1,052 research outputs found

    Federated and autonomic management of multimedia services

    Get PDF
    Over the years, the Internet has significantly evolved in size and complexity. Additionally, the modern multimedia services it offers have considerably more stringent Quality of Service (QoS) requirements than traditional static services. These factors contribute to the ever-increasing complexity and cost to manage the Internet and its services. In the dissertation, a novel network management architecture is proposed to overcome these problems. It supports QoS-guarantees of multimedia services across the Internet, by setting up end-to-end network federations. A network federation is defined as a persistent cross-organizational agreement that enables the cooperating networks to share capabilities. Additionally, the architecture incorporates aspects from autonomic network management to tackle the ever-growing management complexity of modern communications networks. Specifically, a hierarchical approach is presented, which guarantees scalable collaboration of huge amounts of self-governing autonomic management components

    A scalable approach for structuring large-scale hierarchical cloud management systems

    Get PDF
    In recent years, the scale of clouds and networks has increased greatly. It is important to ensure that the management systems used in these environments can scale as well. A centralized system does not scale well, while for distributed approaches, it is difficult to maintain an overview of the global system state. In hierarchical management systems, nodes at a low level in the hierarchy have a detailed view of a small part of the network, while higher-level nodes have a less detailed view of larger parts of the network. This makes hierarchical management systems well suited for large scale systems. The structure of such a hierarchical system should however be impacted by the management system for which it is used, as various properties such as the number of child nodes, tree depth and the distance between nodes can impact the performance of the management system. In this paper, we describe the Scalable Hierarchical Management Framework (SHMF), a scalable approach for constructing a hierarchical management system, suitable for large-scale cloud environments, that automatically optimizes its structure in function of its overlying management system. We evaluate the approach based on the requirements for the cloud application placement problem

    Federated and autonomic management of multimedia services

    Get PDF

    Federated and Autonomic Management of Multimedia Services

    Get PDF
    Abstract-Over the years, the Internet has significantly evolved in size and complexity. Additionally, the modern multimedia services it offers have considerably more stringent Quality of Service (QoS) requirements than traditional static services. These factors contribute to the ever-increasing complexity and cost to manage the Internet and its services. In the dissertation, a novel network management architecture is proposed to overcome these problems. It supports QoS-guarantees of multimedia services across the Internet, by setting up end-to-end network federations. A network federation is defined as a persistent crossorganizational agreement that enables the cooperating networks to share capabilities. Additionally, the architecture incorporates aspects from autonomic network management to tackle the evergrowing management complexity of modern communications networks. Specifically, a hierarchical approach is presented, which guarantees scalable collaboration of huge amounts of selfgoverning autonomic management components

    Roboconf: a Hybrid Cloud Orchestrator to Deploy Complex Applications

    No full text
    International audienceThis paper presents Roboconf, an open-source distributed application orchestration framework for multi-cloud platforms, designed to solve challenges of current Autonomic Computing Systems in the era of Cloud computing. It provides a Domain Specific Language (DSL) which allows to describe applications and their execution environments (cloud platforms) in a hierarchical way in order to provide a fine-grained management. Roboconf implements an asynchronous and parallel deployment protocol which accelerates and makes resilient the deployment process. Intensive experiments with different type of applications over different cloud models (e.g. private, hybrid, and multi-cloud) validate the genericity of Roboconf. These experiments also demonstrate its efficiency comparing to existing frameworks such as RightScale, Scalr, and Cloudify

    An Adaptable Framework to Deploy Complex Applications onto Multi-cloud Platforms

    No full text
    International audienceCloud computing is nowadays a popular technology for hosting IT services. However, deploying and reconfiguring complex applications involving multiple software components, which are distributed on many virtual machines running on single or multi-cloud platforms, is error-prone and time-consuming for human administrators. Existing deployment frameworks are most of the time either dedicated to a unique type of application (e.g. JEE applications) or address a single cloud platform (e.g. Amazon EC2). This paper presents a novel distributed application management framework for multi-cloud platforms. It provides a Domain Specific Language (DSL) which allows to describe applications and their execution environments (cloud platforms) in a hierarchical way in order to provide a fine-grained management. This framework implements an asynchronous and parallel deployment protocol which accelerates and make resilient the deployment process. A prototype has been developed to serve conducting intensive experiments with different type of applications (e.g. OSGi application and ubiquitous big data analytics for IoT) over disparate cloud models (e.g. private, hybrid, and multi-cloud), which validate the genericity of the framework. These experiments also demonstrate its efficiency comparing to existing frameworks such as Cloudify
    • …
    corecore