1,237 research outputs found

    Three Branch Diversity Systems for Multi-Hop IoT Networks

    Get PDF
    Internet of Things (IoT) is an emerging technological paradigm connecting numerous smart objects for advanced applications ranging from home automation to industrial control to healthcare. The rapid development of wireless technologies and miniature embedded devices has enabled IoT systems for such applications, which have been deployed in a variety of environments. One of the factors limiting the performance of IoT devices is the multipath fading caused by reflectors and attenuators present in the environment where these devices are deployed. Leveraging polarization diversity is a well-known technique to mitigate the deep signal fades and depolarization effects caused by multipath. However, neither experimental validation of the performance of polarization diversity antenna with more than two branches nor the potency of existing antenna selection techniques on such antennas in practical scenarios has received much attention. The objectives of this dissertation are threefold. First, to demonstrate the efficacy of a tripolar antenna, which is specifically designed for IoT devices, in harsh environments through simulations and experimental data. Second, to develop antenna selection strategies to utilize polarized signals received at the antenna, considering the restrictions imposed due to resource limitations of the IoT devices. Finally, to conduct comparative analyses on the existing standard diversity techniques and proposed approaches, in conjunction with experimental data. Accordingly, this dissertation presents the testing results of tripolar antenna integrated with Arduino based IoT devices deployed in environments likely to be experienced by IoT devices in real life applications. Both simulation and experimental results from single point-to-point wireless links demonstrate the advantage of utilizing tripolar antennas in harsh propagation conditions over single branch antenna. Motivated by these empirical results, we deploy a small-scale IoT network with tripolar antenna based nodes to analyze the impact of tripolar antenna on neighbor nodes performance as well as to investigate end-to-end network performance. This work illustrates that the selection of antenna branches, while considering network architecture and the level of congestion on the repeater nodes, minimizes excessive antenna switching and energy consumption. Similar results are shown for IoT networks with predetermined and dynamic routing protocols, where the proposed techniques yielded lower energy consumption than the conventional diversity schemes. Furthermore, a probabilistic, low complexity antenna selection approach based on Hidden Markov model is proposed and implemented on wireless sensor nodes aiming to reduce energy consumption and improve diversity gain. Finally, we develop a dual-hop based technique where a node selects the antenna element for optimal performance based on its immediate network neighbors antenna configuration status during selection. The performance of the proposed technique, which is verified through simulation and measured data, illustrates the importance of considering network-wide evaluations of antenna selection techniques

    WoTwins: Automatic Digital Twin Generator for the Web of Things

    Get PDF
    Digital Twins are crucial in Industry 4.0 IoT scenarios, as they replicate physical assets and enable important tasks such as predictive analytics, what-if scenarios and real time monitoring. The heterogeneity of IoT use cases usually makes the development of digital twins extremely application-specific as well as prone to interoperability issues. To overcome these two challenges, we propose WoTwins, a framework that, on one side, leverages the W3C Web of Things (WoT) standard to model data and entities, and, on the other side, generates automatically Digital Twins of existing Web Things by modeling their state space through a Markov Decision Process (MDP) graph and by predicting its behavior though Machine Learning techniques. We conduct experiments on a simulated use cases related to IoT robotics to evaluate our proposa

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Medium access control, error control and routing in underwater acoustic networks: a discussion on protocol design and implementation

    Get PDF
    The journey of underwater communication which began from Leonardo’s era took four and a half centuries to find practical applications for military purposes during World War II. However, over the last three decades, underwater acoustic communications witnessed a massive development due to the advancements in the design of underwater communicating peripherals and their supporting protocols. Successively, doors are opened for a wide range of applications to employ in the underwater environment, such as oceanography, pollution monitoring, offshore exploration, disaster prevention, navigation assistance, monitoring, coastal patrol and surveillance. Different applications may have different characteristics and hence, may require different network architectures. For instance, routing protocols designed for unpartitioned multi-hop networks are not suitable for Delay-Tolerant Networks. Furthermore, single-hop networks do not need routing protocols at all. Therefore, before developing a protocol one must study the network architecture properly and design it accordingly. There are several other factors which should also be considered with the network architecture while designing an efficient protocol for underwater networks, such as long propagation delay, limited bandwidth, limited battery power, high bit error rate of the channel and several other adverse properties of the channel, such as, multi-path, fading and refractive behaviors. Moreover, the environment also has an impact on the performance of the protocols designed for underwater networks. Even temperature changes in a single day have an impact on the performance of the protocols. A good protocol designed for any network should consider some or all of these characteristics to achieve better performance. In this thesis, we first discuss the impact of the environment on the performance of MAC and routing protocols. From our investigation, we discover that even temperature changes within a day may affect the sound speed profile and hence, the channel changes and the protocol performance vary. After that we discuss several protocols which are specifically designed for underwater acoustic networks to serve different purposes and for different network architectures. Underwater Selective Repeat (USR) is an error control protocol designed to assure reliable data transmission in the MAC layer. One may suspect that employing an error control technique over a channel which already suffers from long propagation delays is a burden. However, USR utilizes long propagation by transmitting multiple packets in a single RTT using an interlacing technique. After USR, a routing protocol for surveillance networks is discussed where some sensors are laid down at the bottom of the sea and some sinks are placed outside the area. If a sensor detects an asset within its detection range, it announces the presence of intruders by transmitting packets to the sinks. It may happen that the discovered asset is an enemy ship or an enemy submarine which creates noise to jam the network. Therefore, in surveillance networks, it is necessary that the protocols have jamming resistance capabilities. Moreover, since the network supports multiple sinks with similar anycast address, we propose a Jamming Resistance multi-path Multi-Sink Routing Protocol (MSRP) using a source routing technique. However, the problem of source routing is that it suffers from large overhead (every packet includes the whole path information) with respect to other routing techniques, and also suffers from the unidirectional link problem. Therefore, another routing protocol based on a distance vector technique, called Multi-path Routing with Limited Cross-Path Interference (L-CROP) protocol is proposed, which employs a neighbor-aware multi-path discovery algorithm to support low interference multiple paths between each source-destination pair. Following that, another routing protocol is discussed for next generation coastal patrol and surveillance network, called Underwater Delay-Tolerant Network (UDTN) routing where some AUVs carry out the patrolling work of a given area and report to a shore based control-center. Since the area to be patrolled is large, AUVs experience intermittent connectivity. In our proposed protocol, two nodes that understand to be in contact with each other calculate and divide their contact duration equally so that every node gets a fair share of the contact duration to exchange data. Moreover, a probabilistic spray technique is employed to restrict the number of packet transmissions and for error correction a modified version of USR is employed. In the appendix, we discuss a framework which was designed by our research group to realize underwater communication through simulation which is used in most of the simulations in this thesis, called DESERT Underwater (short for DEsign, Simulate, Emulate and Realize Test-beds for Underwater network protocols). It is an underwater extension of the NS-Miracle simulator to support the design and implementation of underwater network protocols. Its creation assists the researchers in to utilizing the same codes designed for the simulator to employ in actual hardware devices and test in the real underwater scenario
    corecore