2,028 research outputs found

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Leveraging upon standards to build the Internet of things

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there were many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. Long time, most efforts were focusing on the networking layer. More recently, the IETF CoRE working group started working on an embedded counterpart of HTTP, allowing the integration of constrained devices into existing service networks. In this paper, we will briefly review the history of integrating constrained devices into the Internet, with a prime focus on the IETF standardization work in the ROLL and CoRE working groups. This is further complemented with some research results that illustrate how these novel technologies can be extended or used to tackle other problems.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2 007-2013) under grant agreement n°258885 (SPITFIRE project), from the iMinds ICON projects GreenWeCan and O’CareCloudS, and a VLI R PhD scholarship to Isam Ishaq

    Evolving SDN for Low-Power IoT Networks

    Get PDF
    Software Defined Networking (SDN) offers a flexible and scalable architecture that abstracts decision making away from individual devices and provides a programmable network platform. However, implementing a centralized SDN architecture within the constraints of a low-power wireless network faces considerable challenges. Not only is controller traffic subject to jitter due to unreliable links and network contention, but the overhead generated by SDN can severely affect the performance of other traffic. This paper addresses the challenge of bringing high-overhead SDN architecture to IEEE 802.15.4 networks. We explore how traditional SDN needs to evolve in order to overcome the constraints of low-power wireless networks, and discuss protocol and architectural optimizations necessary to reduce SDN control overhead - the main barrier to successful implementation. We argue that interoperability with the existing protocol stack is necessary to provide a platform for controller discovery and coexistence with legacy networks. We consequently introduce {\mu}SDN, a lightweight SDN framework for Contiki, with both IPv6 and underlying routing protocol interoperability, as well as optimizing a number of elements within the SDN architecture to reduce control overhead to practical levels. We evaluate {\mu}SDN in terms of latency, energy, and packet delivery. Through this evaluation we show how the cost of SDN control overhead (both bootstrapping and management) can be reduced to a point where comparable performance and scalability is achieved against an IEEE 802.15.4-2012 RPL-based network. Additionally, we demonstrate {\mu}SDN through simulation: providing a use-case where the SDN configurability can be used to provide Quality of Service (QoS) for critical network flows experiencing interference, and we achieve considerable reductions in delay and jitter in comparison to a scenario without SDN

    Roaming Real-Time Applications - Mobility Services in IPv6 Networks

    Full text link
    Emerging mobility standards within the next generation Internet Protocol, IPv6, promise to continuously operate devices roaming between IP networks. Associated with the paradigm of ubiquitous computing and communication, network technology is on the spot to deliver voice and videoconferencing as a standard internet solution. However, current roaming procedures are too slow, to remain seamless for real-time applications. Multicast mobility still waits for a convincing design. This paper investigates the temporal behaviour of mobile IPv6 with dedicated focus on topological impacts. Extending the hierarchical mobile IPv6 approach we suggest protocol improvements for a continuous handover, which may serve bidirectional multicast communication, as well. Along this line a multicast mobility concept is introduced as a service for clients and sources, as they are of dedicated importance in multipoint conferencing applications. The mechanisms introduced do not rely on assumptions of any specific multicast routing protocol in use.Comment: 15 pages, 5 figure

    DIP: Disruption-Tolerance for IP

    Full text link
    Disruption Tolerant Networks (DTN) have been a popular subject of recent research and development. These networks are characterized by frequent, lengthy outages and a lack of contemporaneous end-to-end paths. In this work we discuss techniques for extending IP to operate more effectively in DTN scenarios. Our scheme, Disruption Tolerant IP (DIP) uses existing IP packet headers, uses the existing socket API for applications, is compatible with IPsec, and uses familiar Policy-Based Routing techniques for network management

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version
    • 

    corecore