A Scalable Approach for Structuring Large-Scale
Hierarchical Cloud Management Systems

Hendrik Moens and Filip De Turck
Ghent University — iMinds, Department of Information Technology
Gaston Crommenlaan 8/201, B-9050 Gent, Belgium
e-mail: hendrik.moens @intec.ugent.be

Abstract—In recent years, the scale of clouds and networks has
increased greatly. It is important to ensure that the management
systems used in these environments can scale as well. A central-
ized system does not scale well, while for distributed approaches,
it is difficult to maintain an overview of the global system state.
In hierarchical management systems, nodes at a low level in the
hierarchy have a detailed view of a small part of the network,
while higher-level nodes have a less detailed view of larger parts
of the network. This makes hierarchical management systems well
suited for large scale systems. The structure of such a hierarchical
system should however be impacted by the management system
for which it is used, as various properties such as the number
of child nodes, tree depth and the distance between nodes can
impact the performance of the management system. In this paper,
we describe the Scalable Hierarchical Management Framework
(SHMF), a scalable approach for constructing a hierarchical
management system, suitable for large-scale cloud environments,
that automatically optimizes its structure in function of its
overlying management system. We evaluate the approach based
on the requirements for the cloud application placement problem.

I. INTRODUCTION

When building management systems for large scale envi-
ronments such as networks and clouds, it is important to design
them ensuring they scale well. Despite this, it is desirable
for the global system state to be known, ensuring it can be
monitored, and its operation can be optimized. These goals
conflict, and are difficult to combine. Centralized management
systems do have a good system overview, but they scale
badly as the number of nodes increases. Conversely, distributed
approaches do scale well, but it becomes more difficult to
determine and optimize the global system state.

By making use of hierarchical management systems, prop-
erties of both approaches can be combined, making them useful
for cloud management: different levels within the hierarchy
have a different view of the entire management system state.
Nodes low in the hierarchy have a detailed view of a small part
of the system, while nodes higher up in the hierarchy have a
less detailed view, but they view a much larger part of the
system. These management systems scale well [1], as the load
of managing the infrastructure is divided over multiple nodes
that are structured hierarchically. At the same time, the nodes
higher up in the hierarchy still achieve an overview of the
entire system. We refer to inner nodes in the management tree
as management nodes, that are used to manage the application,
while execution nodes are the leaf nodes of the tree that are
managed by the management system.

“._Management H,
. Application W

. Scalable
" Hierarchical
~.Management
" Framework

Physical
. Network

Fig. 1: A hierarchy of nodes is constructed and managed on top
of the physical network. The resulting hierarchy is used by a
management application that manages the child nodes defined
by the hierarchy. This management application can for example
execute application placement or context dissemination.

Hierarchical management systems can be used in many
contexts, such as context distribution [2], [3], and cloud
resource management [4]. The way in which the hierarchy
is structured can however impact the performance of a man-
agement system, and the management system can impose
additional constraints on the hierarchy: the number of nodes
managed at every level in the hierarchy may be limited; it
can be preferable for the physical location of nodes within
a cluster to be close together, especially in federated clouds
where communication between nodes in different datacenters
must be avoided due to latency and bandwidth limitations;
and constraints can limit which nodes may occur together as
siblings in the hierarchy.

In this paper, we describe the Scalable Hierarchical Man-
agement Framework (SHMF), a framework that can be used
to build various hierarchical management applications. The
hierarchical framework automatically constructs and maintains
a hierarchy, that can then be used by the managing applica-
tion, essentially managing the structure of the management
application. This is illustrated in Figure 1. The structure of the
hierarchy is optimized based on the requirements imposed by
the application, and can thus vary depending on the application
for which it is used. The architecture of the SHMF can be
used for various hierarchical management systems. Within this
paper, we specifically focus on the hierarchy requirements
imposed by cloud application placement [4].

In the next Section, we discuss related work. In Section 111
we discuss the requirements for a hierarchical management
framework, and in Section IV we discuss a formal hierarchy

model using these requirements. In Section V we describe an
architecture for the hierarchical framework, and subsequently,
in Section VI we describe algorithms to manage the hierarchy.
We compare the performance of the hierarchical structure with
optimal results derived from the formal model in Section VI-D.
Finally, we state our conclusions in Section VIII.

II. RELATED WORK

In this paper we study a hierarchical management frame-
work based on the requirements of the application placement
problem [5]. Multiple centralized solutions to solve this prob-
lem have been proposed [6], [7], [8], [9]. Fully distributed
solutions, that lack a global system overview, have also been
proposed in literature. These approaches work using peer-
to-peer communication [10], [11] and economic approaches
where requests are traded between nodes [12], [13]. The
development of hierarchical placement algorithms was the
focus of our previous work [4], where we concentrated on the
design of hierarchical application placement algorithms. In this
paper, we however focus on the structure of the management
hierarchy itself, and how it can be constructed and managed
in a scalable way, rather than on the management algorithms
used on top of the hierarchical structure.

Hierarchical approaches are also used for other purposes
within cloud and network environments, such as context dis-
semination. Aggregating this information hierarchically im-
proves scalability [1], and makes it possible to execute varying
management tasks, requiring different network overviews, at
different hierarchy levels [2], [3]. These works however focus
on algorithms and approaches for hierarchical context dissem-
ination, rather than on the structure of the hierarchy itself.
We, by contrast, focus specifically on how hierarchies can be
constructed within distributed environments.

Our approach has similarities to [14] and [15], where an
automatic hierarchical node ordering in peer to peer systems is
presented. The hierarchical system in these works is however
mainly used to structure object lookup, and every node can
occur at multiple levels in the tree. In our framework, by
contrast, every node only occurs once as it is either used
as a management node, or as an execution node, but not as
both. Our approach further differs, as it is aware of additional
requirements defined by a managing application impacting the
tree structure.

III. HIERARCHICAL FRAMEWORK REQUIREMENTS

In general, the architecture of a hierarchical framework
must provide two important qualities:

Q1 - Scalability Hierarchies are used to ensure the
management system is scalable, but to achieve this the com-
munication between nodes must be limited, and management
information must be aggregated in a scalable way.

Q2 - Robustness A disadvantage of a hierarchical ap-
proach is that failure of a single hierarchy node causes the
management system to become disconnected. Thus, the hier-
archy must be robust, and be able to repair and restructure
itself when node failures occur.

Additionally, the management application in which the
framework is used can also impact the requirements for the
hierarchy. Within this paper, we focus on the hierarchy require-
ments elicited in our previous work [4], where a hierarchical
approach for cloud application placement is proposed. We
discern four requirements:

H1 - Child Node Limit: The performance of the manage-
ment algorithm is dependent on the number of child nodes of a
node in the hierarchy. Thus, the number of child nodes of any
node within the tree should be limited to ensure the execution
of the management algorithms does not take too long.

H2 - Execution Node Maximization: The inner nodes of
the management hierarchy, referred to as management nodes,
are used to manage the environment, while leaf nodes, referred
to as execution nodes, are used to execute the cloud applica-
tions. The number of management nodes should be minimized,
as these nodes result in the management overhead. Conversely,
the number of execution nodes should be maximized.

H3 - Sibling Restriction: The management algorithm can
discern two tasks: managing a collection of execution nodes,
and managing a collection of management nodes. The former
task corresponds to a scenario where a centralized management
algorithm is executed in a small section of the management
system. The latter task however differs, as there, the requests
are divided between management nodes. While in some cases
the same algorithms can be used for both tasks, the algorithms
behave differently, and in some instances it can be desirable
to execute different management algorithms for these tasks.
Because of these considerations, it is necessary to ensure that a
node either manages a cluster containing only execution nodes,
or manages one containing only management nodes.

H4 — Execution Cluster Distance Minimization: The goal
of a hierarchical approach is to execute requests at lower levels
in the hierarchy, ensuring higher level management nodes do
not need to be aware of these requests. Because of this, it is
desirable for nodes that are close together within the hierarchy
to also be close together physically, as this reduces the network
overhead. Thus, the distance between nodes in the clusters
created by grouping the execution nodes together based on
their parent node (thus ensuring siblings are placed in the same
clusters) should be minimized.

IV. HIERARCHICAL MODEL

The management hierarchy is constructed using a collection
of computation nodes N. A binary decision variable XP?
determines whether a given node n is a child of a node p within
the hierarchy: p is a parent of n iff X? = 1. The distance
between different nodes is stored in the distance matrix D.
D, represents the distance between nodes u and v.

First, we define a set of constraints ensuring the nodes form
a hierarchy. For this, it is important to ensure that every node
has at most one parent. This is expressed in Equation (1).

VneN: Y XP<1 (0
peEN

Additionally, every node, except for the root, must have
exactly one parent. This implies that, in total, there must be

exactly |V| — 1 edges between nodes, which is enforced by
Equation (2).

IN[-1= > X7 2)

(n,p)EN

Finally, a constraint is needed to prevent cycles from occurring.
We do this by, for every node n, determining the height of
the node H". Logically, the height of a node must be higher
than the height of each of its child nodes. This is expressed in
Equation (3) and Equation (4), where the constraint resolves to
HP > H'+1 if the node p is a parent of node n (thus if X7 =
1), while otherwise no constraint is enforced as the height
cannot be higher than | N|. This approach prevents cycles from
occurring, as each parent node has a higher height than each
of its children, and a cycle would imply that a node must have
a higher height than itself.

V(p,n) € N*: (IN|+1)x (1— X/)+H" >H"+1 (3)
Vpe N : H? € [0,|N]] 4)

A limit to the number of child nodes, b, is chosen as an input
for the model. No tree node may have more than b child nodes.
This is expressed in Equation (5).

VpeN: Y Xh<b (5)
neN

An objective of the model is to maximize the number of leaf
nodes, as these are the nodes that are used for the actual
execution of cloud applications, while the inner nodes of the
tree are used to manage the infrastructure. Thus, it is important
to determine whether a node is a leaf node, for which we use
the binary variable L?. The value of L? is determined using
two equations. If a node p has no children, it is a leaf; this is
expressed in Equation (6). Conversely, if a node p has a child
node, it is not a leaf. The latter is expressed in Equation (7).

vpeN:1—LPgZXg (6)
nenN
VpeN:VneN:1—LP>XP @)

As specified, it is possible to determine whether a two nodes
occur in a parent-child relationship. It is however not yet
possible to determine whether two separate nodes are siblings,
which is necessary to determine the quality of a group and to
ensure all neighbors of leaf nodes are leaves as well. For this,
we introduce the decision variable X _ ., which takes on value
1 if both nodes n and m are children of p, and which takes
on value 0 otherwise. Equation (8) expresses that if X2 =1,
XP? and XP must also both equal 1. Conversely, Equation (9)
expresses the opposite, and ensures that if X? = X? = 1,
XP must also equal 1:

Y(p,n,m) € N*>:2x XP < XP 4+ XP ®)
Y(p,n,m) € N*: XP 4+ XP — 1< XP)

This additional decision variable makes it possible to ensure
that all neighbors of a leaf node are also themselves leaf nodes.
Equation (10) is used to express that if a node n is both a leaf
and a sibling of a node m, the node m itself must also be a
leaf node.

Y(p,n,m) € N*: L™+ XP —1<L™ (10)

Management Application

Tree Management Layer

Metrics

Tree Depth Management| |Leaf Node Management

Node Management Layer

Metric Aggregation Tree Robustness | |Child Management

Computation Node

Fig. 2: An overview of the SHMF architecture.

We determine the quality of a cluster as the maximum distance
between any of its child nodes. This metric is only relevant for
leaf nodes, as the quality of the complete tree is determined
by the quality of the leaf clusters. For every node p, the leaf
cluster quality @, of its children is determined as shown in
Equation (11). If p is a leaf node, the equation is reduced to
Qp > XP . X Dy, thus if both nodes are a child of p, Q,
is at least the distance between these nodes. If p is no leaf
node, the maximum distance D™%* is subtracted, ensuring no
constraint on @, is added.

VpeN: Q>0
V(]Ln,m) € N3: Qp > XP X Dy — (1 _ LP) w pmax
1D

max
D = max Dy,

(n,m)eN?2

Based on the requirements discussed in Section III, two
optimizations must be executed. First, the number of leaf nodes
must be maximized, ensuring there is a maximum number of
executing servers. This objective is shown in Equation (12).

max Z L (12)

neN

This first optimization results in a maximum number of leaf
nodes L™ which can be used to add an additional constraint,
shown in Equation (13), to the model.

LM% < Z " (13)

neN

The second optimization is to minimize the distances between
leaves in the tree. This is expressed in Equation (14).

min Z Q, (14)

peEN

V. SHMF ARCHITECTURE

The architecture of SHMF, shown in Figure 2, consists
of four layers. On the computation node, a node management
layer is deployed that manages the node. This layer is responsi-
ble for maintaining a relationship with the node’s children and
aggregating management information. The tree management
layer manages the structure of the hierarchy. Finally, a man-
agement application makes use of the constructed hierarchy to
execute management tasks such as cloud application placement
or context distribution.

A. Node Management Layer

The node management layer is responsible for controlling
the relationship between a node within the hierarchy and its
child nodes. To the layers above, it abstracts the physical node
and manages communications. The node management layer
has three functionalities:

1) The node management layer maintains a collection of
child nodes, and manages these nodes.

2) It provides functionality and infrastructure to aggregate
management information from its child nodes: every node
views only metrics it aggregates from its child nodes, and
does not require any other management information. This
information aggregation can be achieved in a scalable way,
e.g. by managing all child nodes using a P2P structure, limiting
communication to and from the management node. This design
limits the information every node requires, and fulfills the
scalability requirement Q1.

3) Additionally, the node management layer is responsible
for ensuring the tree robustness: when a node failure is
detected, the node automatically re-adds itself to a known
existing node of the hierarchy. It is possible to make use
of a highly-connected unstructured management overlay such
as CYCLON [16], to further enhance the reliability of the
management system. Using such an overlay, a management
node knows a large collection of other tree nodes, ensuring it
would take a catastrophic failure for the management system to
become disconnected. This system is used to fulfill requirement
Q?2, the reliability of the management system.

The implementation of the node management layer is not
the focus of this paper: its implementation is simulated to
ensure large scale evaluations can be executed using a single
machine.

B. Tree Management Layer

The tree management layer runs on top of the hierarchy
provided by the node management layer. This layer issues com-
mands to the node management layer using logical references
to other nodes, and optimizes the hierarchy’s structure. The
layer defines a set of metrics that are used for management pur-
poses that are aggregated by the node management layer, and
executes two management strategies using this information:

1) A tree depth management strategy is executed to address
hierarchy requirements H1 and H2: the number of child nodes
of limited based on a limiting branching factor B, and a node’s
child nodes are packed as tightly as possible, maximizing the
number of child nodes within the subtree.

2) A leaf node management strategy that specifically fo-
cuses on hierarchy requirement H3: this management strategy
ensures a node either manages management nodes, or execu-
tion nodes, but never both.

Both management strategies consider the average cluster
distance of the resulting system, requirement H4, when taking
decisions during their execution.

TABLE I: The management strategies and the required man-
agement metrics.

Tree Height Management ~ Leaf Node Management

Node Count X X
Weighted Medoid X

Bad Node X

Accept Node X

Height X X

Potential Node Count X

VI. SHMF MANAGEMENT ALGORITHMS

The SHMF tree self-organizes using multiple algorithms
discussed within this section. These management algorithms
function using locally available information that is aggregated
by the node management layer, referred to as metrics, and
respond to changes in these metrics. Table I shows which
metrics are used by each management algorithm. In this section
we first discuss the various management metrics used by the
algorithms. Subsequently the tree height and leaf node man-
agement algorithms are explained. Finally a tree construction
algorithm is described.

A. Management Metrics

The management system aggregates four metrics, that are
based on aggregate values computed from the node’s child
nodes. At every node, the value of each of these metrics
is stored. Aggregating these metrics is a task of the node
management layer in the system architecture.

1) Node Count: The most important metric used in the
structuring of the management tree, is the node count of the
tree. For every node n this value can be easily computed using
Equation (15), where children(n) is the set of child nodes of
the node n, and nc(n) is the value node count metric of the

node n.
nc(n) =1+ Z
c€Echildren(n)

ne(e) (15)

2) Weighted Cluster Medoid: The weighted cluster medoid
aggregation is used to calculate the medoid of a given cluster.
The cluster medoid is the element of the cluster that best
characterizes it. This medoid can be determined by finding the
node for which the distances to all other nodes is the smallest.
For higher nodes in the hierarchy, the number of nodes in
the subtree become increasingly large. As it is impossible to
accurately compute this medoid value in a scalable way, we
estimate the medoid of a node based on the medoids of its child
values, where these medoids are weighted based on the number
of nodes in the subtree of every child node. The formal com-
putation of the medoid value of a node n, med(n), is shown
in Equation (19). This formula determines the best medoid m,
that results in the lowest distance, quantified as mq(n,m), out
of all of the possible medoid values, possible(n). The medoid
value of a node n can either be the node itself, or the medoid
of any of its child nodes; this is expressed in Equation (16).
The quality of a given medoid m for a given node n is shown
in Equation (18), and is dependent on the number of nodes the

medoid m represents. Equation (17) shows how this frequency
is computed.

possible(n) = {n} U U

c€children(n)
1 ifa=0
cafa,b) = {o if 0 #b

freq(n,m) = eqm,n) + 3
c€Echildren(n)

med(n) (16)

eq(med(c), m) x nc(c)

a7

mq(n,m) = > [mm/| x freq(n,m’) (18)

m’ Epossible(n)

argmin mq(n, m) 19)
mé&possible(n)

med(n) =

3) Bad Node Aggregation: The bad node aggregation con-
tains a collection of badly fitting tree nodes, which is used
within the leaf node management. The tree management layer
can assign a node to this aggregation, notifying higher level
tree nodes that the quality of the tree will increase if the node
is moved. The value of this aggregation is calculated as shown
in Equation (20), where N either contains a single node, the
bad node specified by the management system at node n, or
is the empty set if no bad node is selected.

badNodes(n) = N U U
c€children(n)

badNodes(c) (20)

4) Accept Node Aggregation: The accept node aggregation
has the opposite function of the bad node aggregation: it is used
to determine places within the management hierarchy where it
would be preferable to add additional nodes. Its formulation
is similar to that of the bad node aggregation, but instead it
aggregates parent nodes that do not have b child nodes.

Using the values of the node count metric, two additional
metrics can be computed:

5) Node Height: The node height metric determines the
height of a node in a tree. Traditionally, this value is calculated
by determining the height of all child nodes, choosing the
maximum value, and increasing it by one; a leaf node is
assigned height 0. We however use an alternative approach
to determine the height of a node n: based on the number of
child nodes nc(n) contained in the subtree, and the branching
factor b of the tree, we can determine the height a node should
have. This height is determined using Equation (21).

height(n) = [log, (b — 1) X nc(n) + 1] (21)

The advantage of this approach is that, the height of a node
will change less frequently and be less dependent on the
actual height of child nodes. This in turn makes it easier to
localize height changes within the tree: if a node n has height
height(n), while its children have a height value that is too
low, this can then be solved by node n. Otherwise, the height
of node n would have been lower, making the parent of n
responsible for fixing the imbalance.

@
© ©

Fig. 3: The takeChild operation. This operation is invoked if
height(n) = height(c) for a child node c. A grandchild node
s is moved, and added as a child of n, ensuring the node count
nc(c) decreases, which in turn can decrease height(c).

6) Potential Node Count: This metric determines the max-
imum number of nodes that a subtree can possibly have, given
its height. This is calculated by determining the total number
of nodes in a complete tree of the given height, and can be
computed using Equation (22).

bt —1
pue(h) = ==~
pnc(n) = pnc(height(h)) (22)

B. Tree Height Management Algorithm

The tree height management strategy is responsible for
managing the height of a node’s child nodes. This strategy
guarantees requirement H1, the number of child nodes of a
node is less then or equal to b, and tries to maximally fill
every subtree, which corresponds to requirement H2.

The tree height management strategy operates by observing
the height of its child nodes, and invoking an update operation
when any changes occur. This update can invoke two opera-
tions: (1) if one or more of the child nodes are as deep as
this node, the takeChild function is called, otherwise (2) the
mergeChildren function is invoked.

The takeChild(n) operation is invoked when one or more
of the child nodes of n has the same height as n. These child
nodes are contained in the set C. The method takes a single
child node s. of each of these child nodes ¢ € C, and directly
attaches them as a child of the node n. This decreases the
number of nodes in the subtree of every node ¢ € C, which
in turn can decrease the height of these nodes. This operation
is illustrated in Figure 3.

The mergeChildren(n) operation is invoked when all child
nodes have a low enough height value. It attempts to merge
the child nodes of n, ensuring the number of child nodes of n
is less or equal to the branching factor b, and ensuring every
subtree with root a child of n has as many child nodes as
possible considering its potential node count.

To achieve this, a modified best-fit bin-packing algorithm
is executed, where children(n) are grouped into bins of size
pnc(height(n) —1). The size of a child ¢ € children(n) in the
bin-packing algorithm equals its node count, nc(c). The bin-
packing algorithm uses a fixed number of bins: at the start of
the algorithm, b bins are created, and during the execution
of the algorithm no additional bins can be created. As no
additional bins are created when needed, it is possible that
some child nodes will not fit in a bin; these nodes are grouped

Fig. 4: An example invocation of the mergeChildren opera-
tion. Child nodes of a node n are grouped using a modified bin-
packing algorithm. The nodes within a group are then merged
into a single subtree, where nodes with a lower height are
added as child nodes to nodes with the highest height.

in the failed set F. Child nodes with the highest nc(c) are
placed first, as they are more difficult to place. A child node
is placed in the bin that results in the lowest distance between
nodes like in the weighted medoid calculation described in the
previous section.

The bin-packed child nodes are then merged into a single
subtree, by adding the nodes with a lower height value as a
child node of the node with the highest height value. Nodes
f, contained in the set F', that were not fitted into bins, are
then processed separately: the child nodes ¢ € children(f)
of these nodes are directly added to the node n, while the
node f itself is added to the best-fitting child node of n. The
mergeChildren operation is illustrated in Figure 4.

After executing the mergeChildren(n) operation, there
will either be no failed nodes, which ensures | children(n)| <
b, or some nodes will fail. When nodes fail, the failing subtrees
are split into smaller trees, ensuring they have a smaller
granularity, and making it easier to fit them into bins in a
subsequent invocation of mergeChildren.

Both the takeChild and mergeChildren operations par-
tially improve the structure of the tree. If either of the oper-
ations changes the subtree, this changes either the number of
children of the tree or the height of nodes, which causes a new
update operation to be invoked. In this subsequent operations,
the structure of the tree will then be further improved. This
repeats until the height of all child nodes is less than the height
of the node itself, and the number of child nodes of the node
is less than or equal to b.

C. Leaf Node Management Algorithm

The second management strategy is the leaf node man-
agement strategy. This strategy focuses on the requirement
H3 of the hierarchy specified in Section III: a node should
either manage only other tree nodes, or it should only manage
leaf nodes. This is achieved making use of two operations: an
update operation that is executed when the height of a node’s
children changes, and a bad node aggregation system. The
former is used to try to fix an imbalance at the local level,
while the bad node aggregation system is used in situations
where an imbalance can not be resolved locally and must be
fixed by a node at a higher level in the hierarchy.

When an update is invoked, the height of child nodes is
evaluated. If the node has child nodes with height 0, and

other child nodes with height > 0, the structure of the tree
is modified to resolve this. We assume in this section that the
management strategy is executed on node n, and that its child
nodes are partitioned into two sets: L, containing leaf nodes,
and L containing other nodes. Three possible operations can
be executed:

1) It is often possible to move the nodes in L, and add
them as children of the nodes in L. This should only be done
if there is sufficient space in these subtrees to move all of the
nodes in L. This is the case if the potential node count of the
child nodes, calculated based on the height of the nodes, is
higher than the actual node count. Formally, this is done if

2cez(pne(e) —ne(e)) = |L.

2) If there are multiple leaf nodes these nodes can be
grouped together: a single node 7 is chosen from L, and all
other nodes in L are added as a child of r.

3) If none of the above are applicable, there is only a single
problematic leaf node, and it can not be moved to one of its sib-
lings. This problem cannot be resolved at this hierarchy level,
therefore, the leaf node is stored in the management node’s
bad node metric. Through the metric aggregation mechanism
parent and grandparent nodes of n are notified, and they can
then resolve the problem.

The accept node metric and the bad node metric are used
by the leaf node management strategy to move problematic
imbalances that can not be solved at this node level, but that
must be fixed at a higher level in the hierarchy. The bad
node metric makes it possible to specify leaf nodes that are
positioned badly within the tree, and that should be moved.
The accept node aggregation conversely notifies that a node
does not have the maximum amount of child nodes B, and
can accept additional child nodes. The leaf node management
strategies observes both aggregations, and matches bad nodes
to accept nodes, moving bad nodes to other locations in the
hierarchy where there is room for them. Additionally, this
strategy uses a the bad node aggregation to offer management
nodes with only a single child node, allowing for them to be
used as execution nodes at a different position in the hierarchy.

D. Tree Construction Algorithm

The various management algorithms continuously monitor
changes in the metrics. A tree can be constructed by selecting a
single node that functions as the hierarchy root, and iteratively
adding nodes to any tree node. While the tree construction can
be random, where a node chooses a random node of the tree
to attach itself to, we use an approach where a node chooses
the nearest node within the hierarchy to attach itself to. This
approach is realistic for large environments, where a node
attaches itself to the nearest node it can find that is already
present within the hierarchy. By adding nodes to the hierarchy,
the value of metrics changes, causing the various management
strategies to be activated.

VII. EVALUATION RESULTS

We evaluate both the formal model discussed in Section IV,
and the architecture and algorithms specified in Sections V
and VI. The formal model from Section IV is implemented

-
o

3 @ »
3 sl 1 S 12f g g 14r b
< 2 2 12 u
5 c 10 | — c
3 61 g 7 = A £ 10 - 4
193 K 9] o] 8 I ¥ 4
] X x ,/
° 4| | o 6 pra . B K
8 4—/ B "{l 5 61 H—k—K g)
é 2 F 3 2 4r * p‘{) K] 4 x T
£ ILpd —— E of e ——1 5 af ILPS —— A
z ILP z SHMF z SHMF

0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1

4 6 8 10 12 14 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20

Number of tree nodes

(a) Comparison of ILP algorithms.

Number of tree nodes

(b) Comparison for b = 3.

Number of tree nodes

(c) Comparison for b = 5.

Fig. 5: The number of execution nodes achieved by the SHMF and ILP algorithms for varying node counts and branching factors.

as an Integer Linear Programming (ILP) model using the
CPLEX [17] ILP solver, resulting in an optimal tree structure.
We refer to this algorithm as ILP?, where b is the branching
factor used in the algorithm. Similarly, the SHMF® algorithm
constructs a tree as discussed in Section VI-D and uses the
various presented algorithms to restructure itself, taking into
account a branching factor b.

The input of the algorithms is entirely defined by the
number of nodes and the distance matrix D. For every data
point in the graphs, 15 evaluations were executed using varying
D matrices. The values of every D are uniformly chosen in
the range [0, 10]. For the purposes of our evaluation, the unit
used in D is not important: the distance matrix can be rescaled
to represent e.g. the hop count between nodes in a datacenter,
or the latency of communication between compute nodes.

We first evaluate the achieved node count of the SHMF
algorithm, comparing it to the optimal node count determined
by the ILP algorithm. The ILP algorithm scales badly, and can
only be used for very small node counts and branching factors.
In Figure 5a, we compare the execution node count of the ILP
algorithm with branching factors 3 and 5. We observe that, as
the number of tree nodes increases, the number of execution
nodes generally increases as well. For some node counts, the
number of execution nodes does not increase: at this point,
the additional nodes are used as management nodes due to the
restrictions of the hierarchy.

When the number of execution nodes of the ILP algorithm
is compared to that achieved by the SHMF algorithm, as shown
in Figures 5b and 5c, we observe that the number of execution
nodes similarly increases as the number of nodes increases.
In all of the evaluated cases, where the ILP algorithm could
be executed, the optimal execution node count was achieved.

The SHMF algorithm however scales much better, as it can
easily be executed on a single node for large node counts, as
evidenced in Figure 6, where the tree algorithm is compared for
larger node counts. In the Figure, the number of management
nodes used for various SHMF algorithms is compared. The
number of tree nodes used by the SHMF algorithm increases
linerarly as the number of tree nodes increases. The higher
the branching factor b, the less management nodes are needed
within the hierarchy, thus decreasing the management over-
head. With a branching factor of 50, a management tree

Number of management nodes

2 4 6 8
Number of tree nodes (x 100 nodes)

10 12 14 16 18 20

Fig. 6: Evaluation of the number of management nodes for
large management trees.

containing 1500 nodes requires only +30 management nodes.
Note that larger branching factors require less tree reorganisa-
tions, making it possible to evaluate higher node counts.

The quality of the resulting hierarchies is evaluated in
Figures 7a and 7b, where the average cluster distance between
the different algorithms and branching factors is compared.
A first observation is that the quality of clusters generally
decreases as the branching factor increases. This is to be
expected, as when there are more nodes in a cluster, it is
more difficult to limit the number of nodes per cluster. As
shown in Figure 7a, the ILP algorithm achieves higher quality
results than the SHMF algorithm but, as noted previously, this
algorithm can only function until a node count of 14.

When the full dataset is taken into account, as shown in
Figure 7b, we observe that the quality achieved by the SHMF
algorithms with higher branching factors improves slightly
compared to the smaller data set. This can be expected, as
in a larger set there are more nodes amongst which the cluster
can be chosen, whereas in the smaller subset, this choice is
much more limited. In the data set with smaller node counts,
SHMF?? will, for example always result in a single cluster
containing all nodes except for one which is chosen as the
root; making the average cluster distance of the tree completely
dependent on the distances in D.

10
g 9
§ 8 K&
2 7 | 99pct
g 6 7 98pct
% 2 M 95pct
g 3 W 50pct
o
g 2

ILP5 SHMF5 SHMF20
ILP3 SHMF3 SHMF10

(a) Average cluster distance with node count < 14

10
g 95 K4
g 9
2 W 99pct
I 8.5 7 98pct
% 8 W 95pct
2 75 W 50pct
o
g 7

SHMF5 SHMF20 SHMF40
SHMF3 SHMF10 SHMF30 SHMF50

(b) Average cluster distance with node count < 1500

Fig. 7: The distribution of the average distance between nodes
in a cluster in percentiles.

VIII. CONCLUSION

In this paper, we described SHMF, a scalable approach for
managing a hierarchical cloud management system. We dis-
cussed the framework requirements, which were elicited based
on a hierarchical cloud application placement application. A
model, incorporating these requirements, and capable of max-
imizing the leaf cluster distance of the hierarchical structure
was described. Additionally, the architecture and algorithms
for a hierarchical management framework were also presented.
Subsequently, the trees constructed using the optimal algorithm
were compared to those created using SHMF. We found that
the SHMF algorithm scales much better, as it functions using
limited information and uses simple management algorithms,
making it much more suitable for large scale use cases.
Additionally, while the optimal algorithm outperforms SHMF
when it comes to the cluster distance of the hierarchical
structure, the SHMF algorithm achieved the optimal number
of execution nodes for all cases where the optimal algorithm
could still be executed.

ACKNOWLEDGMENT

Hendrik Moens is funded by the Institute for the
Promotion of Innovation by Science and Technology in
Flanders (IWT). This research is partly funded by the iMinds
PUMA [18] project, and was carried out using the Stevin
Supercomputer Infrastructure at Ghent University, funded by
Ghent University, the Hercules Foundation and the Flemish
Government — department EWI.

(1]

(2]

(3]

(4]

(51

(6]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

J. Famaey, S. Latré, J. Strassner, and F. De Turck, “A hierarchical
approach toautonomic network management,” 2010 IEEE/IFIP Network
Operations and Management Symposium Workshops, pp. 225-232, Apr.
2010.

——, “A Hierarchical Context Dissemination Framework for Managing
Federated Clouds,” Journal of Communications and Networks, vol. 13,
no. 6, pp. 567-583, 2011.

——, “Semantic Context Dissemination and Service Matchmaking
in Future Network Management,” International Journal of Network
Management, vol. 22, no. 4, pp. 285-310, 2012.

H. Moens, J. Famaey, S. Latré, B. Dhoedt, and F. De Turck, “Design and
Evaluation of a Hierarchical Application Placement Algorithm in Large
Scale Clouds,” in Proceedings of the 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011), 2011, pp.
137-144.

J. Rolia, A. Andrzejak, and M. Arlitt, “Automating enterprise appli-
cation placement in resource utilities,” in Self-Managing Distributed
Systems: 14th IFIP/IEEE International Workshop on Distributed Sys-
tems: Operations and Management (DSOM 2003). Springer, 2004, pp.
118-129.

C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable appli-
cation placement controller for enterprise data centers,” in Proceedings
of the 16th international conference on World Wide Web, 2007, pp.
331-340.

T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi, “Dynamic
application placement under service and memory constraints,” in Pro-
ceedings of the 4th international conference on Experimental and
Efficient Algorithms, Apr. 2005, pp. 391-402.

A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviri-
denko, and A. Tantawi, “Dynamic placement for clustered web appli-
cations,” in Proceedings of the 15th international conference on World
Wide Web. ACM, 2006, pp. 595-604.

D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé, “Utility-
based placement of dynamic web applications with fairness goals,”
in Proceedings of the 11th Network Operations and Management
Symposium (NOMS 2008). 1EEE, 2008, pp. 9-16.

C. Adam and R. Stadler, “Service Middleware for Self-Managing
Large-Scale Systems,” IEEE Transactions on Network and Service
Management, vol. 4, no. 3, pp. 50-64, Dec. 2007.

F. Wuhib, R. Stadler, and M. Spreitzer, “Gossip-based Resource Man-
agement for Cloud Environments,” in Proceedings of the 6th Interna-
tional Conference on Network and Service Management (CNSM 2010),
2010, pp. 1-8.

Y. Li, E-H. Chen, X. Sun, M.-H. Zhou, W.-P. Jiao, D.-G. Cao, and
H. Mei, “Self-Adaptive Resource Management for Large-Scale Shared
Clusters,” Science And Technology, vol. 25, no. 2009, pp. 945-957,
2010.

C. Low, “Decentralised Application Placement,” Future Generation
Computer Systems, vol. 21, no. 2, pp. 281-290, 2005.

B. Hudzia, M.-T. Kechadi, and A. Ottewill, “TreeP: A Tree Based P2P
Network Architecture,” 2005 IEEE International Conference on Cluster
Computing, pp. 1-15, Sep. 2005.

E. Edi, T. Kechadi, and R. McNulty, “TreeP: A Self-reconfigurable
Topology for Unstructured P2P Systems,” in Applied Parallel Com-
puting. State of the Art in Scientific Computing, ser. Lecture Notes in
Computer Science, E. K& gstrom, Boand Elmroth, J. Dongarra, and
J. Wasniewski, Eds. Springer Berlin Heidelberg, 2007, vol. 4699, pp.
1136-1146.

S. Voulgaris, D. Gavidia, and M. Steen, “CYCLON: Inexpensive
Membership Management for Unstructured P2P Overlays,” Journal of
Network and Systems Management, vol. 13, no. 2, pp. 197-217, Jun.
2005.

(2013) IBM ILOG CPLEX 12.4. [Online]. Available: http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer

(2013) PUMA: permissions, user management and availabil-
ity for multi-tenant saas applications. [Online]. Available:
http://www.iminds.be/en/research/overview-projects/p/detail/puma-2

