă©tĂ© les premiĂšres utilisĂ©es pour la conception de rĂ©cepteurs radar Ă  77 GHz. De bons rĂ©sultats ont Ă©tĂ© obtenus en se basant sur des architectures utilisant des mĂ©langeurs actifs. Cependant l'utilisation des technologie BiCMOS se traduisait par une consommation Ă©levĂ©e, une faible capacitĂ© d'intĂ©gration et des coĂ»ts de production importants. RĂ©cemment, l'intĂ©gration des procĂ©dĂ©s CMOS menant Ă  l'augmentation des frĂ©quences de transition rend ces technologies plus attractives pour les applications nĂ©cessitant un faible coĂ»t et la cointĂ©gration de plusieurs fonctions au sein d'une mĂȘme puce. La littĂ©rature sur les rĂ©cepteurs radars en technologie CMOS Ă  77 GHz montre que les architectures inspirĂ©es par les technologies BiCMOS ne sont pas pertinentes pour cette application. Le but de cette thĂšse et de montrer que l'utilisation de techniques propres aux technologie CMOS comme l'Ă©chantillonnage et l'utilisation de portes logiques permet d'obtenir de trĂšs bonnes performances. Dans ce travail, deux nouvelles architectures de rĂ©cepteurs radars basĂ©es sur le principe d'Ă©chantillonnage sont proposĂ©es. La premiĂšre architecture est basĂ©e sur un mĂ©langeur passif Ă©chantillonnĂ© qui permet d'obtenir un trĂšs bon compromis bruit/linĂ©aritĂ©. La seconde exploite les propriĂ©tĂ©s des mĂ©langeurs sous-Ă©chantillonnĂ©s afin utiliser une frĂ©quence d'OL trois fois infĂ©rieure Ă  la frĂ©quence RF offrant ainsi de trĂšs intĂ©ressantes simplifications au niveau de la chaĂźne de distribution du signal d'OL du rĂ©cepteur. Le contexte de cette Ă©tude est expliquĂ© dans le 1er chapitre qui prĂ©sente les exigences de conception liĂ©es Ă  l'application radar et fourni une analyse de l'Ă©tat de l'art des rĂ©cepteurs Ă  77 GHZ. Le chapitre suivant dĂ©crit le principe de fonctionnement et l'implĂ©mentation d'un mĂ©langeur Ă©chantillonnĂ© Ă  77 GHz en technologie CMOS 28- nm FDSOI. Une topologie de mĂ©langeur sous-Ă©chantillonnĂ© utilisant une frĂ©quence d'OL de 26 GHz pour convertir des signaux RF autour de 77 GHz est ensuite dĂ©taillĂ©e dans le chapitre 3. Le chapitre 4 conclut cette Ă©tude en dĂ©taillant l'intĂ©gration des mĂ©langeurs Ă©tudiĂ©s dans les chapitres prĂ©cĂ©dents avec un amplificateur faible bruit dans diffĂ©rents rĂ©cepteurs radars. Ces architectures de rĂ©cepteurs basĂ©es sur l'Ă©chantillonnage sont ensuite comparĂ©es entre elles et avec l'Ă©tat de l'art montrant ainsi leurs avantages et inconvĂ©nients. Les rĂ©sultats de cette comparaison confirment l'intĂ©rĂȘt des techniques d'Ă©chantillonnage pour la conversion de frĂ©quence dans le cadre de l'application radar.With its ability to detect distant targets under harsh visibility conditions, the 77 GHz automotive radar plays a key role in driving safety. Using mm-wave frequencies allow a good range resolution, a better circuit integration and a wide modulation bandwidth. This is also a challenge for circuit designers who must fulfill stringent requirements especially on the receiver front-end. First 77 GHz radar receivers were manufactured with SiGe BiCMOS processes benefiting from the high transition frequency and high breakdown voltage of Hetero-junction Bipolar Transistors (HBT). Good results have been achieved with active-mixer-based architectures, but these technologies suffer from high power consumptions, limited integration capacity and large production cost. More recently, the scaling down of CMOS processes (coming together with the increase of the transition frequency of the transistors) makes CMOS a good candidate for 77 GHz circuit design, especially when cost target requires single chip solutions. The literature related to CMOS radar receivers highlights that receivers based on BiCMOS architectures generally show poor performances. The aim of this work is to demonstrate that using CMOS specific technics such as sampling and the use of high-speed digital gates should enhance the performance of the receivers. In this work, two innovative radar receiver architectures based on the sampling principle are proposed. The first one shows that this principle can be extended to millimeter wave frequencies to benefit from a very good noise/linearity trade-off. While the second one uses this principle to converts a 77 GHz RF signal by using a 26 GHz LO frequency thus simplifying the LO distribution chain of the receiver. The background of this study is introduced in the chapter 1 presenting the design trade-off related to the 77 GHz radar receiver and provides a review of the existing solutions. The following chapter describes the sampling mixer principle and the implementation of a 77 GHz sampling mixer in 28-nm FDSOI CMOS technology. Then, a sub- sampling mixer topology allowing to convert an RF signal around 77 GHz using a 26 GHz LO frequency is detailed in the chapter 3. The chapter 4 draws the conclusion of this study by showing the implementation of the two proposed sampling-based mixers with a low noise amplifier in 77 GHz front ends. These receiver architectures are compared with the state of the art highlighting the strengths and weaknesses of the proposed solutions. The results of this study demonstrates that using sampling for down conversion can be convenient to address millimeter-wave frequency applications

    Efficient and Linear CMOS Power Amplifier and Front-end Design for Broadband Fully-Integrated 28-GHz 5G Phased Arrays

    Get PDF
    Demand for data traffic on mobile networks is growing exponentially with time and on a global scale. The emerging fifth-generation (5G) wireless standard is being developed with millimeter-wave (mm-Wave) links as a key technological enabler to address this growth by a 2020 time frame. The wireless industry is currently racing to deploy mm-Wave mobile services, especially in the 28-GHz band. Previous widely-held perceptions of fundamental propagation limitations were overcome using phased arrays. Equally important for success of 5G is the development of low-power, broadband user equipment (UE) radios in commercial-grade technologies. This dissertation demonstrates design methodologies and circuit techniques to tackle the critical challenge of key phased array front-end circuits in low-cost complementary metal oxide semiconductor (CMOS) technology. Two power amplifier (PA) proof-of-concept prototypes are implemented in deeply scaled 28- nm and 40-nm CMOS processes, demonstrating state-of-the-art linearity and efficiency for extremely broadband communication signals. Subsequently, the 40 nm PA design is successfully embedded into a low-power fully-integrated transmit-receive front-end module. The 28 nm PA prototype in this dissertation is the first reported linear, bulk CMOS PA targeting low-power 5G mobile UE integrated phased array transceivers. An optimization methodology is presented to maximizing power added efficiency (PAE) in the PA output stage at a desired error vector magnitude (EVM) and range to address challenging 5G uplink requirements. Then, a source degeneration inductor in the optimized output stage is shown to further enable its embedding into a two-stage transformer-coupled PA. The inductor helps by broadening inter-stage impedance matching bandwidth, and helping to reduce distortion. Designed and fabricated in 1P7M 28 nm bulk CMOS and using a 1 V supply, the PA achieves +4.2 dBm/9% measured Pout/PAE at −25 dBc EVM for a 250 MHz-wide, 64-QAM orthogonal frequency division multiplexing (OFDM) signal with 9.6 dB peak-to-average power ratio (PAPR). The PA also achieves 35.5%/10% PAE for continuous wave signals at saturation/9.6dB back-off from saturation. To the best of the author’s knowledge, these are the highest measured PAE values among published K- and K a-band CMOS PAs to date. To drastically extend the communication bandwidth in 28 GHz-band UE devices, and to explore the potential of CMOS technology for more demanding access point (AP) devices, the second PA is demonstrated in a 40 nm process. This design supports a signal radio frequency bandwidth (RFBW) >3× the state-of-the-art without degrading output power (i.e. range), PAE (i.e. battery life), or EVM (i.e. amplifier fidelity). The three-stage PA uses higher-order, dual-resonance transformer matching networks with bandwidths optimized for wideband linearity. Digital gain control of 9 dB range is integrated for phased array operation. The gain control is a needed functionality, but it is largely absent from reported high-performance mm-Wave PAs in the literature. The PA is fabricated in a 1P6M 40 nm CMOS LP technology with 1.1 V supply, and achieves Pout/PAE of +6.7 dBm/11% for an 8×100 MHz carrier aggregation 64-QAM OFDM signal with 9.7 dB PAPR. This PA therefore is the first to demonstrate the viability of CMOS technology to address even the very challenging 5G AP/downlink signal bandwidth requirement. Finally, leveraging the developed PA design methodologies and circuits, a low power transmit-receive phased array front-end module is fully integrated in 40 nm technology. In transmit-mode, the front-end maintains the excellent performance of the 40 nm PA: achieving +5.5 dBm/9% for the same 8×100 MHz carrier aggregation signal above. In receive-mode, a 5.5 dB noise figure (NF) and a minimum third-order input intercept point (IIP₃) of −13 dBm are achieved. The performance of the implemented CMOS frontend is comparable to state-of-the-art publications and commercial products that were very recently developed in silicon germanium (SiGe) technologies for 5G communication
    • 

    corecore