304,248 research outputs found

    A hierarchical network formation model

    Get PDF
    We present a network formation model based on a particularly interesting class of networks in social settings, where individuals' positions are determined according to a topic-based or hierarchical taxonomy. In this game-theoretic model, players are located in the leaves of a complete b-ary tree as the seed network with the objective of minimizing their collective distances to others in the network. In the grid-based model of Even-Dar and Kearns [3], they demonstrate the existence of small diameter networks with the threshold of a = 2 where the cost of a new link depends on the distance between the two endpoints to the power of a. We show the appearance of small diameter equilibrium networks with the threshold of a = 1/4 in the hierarchical or tree-based networks. Moreover, the general set of equilibrium networks in our model are guaranteed to exist and they are pairwise Nash stable with transfers [2]

    A hierarchical network formation model

    Get PDF
    We present a network formation model based on a particularly interesting class of networks in social settings, where individuals' positions are determined according to a topic-based or hierarchical taxonomy. In this game-theoretic model, players are located in the leaves of a complete b-ary tree as the seed network with the objective of minimizing their collective distances to others in the network. In the grid-based model of Even-Dar and Kearns [3], they demonstrate the existence of small diameter networks with the threshold of a = 2 where the cost of a new link depends on the distance between the two endpoints to the power of a. We show the appearance of small diameter equilibrium networks with the threshold of a = 1/4 in the hierarchical or tree-based networks. Moreover, the general set of equilibrium networks in our model are guaranteed to exist and they are pairwise Nash stable with transfers [2]

    Coevolution of dynamical states and interactions in dynamic networks

    Get PDF
    We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example we consider a model of cooperation, where the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.Comment: 4 pages, 5 figures, for related material visit http:www.imedea.uib.es/physdept

    A hierarchical anti-Hebbian network model for the formation of spatial cells in three-dimensional space.

    Get PDF
    Three-dimensional (3D) spatial cells in the mammalian hippocampal formation are believed to support the existence of 3D cognitive maps. Modeling studies are crucial to comprehend the neural principles governing the formation of these maps, yet to date very few have addressed this topic in 3D space. Here we present a hierarchical network model for the formation of 3D spatial cells using anti-Hebbian network. Built on empirical data, the model accounts for the natural emergence of 3D place, border, and grid cells, as well as a new type of previously undescribed spatial cell type which we call plane cells. It further explains the plausible reason behind the place and grid-cell anisotropic coding that has been observed in rodents and the potential discrepancy with the predicted periodic coding during 3D volumetric navigation. Lastly, it provides evidence for the importance of unsupervised learning rules in guiding the formation of higher-dimensional cognitive maps

    Scale free networks from a Hamiltonian dynamics

    Full text link
    Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where it is introduced a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible. By applying a local rewiring move, the network reaches equilibrium states assuming broad degree distributions, which have a power law form in an intermediate range of the parameters used. Interestingly, in the same range we find non-trivial hierarchical clustering.Comment: 4 pages, revtex4, 5 figures. v2: corrected statements about equilibriu

    From innovation to diversification: a simple competitive model

    Get PDF
    Few attempts have been proposed in order to describe the statistical features and historical evolution of the export bipartite matrix countries/products. An important standpoint is the introduction of a products network, namely a hierarchical forest of products that models the formation and the evolution of commodities. In the present article, we propose a simple dynamical model where countries compete with each other to acquire the ability to produce and export new products. Countries will have two possibilities to expand their export: innovating, i.e. introducing new goods, namely new nodes in the product networks, or copying the productive process of others, i.e. occupying a node already present in the same network. In this way, the topology of the products network and the country-product matrix evolve simultaneously, driven by the countries push toward innovation.Comment: 8 figures, 8 table

    Growth and Containment of a Hierarchical Criminal Network

    Full text link
    We model the hierarchical evolution of an organized criminal network via antagonistic recruitment and pursuit processes. Within the recruitment phase, a criminal kingpin enlists new members into the network, who in turn seek out other affiliates. New recruits are linked to established criminals according to a probability distribution that depends on the current network structure. At the same time, law enforcement agents attempt to dismantle the growing organization using pursuit strategies that initiate on the lower level nodes and that unfold as self-avoiding random walks. The global details of the organization are unknown to law enforcement, who must explore the hierarchy node by node. We halt the pursuit when certain local criteria of the network are uncovered, encoding if and when an arrest is made; the criminal network is assumed to be eradicated if the kingpin is arrested. We first analyze recruitment and study the large scale properties of the growing network; later we add pursuit and use numerical simulations to study the eradication probability in the case of three pursuit strategies, the time to first eradication and related costs. Within the context of this model, we find that eradication becomes increasingly costly as the network increases in size and that the optimal way of arresting the kingpin is to intervene at the early stages of network formation. We discuss our results in the context of dark network disruption and their implications on possible law enforcement strategies.Comment: 16 pages, 11 Figures; New title; Updated figures with color scheme better suited for colorblind readers and for gray scale printin

    Directed Communication Networks

    Get PDF
    In this paper we model the formation of directed communication networks.A directed communication network is represented by a directed graph.Firstly, we study an allocation rule satisfying two appealing properties, component efficiency and directed fairness.We show that such an allocation rule exists if and only if we restrict ourselves to a class of directed graphs that naturally comes to the fore in the setting of hierarchical structures.Subsequently, we discuss several possibilities to model the formation of directed communication networks and provide some preliminary results
    • …
    corecore