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ABSTRACT

During the past three decades, there have been major achievements on accurate mod-

elling of behaviour and operation of telecommunication networks utilising classical

methods with analytical or heuristic models. Currently, there is a big hype on the applica-

tion of Artificial Intelligence (AI) and Machine Learning (ML) in the telecommunication

space. However, there is a gap on scientific scrutiny of advantages of AI and ML compared

to existing methods. Analogue telecommunication networks, i.e., optical and wireless

networks seem to be the most suitable problem space for AI and ML. They are compli-

cated network systems in nature that are highly dependent on ubiquitous physical layer

uncertainties induced by subsystems and transmission mediums such as amplifiers,

fibres, switches and transceivers. The problem space becomes even more complicated

with recent advances in optical and wireless technologies that allow the development

and operation of a fully programmable and dynamic network. This work focuses on

benefits and applications of learning agents built on top of cognitive optical networks. It

discusses the appropriateness of employing AI methods for specific problems in optical

networks and address the importance of online learning with restricted monitoring data.

It proposes and experimentally demonstrates a brand new way of carrying out optical

network analytics utilising hybrid probabilistic and generative learning model which

differs from traditional deterministic models. The result of this investigation, for the

first time, can shed light into future AI and ML research in the optical network planning

under uncertainty.
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1
INTRODUCTION

O
ptical networks form the backbone of modern communication networks and

the Internet. It is seen as the foundation in supporting the ever-increasing

Internet traffic due to the high bandwidth capacity and relatively low costs.

Therefore, fibre optic networks are deployed widely around the world. Such large-scale

and complex network systems need a robust control mechanism. The optical network

control plane is mainly responsible for resource management tasks such as flex-grid,

Routing and Wavelength Assignment (RWA) [1] etc. A high-performance control plane

can benefit many aspects of the optical network. For example, an accurate RWA can

enable a low-margin, proactive optical network that runs close to its performance limits

and saves significant bandwidth resources [2]. Also, the control plane provides network

analytics and performance predictions which enable network reliability [3]. Network

reliability is critical in delivering application services to end users, i.e., guaranteeing

the Quality of Service (QoS) [4]. Network telemetry and machine learning (especially

sustained learning) capabilities are required to support such high-performance control

plane.
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1.1 Motivation for network telemetry

TraditionalWavelength Division Multiplexing (WDM) optical networks establish rigid

connections (lightpaths) with fixed bit rates and modulation formats. Such static net-

works can not efficiently support the increasingly dynamic traffic demands [5]. Recent

advances in optical networks, such as bandwidth adaptive transceivers, Reconfigurable

Optical Add-Drop Multiplexers (ROADMs), elastic frequency grid, etc. [5] have trans-

formed the static optical networks into more flexible and dynamic infrastructures. Such

flexible optical networks aim to support traffic that is heterogeneous. However, as the

traffic patterns become more and more dynamic, the Physical Layer Impairments (PLIs)

also become path, load and configuration dependent, hence making them difficult to

predict [6]. These PLIs can significantly degrade the transmission performance, hence

restrict the QoS. Common PLIs in optical networks are Amplified Spontaneous Emission

(ASE) noise, Polarisation Mode Dispersion (PMD), crosstalk, etc. [7]

Much research work has been focused on building sophisticated physical layer models to

capture the PLI effects that can accumulate along the transmission path [8, 9]. Although

these classical models are effective during the network planning phase, for in-service

(running) optical networks, these high-complexity models need time-consuming proce-

dures to be updated in real-time [7]. Data-driven, cognitive optical network architectures

are proposed [7, 10, 11] to mitigate these complexity problems. On the other hand, lots

of research has been focused on the PLI-aware RWA algorithms [12–14]. The common

assumption is that all the PLIs calculated or predicted from the theoretical models are

accurate. However, this assumption does not hold under network knowledge uncertainty.

The network knowledge uncertainty is defined as the incomplete or non-deterministic

knowledge of a system or a model. Previous research has shown that network knowledge

uncertainty exists which can lead to the inaccuracy of the design tools [2]. The network

performance may differ from what is expected from the model predictions. As such,

2
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TX

node B

node C

RX

node A node D

DSP based monitoring:

CD, PMD, 

power, OSNR, 

SNR, BER, nonlinearity,

polarisation, etc.
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Input/output power,
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Transmitter monitoring:

Power per channel,

launch OSNR,

wavelength, bandwidth, 

baudrate, modulation, 

etc.

Intermediate node 
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Channel frequency,

power per channel,
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FIGURE 1.1. Optical network monitoring overview. Signals are transmitted at
node A and coherently received at node D. Node B and C serve as intermedi-
ate nodes or re-configurable optical add-drop multiplexers (ROADMs) where
signals can add/drop/by-pass. Besides the receiver DSP side, monitoring
information can also be obtained in the transmitter, intermediate nodes
and amplifiers.

network telemetry, or network performance monitoring, is employed as the key enabler

bridging the control plane and the underlying data plane. Such data-driven network is

expected to perceive, learn, adapt and take actions if necessary [10].

In optical networks, the monitoring information mainly arises from two sources: transceivers

and intermediate nodes. Metrics such as power, Chromatic Dispersion (CD), PMD, Opti-

cal Signal-to-Noise Ratio (OSNR), etc. can be directly monitored in the transceiver. In

particular, thanks to the development of Digital Signal Processing (DSP) based coherent

technology, most of the linear impairments can be fully compensated at reception in

the electrical domain. OSNR is the Key Performance Indicator (KPI) for the Quality

of Transmission (QoT) of a lightpath [15]. From the power measurement perspective,

OSNR is defined as the ratio of the total optical signal over the noise power measured

within 0.1nm bandwidth, while the Signal-to-Noise Ratio (SNR) is the optical signal to

noise power ratio both measured within the whole spectrum bandwidth. Apart from the

transceivers, intermediate nodes also support monitoring functions for optical power, fre-

3



CHAPTER 1. INTRODUCTION

quency drift and in-band OSNR [6, 16, 17]. Fig. 1.1 shows the majority of the information

that can be monitored in optical networks.

1.2 Motivation for machine learning

The optical network control plane has long been studied using optimisation techniques

such as the Shortest Path (SP), Integer Linear Programming (ILP), searching algorithms,

etc. [18] They all belong to planning under certainty. The aim is to achieve automatised

network optimisation. However, these optimisation techniques cannot adapt to changing

network status under uncertainty, unless they have the ability to learn from the real-time

monitoring data [19].

Such uncertainties may come about if the system is very dynamic or complex. Due to

current advances in the reconfigurability of optical networks, the PLIs are becoming

path-dependent, configuration-dependent and load-dependent [6]. This makes many

features challenging to predict. For example, the fibre nonlinearity is very complex

phenomenon, and its status can alter quickly due to many effects such as power excursion,

channel add-drops and temperature [20]. Simple monitoring cannot directly reduce the

uncertainty. Network planning under such uncertainty may eventually result in resource

over-provisioning, or potentially even network failure [2].

Given that direct knowledge from monitoring is impossible, we need to use learning

tools to extract the desired information. Machine Learning (ML) has proven itself as

a promising tool to make the most of the monitoring data wisely. ML can learn from

the observed data, generate insightful information as knowledge, and help the control

plane make further predictions and decisions on top of the knowledge. It serves as an

automated reasoning tool to combat the aforementioned network knowledge uncertainty

given the observed data.
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In addition, most of the QoT models are both mathematically and computationally

complex [7, 8]. They consume considerable computing resources and time to achieve the

expected prediction performance. Even a tiny mistake in the model input parameters

may lead to unacceptable prediction errors. Conversely, most ML models (especially

supervised learning) are straight-forward statistical mapping algorithms between the

system inputs and outputs. They have the potential to bypass the problems associated

with complex traditional models and solve the prediction problem in a roundabout

way using monitoring. Relevant research on this topic will be reviewed in Chapter 3.

Therefore, given the network telemetry capability, intelligent learning agents can be

built for high-performance control plane management.

1.3 Motivation for sustained learning

Although ML is a promising approach for combating network uncertainty, some problems

still need to be addressed. Unlike fields such as Computer Vision (CV) [21] or Natural

Language Processing (NLP) [22], in which the systems are too complex to formulaically

analyse, the optical networks have well-proven analytical models that can capture

comprehensive PLIs. If these models are completely replaced by ML [23, 24], the network

planning process will become rather empirical. We refer an empirically designed system

which only exposes its inputs and outputs, i.e., with no insights, as a black box system.

In such a black box system, network engineers are blind to the PLIs that contribute to

the observed system behaviour, hence making system diagnosis impossible.

Moreover, offline learning is another controversial issue. In the CV or NLP field, Deep

learning (DL) models are commonly used. Abundant training data is available for the

DL models, and these training data is not required to be real-time. For example, the

state-of-the-art CV DL model has a training image data size of 1.2 million [21]. Such
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amount of data is extremely hard to obtain in optical networks. Some research work

uses historical data or hand-crafted data for training when relatively shallow neural

networks are used [24, 25]. However, for the generation of hand-crafted training data,

the network systems or the target devices have to be offline, i.e., not in service [24, 25].

This is not realistic for commercial network systems that are in sustained operation. For

sufficient historical training data, the data collection period has to span many years of

the network operational period. Such offline training ML models will be unadaptable

to the changes in network conditions over time such as temperature. In other words, it

lacks self-adaptability while the network is evolving. It is worth noting that the self-

adaptability is not for the prediction of temperature or ageing, but the prediction of a

target QoT under the impact of effects such as temperature and ageing. The learning

agent is analogous to a robot which tries to explore the world based on the environment

it perceives. The robot has to collect real-time sensory data in order to make predictions

or decisions. Offline training cannot improve its learning ability once the environment

changes.

For the reasons above, ML models are preferred to capture running, in-service optical

network performance with real-time monitoring and online training capabilities. This

can also be called Sustained Learning (SL). SL means that the real-time monitoring

data can be dynamically used as the ML model training set for learning in the next time

slot. Such SL capability is intrinsically adaptable to dynamic and variable systems like

optical networks. Except for the design uncertainties that can be captured by offline

learning, there are operational uncertainties during the network running period which

are analytically intractable over time. ML models should serve as auxiliary tools on top of

the off-the-shelf analytical models to minimise these operational uncertainties. We define

this as SL-based network analytics. This solution realises adaptive network planning

where ML model predictions are updated adaptively with the real-time monitoring data.
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From a statistical point of view, SL aims to solve the problem arising from data distribu-

tion mismatch. In principle, the training data set used to predict a particular network

performance needs to come from the same distribution as the test data set. However, as

the network condition changes, the test set no longer belongs to the original distribu-

tion. SL works by updating the training set so that it matches again with the test set

distribution. Another potential problem that can be easily neglected is that the training

set itself may consist of data from different distributions given the very large sliding

window. Therefore, either mismatching within the training set, or mismatching between

the training set and the test set will be fatal to the learning performance evaluation

procedure.

1.4 Challenges

As discussed, the challenges brought about by traditional offline ML models can be solved

by online learning, or SL. However, SL also suffers from shortage of the online training

data in optical networks. This problem still remains a big challenge for learning in the

field of optical networks. One candidate solution is increasing the online training data

size by expanding the data collection sliding window. For example, for the prediction of

some PLIs such as the transceiver noise which does not change rapidly over time, the

sliding window can span a longer period. Such balance needs specific optical domain

knowledge to justify whether the expanded window will cause data distribution mismatch

or not, as discussed earlier in this chapter. It is intrinsically a design trade-off between

the training data size and the prediction performance.

In addition to increasing the training data size, another solution is generative methods.

Due to the lack of monitoring data, learning agents are forced to make decisions based

on incomplete information. Probabilistic Bayesian methods turn out to be a potential
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solution to tackle such data size limitation problems when the agent is not omniscient.

Unlike frequentist methods, such as neural networks which are deterministic, Bayesian

methods are generative in nature and can generate more knowledge based on small data

sets. In the network design, the prior system knowledge can easily be obtained from

vendors or analytical models. It serves as the prior component of a Bayesian model. The

monitoring data hence serves as the Bayesian model observation to update the prior

knowledge. The updated knowledge is called posterior estimations [26].

In summary, Artificial Intelligence (AI) and ML methods are applied extensively in

optical networking. Some of the challenges to be solved by AI and ML are addressed

here. Firstly, as aforementioned, ML is used to reduce the ubiquitous uncertainty in the

networks. ML models are expected to learn from monitoring data and generate updated

knowledge of the uncertain parameters. The prediction accuracy is the most common

KPI to assess the model performance. This learning capability forms the foundation

for network diagnosis and reliability. Secondly, ML can be useful in optimising the

control plane decision-making process. This is commonly achieved by generating a utility

(cost) function and optimising it with uncertainty [27]. Thirdly, ML is a promising

method for replacing traditional optimisation models, such as ILP, due to the high

computational complexity. Although such applications sometimes sacrifice the learning

accuracy, they can reduce the redundant computation and speed up the learning process,

while maintaining acceptable levels of optimisation performance [28, 29]. Amongst all

these challenges, the SL capability is critical for capturing the real-time performance of

optical network systems.
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1.5 Thesis overview and outline

This work applies the proposed SL-based network analytics extensively in optical net-

works. The overall aim is to combat the network knowledge uncertainty problems and

consequently optimise proactive control decision-making. This work demonstrates a new

way of bridging the gap between the control plane knowledge base and the underlying

physical layer through learning. The SL model’s self-adaptability is addressed here in

contrast with offline learning. Bayesian learning is employed as the principal online

learning method that is capable of learning under small dataset thanks to its generative

nature.

The background knowledge needed to understand the subsequent chapters is described

in Chapter 2. This chapter lays out the fundamental requirements and potential network

architectures for optical network cognition and intelligence, the dominant PLIs affecting

QoT performance, as well as the basic ML concepts. Comprehensive literature review of

recent AI and ML approaches in optical networking is studied in Chapter 3. The review

covers two main fields: physical layer design and control plane algorithms. It reviews

up-to-date topics of AI-based network intelligence concerning solutions to network uncer-

tainty, making accurate predictions and optimisation of control plane decision-making.

In Chapter 4 Gaussian process is introduced to learn the receiver-DSP-computed SNR

without any prior system knowledge and only depending on monitoring data. This work

is further extended in Chapter 5 in which Bayesian inference is applied together with

Gaussian process to form a hybrid supervised/unsupervised method. This method aims

to learn physical layer hidden parameters in a network scale. Chapter 6 describes the

idea of integrating in-band OSNR monitoring at network intermediate nodes for more

in-depth network insights. This intermediate node monitoring is further extended in

Chapter 7 as a monitoring-on-demand function. Bayesian optimisation is applied to

reduce redundant monitoring trials at intermediate nodes. The method realises an
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intelligent, "out-of-the-loop" monitoring strategy at per-link level. Finally, Chapter 8

summarises the whole thesis and proposes relevant pieces of future work.
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2
BACKGROUND

T
his chapter contains the background architecture and knowledge for the sub-

sequent chapters. The first section introduces three architectures applicable

for optical network cognition and intelligence. The second section discusses

the fundamental requirements for driving optical network intelligence. In particular, a

knowledge defined network is described in the next section, which is a desirable feature

adding to the requirements. Next, the network prediction performance is addressed

as the most important factor driving low-margin and proactive optical network design.

Subsequently the PLIs that affecting the optical network performance are introduced.

The final section introduces the essential ML concepts needed for optimising optical

networks. Particularly, Bayesian learning is proposed for sustained learning purpose.

2.1 Cognitive network architecture

For achieving optical networking intelligence, some cognitive network architectures can

be utilised [10, 11, 28, 30] in support of the desired learning capability. Learning agents
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2.2 Cognitive optical network (COGNITION) architecture 

The ultimate goal of COGNITION is first to enhance optical network infrastructure and services by providing 
cognition on devices, (sub)-systems, nodes and layers across one or multiple domains and regions as shown on 
Fig. 1. The COGNITION architecture (Fig. 1) represents a holistic framework that proposes to cover numerous 
innovative research aspects of cognitive optical networks. The architecture will be presented taking a top-to-
bottom approach. A user/application is interested to utilize optical network and IT resources in order to transport, 
store, process any type and volume of data that follow a particular distribution and belongs to a particular 
service. In a cognitive optical network, the environment is never static. The protocols, mechanisms, algorithms, 
devices and systems are constantly learning and adapting to the environmental conditions for delivering best 
possible performance. Before the most appropriate service can be identified, created and delivered, the end-to-
end goals have to be identified, requested and sent to the Requirement Layer (RL). Such layer is responsible to 
understand the goals and have the ability to express them in a precise and cognitive manner by using the ability 
to utilize application, network and IT system knowledge. The translation of user requirement to a semantic 
description follows a cognitive approach. Depending on the user/application request, the network layering and 
network resource structure, the type of protocols and mechanisms supported such requirements can be described 
using semantics. Semantics and ontologies can become cognitive-enabled using the cognitive cycle [5] 
(Observe-Orient-Plan-Decide-Act and Learn) to learn and , plan and act according to previous experiences. A set 
of requirements could be described on a cognitive form based on network operations (on per cross-layer, layer 
and element basis) and status. Precision of such requirement description is of paramount importance in order to 
capitalize on the cognitive optical network architecture. The requirements will then be handled on a case-by-case 
basis on different layers and elements within.  

At the Application Layer (AL) cognitive elements can be developed to create adaptive elements; 
encoding/decoding, compression for multimedia applications; data distribution and job handling on distributed 
applications (e.g. Cloud and Grid Computing) and many others. For example, multimedia application cognitive 
elements can self-adapt (increase/reduce compression level) to deliver end-to-end QoS under variable network 
conditions for a particular delivery of aspect ratio, resolution, etc.  

Moving to Service Plane (SP), elements such as virtualization, abstraction, service composition and others 
can be self-organized, self-configured and self-optimized under the user requirements and network conditions. 
For example, abstraction and virtualization mechanisms of network and IT infrastructure can be modified  (level 
of information abstracted, number, type and percentage of elements virtualized) to deliver required topologies, 
BW and QoS levels per topology and network conditions (number of topologies, load/services per topology, 
etc.).

Figure 1. Cognitive optical network architecture.

FIGURE 2.1. Schematic cognitive optical network architecture proposed by
Zervas et al. [10].

adopting ML can be built either for single layer optimisation, or cross-layer optimisation.

It is worth noting that the ML agents are preferred to be integrated in the cognitive

architectures, nevertheless, they are not requisite for the architectures.

The first architecture uses a holistic framework in which all the network layers are cog-

nitive [10]. Fig. 2.1 shows the overall architecture. The network consists of the physical

layer, the Medium Access Control (MAC) layer, the Control Plane (CP), the service plane,

and the Application Layer (AL). Cross-layer optimisation is applied to the holistic archi-

tecture for delivering end-to-end performance. The monitoring capability is emphasised

to allow for dynamic adaptation of physical layer parameters on demand. The proposed
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cessed by IP routers and switch/groom other
subcarriers directly to other outlets. If we wish
to receive a subset of OFDM subcarriers and
send different data out, the intermediate nodes
will terminate the whole wavelength, meaning
that we have to receive (i.e., digitally process
through DSP) all subcarriers on this wavelength.
The bandwidth resources allocation table is cre-
ated and maintained by the node resource man-
agement module in the control plane.

In the transport plane, a lot of progress has
been made to enhance the flexibility and scala-
bility of optical networks; examples are ODUflex
with hitless resizing, tunable laser/filters, the
wavelength-selective switch (WSS), high-speed
A/D, D/A, and field programmable gate array
(FPGA) devices, DSP algorithms for advanced
modulation formats and digital coherent
receivers (e.g., PDM-QPSK/PDM-OFDM), and
soft-decision FEC. Since digital coherent
receivers and DSP will be widely deployed in
CONs, the physical linear and nonlinear impair-
ments that used to be big challenges for the sys-
tem architect are becoming less difficult to
compensate. More specifically, in a fully digital
coherent system, the electric fields at the input
and output of the channel are available to DSPs
at the transmitter and receiver, in principle
enabling arbitrary impairment pre-compensation
and post-compensation algorithms. For example,
linear time-invariant impairments such as CD
and PMD can be compensated by adaptive lin-
ear equalizers. Nonlinear impairments, such as
laser phase noise and Kerr nonlinearity, can be
compensated by channel inversion. The multi-
level multiphase modulation formats such as m-

PSK, m-QAM, and OFDM with digital coherent
transceivers to be employed in future optical
communication systems, as well as the ability to
access the full information of the optical field in
the electrical domain allow flexible, robust, spec-
trally efficient optical transmission. Full access
to the optical field information also offers the
possibility of electrical compensation of trans-
mission impairments more efficiently than tradi-
tional optical compensation techniques. For
example, gridless WDM technology with flexible
spectrum, along with multicarrier optical com-
munications (OFDM), is extremely useful to
extend bit rates beyond 100 Gb/s on ROADM
architectures including providing variable wave-
length bandwidth depending on bit rate [3, 9]. 

The CON control plane leverages
ASON/GMPLS-based signaling and routing pro-
tocols to support real-time resource reservation
and rapid mesh restoration, adaptive mapping of
service requests to network resources, and fully
automated end-to-end service activation and
deactivation. Moreover, physical-impairment-
aware cross-layer design as well as service-aware
traffic management (e.g., virtual LAN [VLAN]-
aware) also help to improve the system cognition
for adaptive service provisioning. 

FLEXIBLE DESIGN OF AN
OPTICAL OFDM TRANSPONDER
In this section, a transponder structure based

on optical OFDM is investigated for the pro-
posed CON shown in Fig. 1. As a multicarrier
communication technique, OFDM has been

Figure 1. A framework of cognitive optical networks (CONs).
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FIGURE 2.2. Schematic cognitive optical network architecture proposed by Wei
et al. [11].

architecture is service-oriented thanks to its top-to-bottom design approach. However,

the cognitive cycle is represented in the state-space. This is not a good representation

in the AI sense. There are too many states and transitions to acquire and reason with.

A large change to the state representation is needed even a small change to the model

is introduced. Adding another feature means changing the whole representation. For

example, to model the traffic demand level so that the network can perform adaptive

slicing, every state needs to change. An alternative representation can be feature-based

in which the feature values in the next state serves as a function of the feature values of
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the previous state and the action [19]. Also, there is no transition going out of the "learn"

state in the figure, which makes no sense. Moreover, the multi-domain information

exchange can be complex since the control plane design is distributed.

On the other hand, a software-defined cognitive optical network framework is also pro-

posed [11] as shown in Fig. 2.2. The framework consists of the Data Plane, the CP, and

the AL. In the data plane, the optical transceivers are programmable and the optical

grid is flexible. Impairment compensation modules are available and the monitoring

capability is ubiquitous across the network. The CP is responsible for cross-layer traffic

management and PLI-aware RWA. The AL employs a client-service-aware approach. It

aims to deliver bandwidth on-demand leveraging the network programmability. Com-

pared to the first architecture, this proposal emphasises the device programmability and

flexibility. However, the preceding two frameworks do not have a knowledge-based block

to convert raw information into useful network knowledge so that the control plane can

easily utilise. There is no learning module designed as the "engine" for making decisions.

Moreover, an European project Cognitive Heterogeneous Reconfigurable Optical Network

(CHRON) [28, 30] proposes a centralised architecture for cognitive optical networks.

Fig. 2.3 shows the schematic architecture. The cognitive decision system forms the

most significant part of the framework which makes decisions based on the knowledge

bases and learning modules. The learning modules process the data collected from the

monitoring systems and generate network knowledge based on ML or data mining

algorithms. Various decisions can be made according to the updated knowledge base. For

example, decisions such as traffic grooming, virtual topology reconfiguration, RWA, etc.
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management mechanisms to implement the decisions that

are made by the CDS and to disseminate the monitored

information. The CDS is involved in very diverse tasks

related to network control and optimization. Hence, rather

than implementing the whole CDS as a monolithic module,

it is divided into different modules, each offering a func-

tionality (or a set of related functionalities), and all of them

exploiting cognition, as shown in Fig. 2.

Thus, the traffic grooming module is in charge of

routing nonoptical traffic demands (e.g., time division

multiplexing label-switched paths through existing optical

connections—lightpaths—composing the virtual topology).

The virtual topology design (VTD) module is in charge

of (re)designing the virtual topology (i.e., the set of light-

paths) to be established in the network. In networks

following the International TelecommunicationUnionTele-

communication Standardization Sector (ITU-T) grid, the

RWA/routing, modulation level, and spectrum allocation

(RMLSA)module solves the RWAproblem (as well as deter-

mining the modulation level), while in elastic networks,

where channels do not necessarily comply with the ITU-T

grid, it solves the RMLSAproblem. The quality of transmis-

sion (QoT) estimator module makes a prediction of the QoT

of new lightpaths to be established in thenetwork (aswell as

the impact on existing connectionswhenundertaking a new

one). Thus, the establishment of impairment-aware optical

connections relies on thismodule. Finally, thenetworkplan-

ner and decision maker (NPDM) module coordinates the

operation of the other modules, relying on their results,

and provides additional functionalities like forecasting.

The NPDM communicates the actions to be performed to

the network nodes through CP protocols and handles the

information received from the network monitoring system.

III. ENABLING TECHNOLOGIES FOR COGNITIVE

OPTICAL NETWORKS

As we have just mentioned, cognitive architectures rely

on the utilization of software adaptable elements, together

with monitoring techniques and control and management

protocols. Thus, in this section we review these enabling

technologies.

A. Software Adaptable Elements in Cognitive

Heterogeneous Optical Networks

Software-defined adaptable elements are essential for

the realization of the cognition concept in networks, since

they allow the optimum and on-demand use of resources,

according to the intelligent (i.e., cognitive) processing of

connection demands [8]. Although a cognitive network

could rely on a set of fixed transceivers in the nodes, the

higher degree of flexibility provided by software-defined

transmitter and receiver subsystems is turning them into

key network elements to perform the adaptable allocation

of traffic demands.

In practice, the transmitted bandwidth adaptability in

optical transceivers is realized by (1) altering the modula-

tion level or format (i.e., the bits per symbol) per optical

carrier and (2) varying the number of electronic or optical

carriers in multicarrier formats [14]. The general purpose

of these adaptable schemes is to apply the optimum format

over the minimum number of carriers, thus maximizing

the spectral efficiency (i.e., the number of bits per second

per Hertz) for a certain traffic demand over an optical

path with certain end-to-end performance require-

ments [18,19].

Format adaptability can be performed either in the op-

tical domain, by simply enabling or disabling the different

arms of nested Mach–Zehnder modulator structures at the

transmitter and the related output port of 90° hybrid at the

receiver or directly in the electronic domain by appropri-

ately defining the signal levels of the modulation signals

[20]. Moreover, for multicarrier schemes based on elec-

tronic generation of subcarriers, the subcarrier number

is defined in the electronic domain by the length of the dig-

ital signal processing (DSP) function prior to the optical

modulation, while for optically generated subcarriers, their

number is defined either by filtering the appropriate

number of carriers or by gating the appropriate number

of subcarrier transmitter outputs directly in the optical

domain [21,22].

The bandwidth adaptable data transmission schemes

mentioned above can realize the optimum use of network

resources according to the traffic demands, but they result

in added complexity in terms of control. This is attributed

to the fact that any decision mechanism must account for a

large number of possible combinations (i.e., central wave-

length allocation, format, and number of subcarriers) to

optimally serve a demand for a given optical path. The role

of cognitive optical networking is particularly beneficial for

the practical implementation of these schemes, since it can

significantly relax the decision mechanism by exploiting

past history. It is noted that cognition can apply in

combination with any adaptable (flexible) transmission

technique, since all of them are intrinsically software-

defined schemes.

Fig. 2. CHRON schematic architecture (for a network with

centralized cognition).

de Miguel et al. VOL. 5, NO. 10/OCTOBER 2013/J. OPT. COMMUN. NETW. A109

FIGURE 2.3. Schematic cognitive optical network architecture from CHRON
[28].

2.2 Requirements for optical network intelligence

Although there are different cognitive architectures for optical networks, some features

are in common which form the prerequisites for driving network intelligence.

The first is the monitoring capability, or network telemetry as introduced in Chapter 1.

These information are critical for real-time network forecasting and decision-making

tasks where ML algorithms are extensively applied. The modern transmission technolo-

gies adopt coherent transceivers [31] for beyond 100 Gb/s transmission. Monitoring from

the coherent DSP units is available for the key PLIs such as OSNR, Bit Error Rate (BER),

CD, PMD, etc. Except for the end-to-end performance monitoring, intermediate node (e.g.,

amplifiers, ROADMs) monitoring is also proposed as a desired feature to provide more

in-depth network information [16, 17, 32]. For example, the authors in [32] proposes

a SDN-enabled intermediate node OSNR monitoring to get straight-forward link-level

QoT information. In addition, active monitoring with measurement probes [33] is also
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proposed in situations where passive monitoring data is not enough. It is anticipated

that the learning agent performance can be significantly improved with the ubiquitous

monitoring capabilities.

Another prerequisite is device programmability. Software-defined elements are essential

to allow optimal decision making based on learning [28]. These programmable elements

offer much higher level of flexibility compared to fixed elements. They are capable to be

controlled autonomously to adapt to the changing requests. Without such flexibility, it

will be challenging for the network to allocate adaptable resources to service demands

even intelligent predictions can be made. For example, the software-defined optical

transceivers can alter the modulation formats, bandwidth, frequencies, etc. to adapt to

the predicted traffic demands. Thus, the QoS and optimum use of the network resource

are guaranteed. The device programmability converts the state-of-the art optical modules

into cognitive-enabled optical systems [10].

A control mechanism is also essential for driving network intelligence. Both centralised

and distributed control mechanisms are applicable. In the centralised design, all the

components are under the management of a single cognitive entity. In the distributed

design, the cognition capability is distributed among each of the network nodes, efficient

exchange of the distribution information is required. Whichever design is used, a control

plane is needed to configure the optical devices based on the network status. It serves as

the bridge between the real-time network status and the resulting reconfiguration [28].

Last but not least, carefully designed ML algorithms are predominant for network

intelligence. It will be discussed in more details later in this chapter.
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2.3 Knowledge defined networks

Previous research proposes a Knowledge Plane (KP) for intelligent networks [34] based

on ML. KP is also proposed in the CHRON architecture in the form of a knowledge base

[28]. The KP offers the opportunity to realise automated network reasoning capability

by collecting results from the learning agents. However, KP has not been realistically

deployed in optical networks due to the complexity. This remains a big challenge in

distributed networks where each node only has a partial view of the entire network.

Knowledge that learnt from one domain of the network is very hard to be applied to

other domains. Therefore, the Software-Defined Networking (SDN) [35] architecture is

preferred to support KP and the learning agents for centralised control. It offers much

less complexity due to the common Application Program Interface (API) programmability

and separation of the control plane from the data plane [34]. The logically centralised

controller serves as a logical single point with knowledge of the whole network. The KP

can use various ML approaches to gather knowledge about the network, and exploit that

knowledge to control the network using logically centralised control capabilities. SDN is

also vendor-technology agnostic which makes the knowledge transfer between different

network domains much simpler.

2.4 Network prediction

Given all the criteria described above for driving intelligent optical networks, the domi-

nant factor is the performance of the learning models. A robust learning performance

should have high fidelity in making inference on existing data, or predictions on new

unseen data. The prediction accuracy is regarded as the most significant KPI for ML

models. It benefits many aspects of the optical network design. For example, the design

of a low-margin optical network [2].
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FIGURE 2.4. Margin design of optical networks. The design margin is due to
uncertainty, and should be minimised.

As shown in Fig. 2.4, at the Beginning of Life (BoL), the network has many different

margins designed for penalties. The always-on penalties refer to the PLIs that are fast

time-varying such as PMD, Polarisation Dependent Loss (PDL), etc. The nonlinearity

margin is not used at BoL, but as channels are loaded to the network, this margin will

be utilised at the network End of Life (EoL). The same applies to the ageing effects. The

unallocated margin refers to the difference of capacity/reach between the demand and

that of the equipment. It results from the discrete datarate and reach granularity of

commercial transmission equipment [36]. Finally, the design margin results from the

uncertainty of the network. It is desired that the design margin can be reduced as much

as possible.

Due to uncertainty, the network planning models have poor estimation or prediction

performance. Reducing the design margin is equivalent to reducing the uncertainty to
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improve the model prediction performance. Fig. 2.5 describes the mechanism to reduce

uncertainty by monitoring. The inputs to the planning models (typically RWA) contain

uncertainties ε∼ N (µ,σ) (the traffic demand uncertainty results from service hetero-

geneity). After lightpath provisioning, the uncertainty is updated due to the change

of network status (e.g., εH to ε′H). Then monitoring is used to reduce the uncertainties

by proposing new ε′H′ , ε′D , ε′T . All these uncertainties can be used for quantified design

margin evaluation through some models f = M(εH ,εD ,εT). These new proposals are ex-

pected to reduce the design margin, i.e., f = M(ε′H′ ,ε′D ,ε′T )< f = M(ε′H ,εD ,εT ). Otherwise

network failure may happen due to inaccurate prediction. ML models can be used to

propose new ε, more details can be found in Chapter 5. According to the last figure of [2],

up to 50% of the total number of regenerators (depending on the network load) can be

saved given accurate prediction performance.

Except for the low-margin design, proactive network design also benefits from model

prediction performance. "Proactive" means that rigorous inspection of the network is

carried out to look for the causes of a failure before that failure occurs. Many research

work exists in the literature which adopts ML for proactive network design. For example,

the authors in [25] propose deep learning to predict power excursion in cascaded Erbium-

doped Fibre Amplifier (EDFA) systems. It uses the prediction for proactive wavelength

assignment. More related work can be found in Chapter 3.

2.5 PLIs affecting optical performance

Prediction for QoT needs to take the PLIs into account. For beyond 100Gb/s transmission,

linear impairments such as CD, PMD, etc. can be fully compensated in the coherent

receiver DSP unit [31, 37]. Thus, SNR dominates the evaluation of the lightpath QoT.

There are three sources of noise that contribute to the SNR degradation: transceiver
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FIGURE 2.5. Reduction of design margin. ε represents the uncertainty, mathe-
matically ε can be in the form of Gaussian noise N (µ,σ).

noise, EDFA ASE noise, and nonlinear noise.

Fig. 2.6 shows the relevant noise sources in a transmission system. The linear noise is

dominated by ASE noise which is generated by optical amplifiers such as EDFA. The

EDFAs are commonly employed in optical networks to compensate for the transmis-

sion power losses. The nonlinear noise is due to interference and crosstalk between

different optical channels or the channel itself when the signal launch power exceeds

a certain limit. Stimulated Brillouin Scattering (SBS), Stimulated Raman Scattering

(SRS), Four-Wave Mixing (FWM), Self-Phase Modulation (SPM), Cross-Phase Modu-

lation (XPM) are the most common fibre nonlinearity phenomenon [38]. Operation in

the nonlinear regime has become popular in current high capacity optical networks

due to advanced modulations and higher bandwidth utilisation [20]. Besides ASE and

nonlinear noise, the transmitter and receiver noise also contributes to the total SNR

degradation. Transceiver noise comes from Digital-to-Analogue Converters (DAC) and

Analogue-to-Digital Converters (ADC) in the transmitter and receiver respectively. The
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FIGURE 2.6. Noise affecting system SNR performance, SMF: single mode fibre.

achievable SNR performance is upper bounded by the inherent transceiver noise [39].

Gaussian Noise (GN) model has been well proven for its robust prediction performance for

nonlinearities [8, 40]. So in this thesis, unless otherwise stated, GN model is used as the

analytical model for SNR prediction. In the expression for calculating SNR performance,

the total SNR after DSP compensation is

SNRtotal =
P

ηP3 +PASE +κP
(2.1)

where η is the NonLinear Interference (NLI) coefficient in the GN model [8], PASE is the

ASE noise power from all the amplifiers and κP =σTR
2. By definition the transceiver

SNRTX is the maximum achievable SNR a transmission system can have in the absence

of ASE and NLI noise. It is quantified as SNRTX = 1
κ

. The ASE noise degrades the SNR

of the optical signal. The power of ASE is quantified by [8]

PASE = h ·v ·NF ·G ·B (2.2)

where h is Planck’s constant (6.626×10−34Js), v is the optical carrier frequency, G is

the amplifier gain, B is the noise bandwidth, NF is the Noise Figure (NF). So the ASE

power is largely dependent on NF. NF can be influenced by numerous factors such as

temperature, input power, pumping current, etc. [41, 42]. η quantifies the intra and inter

channel nonlinear noise. The basic assumption is that the signal disturbance generated
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by the NLI manifests itself as Additive Gaussian Noise (AGN) [8]. The effective span

length is

Le f f =
1−exp(−2αLs)

2α
(2.3)

where α is the fiber loss coefficient, Ls is the span length. The total nonlinear noise can

be computed as the coherent Gaussian noise

GNLI( f )= 16γ2

27

∫ ∫
sin2(2Nsπ

2|β2|Ls f1 f2)
sin2(2π2|β2|Ls f1 f2)

∗

|1− exp(−2αLs)exp( j4π2|β2|Ls f1 f2)
2α− j4π2|β2| f1 f2

|2L−2
e f f ∗

G tx( f1 + f2 − f )G tx( f1 + f )G tx( f2 + f )d f1d f2

(2.4)

where γ is the fibre nonlinearity coefficient, Ns is the total number of spans, β2 is the

absolute fibre dispersion value, G tx( f ) is the power spectrum density and f is the central

frequency of the target channel. This equation is defined as the Gaussian Model Reference

Formular (GMRF) in its original paper [43]. It represents the power spectral density of

NLI noise at the end of a link and it assumes that the spans are identical and the power

loss of each span is fully compensated. This equation is derived by modelling a WDM

signal as a suitable Gaussian random process whose spectrum is composed of arbitrarily

many spectral lines, then using proper ensemble averaging and perturbative techniques.

Further details can be found in [44]. Equation 2.4 physically describes the beating of

each thin spectral slice of the WDM signal with all others through a FWM process. The

term ρ( f1, f2, f ) = |1−exp(−2αLs)exp( j4π2|β2|Ls f1 f2)
2α− j4π2|β2| f1 f2

|2L−2
e f f represents the normalised FWM

efficiency of the beating of three pump frequencies f1, f2, f1 + f2 − f . This beating creates

an interfering signal at frequency f . The factor χ( f1, f2, f )= sin2(2Nsπ
2|β2|Ls f1 f2)

sin2(2π2|β2|Ls f1 f2) quantifies

NLI accumulation along the link. The term G tx( f1 + f2 − f )G tx( f1 + f )G tx( f2 + f ) governs

the power spectral density that each of the three pumps carries.
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Equation 2.4 is commonly simplified into the closed form as follows, where Pch is the

launch power per channel.

PNLI = ηP3
ch (2.5)

2.6 Machine learning

ML is a cross-discipline subject covering Mathematics, data science and computer science.

It teaches a computer program to "learn" from data by optimising its model parameters.

Fig. 2.7 shows a schematic overview of ML. As there are too many algorithms, here

just a few of them are listed. More algorithms can be found in [45]. ML can be divided

into supervised learning (labelled training data is provided as a "teacher" to train

the model before making real predictions), unsupervised learning (no labelled data is

provided and the model has to find the data structure itself) and reinforcement learning

(making software agents to take actions or make decisions based on historic action

feedback). Each of the sub-field has a great impact on applications such as CV, NLP,

gaming, advertisement, logistics, etc. ML is especially useful when the system is complex,

variational and with uncertainties. In this case, performance prediction and network

planning become analytically intractable. In optical networks where uncertainties indeed

exist, ML algorithms can be empowered by the network monitoring capability to reduce

the uncertainties, or the model complexities.

2.6.1 Supervised learning

Supervised learning is a sub-field of machine learning where each given data set is clearly

labelled as inputs and outputs. These data is then used to train a typical regression

or classification model for future predictions. Fig. 2.8 shows the process of supervised

learning, the input training data set is used to teach the learning algorithm to learn a

good approximate hypothesis h(x) so that it can predict new y given new x. In regression
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FIGURE 2.8. The process of a supervised learning: given a training set, the
learning algorithm is trying to learn a function h so that h(x) is a good
predictor for the corresponding value of y.

problems, we are trying to predict a target value in a continuous way, which means we

need to map each input feature to some continuous functions. In classification problems,

the mapping is made from each input feature to discrete categories. Commonly used

supervised learning models are linear regression [46], Artificial Neural Network (ANN)

[47], Support Vector Machine (SVM) [48], etc. Supervised learning is particularly useful
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for network prediction purposes. Lots of optical network research work adopts this

technique. For example, The authors in [7] use neural networks to predict whether the

unestablished lightpath Q-factor will exceed a pre-defined threshold or not. The training

data input has many attributes such as path length, number of EDFAs, wavelength, etc.

The output is just a binary indicator which is 1 if the QoT is sufficient, and 0 otherwise.

This is intrinsically a binary classification problem. More related work can be found in

Chapter 3.

Supervised learning is particularly useful for prediction purposes and when the training

data size is large. If the network can generate large amount of monitoring data, super-

vised learning is a straight-forward method to reduce traditional model complexity while

delivering even much better prediction performance. However, it may suffer from rapid

system variation which leads to data distribution mismatch as mentioned in Chapter 1.

Its black-box feature is also undesired for system diagnosis.

2.6.2 Unsupervised learning

Unsupervised learning aims to infer a function to describe the hidden structure from

a group of unlabelled data. There is no training phase for unsupervised learning and

no feedback based on the prediction results, so it allows us to solve problems where

there is little or no idea what the result should look like. Clustering [49] is the most

common model of unsupervised learning. There are many other algorithms such as

principal component analysis [50], Bayesian inference [26], etc. Unsupervised learning

is also very useful for optical networks. As an example, the authors in [51] propose a

clustering algorithm to autonomously identify the modulation format such as Quadrature

Phase Shift Keying (QPSK), 16Quadrature Amplitude Modulation (QAM) without the

need to get additional information from the control plane. The digitised I & Q (in-phase

and quadrature) samples are used as unlabelled data. K-means clustering algorithm is
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applied to identify the modulation by counting the number of clusters in the data set.

Unsupervised learning benefits for tasks such as receiver DSP pattern recognition where

the structure of the observed data set needs to be identified. For example, nonlinearity

or modulation format identification can benefit from unsupervised learning. It can also

make inference of some uncertain network parameters. Since there is no training phase

needed, the inference process is on-the-fly which is exactly the desired feature for online,

real-time SL. However, unsupervised learning often depends on probability, it may be

extremely hard to improve a certain unsupervised model performance because it does

not depend on the size of the data.

2.6.3 Overfitting and underfitting

Supervised learning aims to find a target function f which maps the input X to the

output Y . An important issue with supervised learning is the model generalisation

performance to new data. Generalisation measures how well a supervised learning

model can be applied to predict the data that has never seen before. Overfitting and

underfitting are the two biggest causes for the poor performance of supervised learning

algorithms. If a model has very large training error, i.e., it cannot capture the features of

the training data. Then the model is underfitting the training data. Conversely, if the

model perfectly matches each of its training data, then it has small training error, but it

will not generalise well on new data. So this model is overfitting the training set.

A typical underfitting and overfitting example is shown in Fig. 2.9. Both overfitting

and underfitting will cause generalisation error of a ML model. Commonly, underfitting

means a model with large bias, while overfitting means a model with large variance.

There is a fundamental trade-off between overfitting and underfitting. If the learning

model is too simple or has too few parameters, then it is likely to have large bias
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FIGURE 2.9. The left hand side figure is underfitting the data, or with high bias,
conversely, the right hand side figure is overfitting the data, or with high
variance. The middle figure captures the data best.

(underfitting). If a learning model is too complex and has too many parameters, then it

may suffer from high variance (overfitting) [52]. Cross-validation is a prevalent method

for rectifying the bias and variance of a learning model. It randomly splits the training

data into k subsets, then the randomly chosen k−1 subsets are used to train the model,

and the remaining one subset is used to calculate the development error or validation

error. This is process is repeated until the lowest development error is found.

When designing a supervised learning model for network prediction purpose, it is im-

portant to assess its bias-variance or generalisation performance. It directly affects

the accuracy of the model. Model selection is the research field to tackle this problem,

however, it is beyond the scope of this thesis.

2.6.4 Bayesian statistics

There are always debates about the frequentist and Bayesian models in the ML field.

In the frequentist point of view, the parameters of a learning model are fixed. It just
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happens to be unknown, and the job of the supervised learning is to estimate the

unknown parameter using methods such as Maximum Likelihood Estimation (MLE). An

alternative way is to take the Bayesian view. In Bayesian methods, the parameters of a

model are randomly distributed. After updating "belief", they follow some probability

distributions. Often a prior knowledge of our "belief" about the parameters should

be given. After some observations, we can compute the posterior distribution of the

parameters. Bayes’ Theorem is the fundamental theory that supports Bayesian statistics.

It is often expressed in conditional probability

p(θ|y)= p(y|θ)
p(y)

(2.6)

where p(.) denotes a probability distribution, p(θ) is the prior distribution, p(y|θ) is the

likelihood distribution, and p(θ|y) is the posterior distribution. Most of the times, the so

called Maximum A Posteriori (MAP) estimate value is used for a single value estimation:

θMAP = argmax
θ

m∏
i=1

p(y(i)|x(i),θ)p(θ) (2.7)

where p(θ) is the prior. In practice, the prior is often assumed to be Gaussian distributed

θ ∈N (0,τ2I). This choice of prior will result in smaller norm than MLE, which makes

Bayesian MAP less susceptible to overfitting. In this thesis, Bayesian methods are the

main methods used for sustained learning purposes due to its less requirement for large

dataset and less susceptibility to overfitting.
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3
LITERATURE REVIEW

T
his chapter reviews recent published work on applying AI and ML algorithms

in optical networking. Fig 3.1 shows a summary of published AI and ML tech-

niques applied to optical networking. The application can be roughly divided

into two categories: the physical layer domain and the network control domain. The

goals for applying AI and ML models in these domains are, firstly, to make predictions

combating the increasing uncertainties of the system in which many non-deterministic

factors take place. Secondly, to make optimal decisions in some complex cases that have

to depend on data. Thirdly, to recognise certain patterns which are subject to dynamic

changes.

3.1 Physical layer domain

This section describes AI applications in the physical layer of optical networks. This

involves characterising QoT performance as well as the device operation performance.
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FIGURE 3.1. Schematic diagram of AI techniques applied in optical networking,
the machine learning branch will be the focus of this thesis.

3.1.1 Optical performance monitoring

Optical Performance Monitoring (OPM) is essential for real-time device-level and network-

level control applications. The field of OPM has embraced extensive ML approaches.

Most of the work is done at the receiver side for estimations of the target features such

as OSNR, CD, PMD, etc. In particular, Artificial Neural Network (ANN) is well suited

for estimating the target value due to its ability to learn the complex mapping between

the received samples and optical transmission parameters. The authors in [53] present

a comprehensive method using the ANN model to simultaneously identify the OSNR,

CD and PMD from eye-diagram parameters in 40 Gb/s On-Off Keying (OOK) and DPSK

systems with high correlation coefficients. This transforms the receiver side DSP problem

into pure pattern recognition tasks in computer vision. With the advances of deep learn-

ing, it is anticipated that traditional ANN models will be replaced by the state-of-the-art
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deep learning models. In particular, Convolutional Neural Network (CNN) [21] is a good

candidate to reach the ultimate goal.

The input feeding to the ANN model can come from different sources to predict target

features. The power eye-diagrams such as Q-factor, closure, variance, root-mean-square

jitter and crossing amplitude are applied in [54–58] as the inputs, two-dimensional

eye-diagram and phase portrait are used as the inputs in [58], the authors in [56] use the

asynchronously sampled amplitude histogram as the ANN input. As the ANN hidden

layer is shallow, the model is easy to be trained because a small number of training data

is sufficient. Another approach is to pass the samples at symbol level and to use Deep

Neural Network (DNN) [23], this will require a large number of training data (at million

level). As aforementioned, such number of training data is difficult to obtain, especially

for SL.

A DNN method to predict OSNR in the coherent receiver DSP unit is proposed in [59].

The model takes asynchronous sampled dataset from ADCs as the input for training the

DNN. The model has at least five hidden layers and needs to be trained with at least

400,000 training samples to achieve target OSNR prediction accuracy. Although not

mentioned in the paper, more than 10,000 parameters (ReLU) need to be tuned during

training. Such complex training phase results in the model with little scalability to other

systems. The poor scalability also becomes serious as the network changes because the

model has to be trained from scratch.

Apart from using ANN or DNN model for optical feature estimations, the authors in [60]

propose Kalman filter for carrier phase tracking, polarisation tracking and estimation

of the first-order PMD. It is further shown in [61] that Kalman filtering can track and

compensate nonlinear noise such as XPM. However, most of the above mentioned ML-

based OPM techniques need prior knowledge about the signal such as its data rate
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for modulation format, this requires additional cross-layer communication to obtain

this information from upper-layer protocols which can significantly increase the node

complexity. A technique is proposed in [62] for simultaneous multi-impairment (OSNR,

CD and PMD) monitoring and autonomous bitrate and modulation format identification.

The key algorithm that enables such flexibility is Principal Component Analysis (PCA)-

based pattern recognition. Given a set of images represented in a high-dimension image

space, PCA finds a small set of orthonormal eigenvectors spanning a subspace. In this way,

PCA can reduce the dimensionality of an image space without losing much information.

This method is beneficial for real-time, online physical layer autonomous monitoring.

Further work can be carried out to integrate such autonomous monitoring capability

into the aforementioned cognitive or SDN architectures.

3.1.2 QoT estimation

The capability of QoT prediction for a new lightpath prior to provisioning is essential

to guarantee proactive and low-margin network design [2]. Existing analytical models

are able to provide accurate QoT prediction results, but they come with very high

computational complexity [8]. Some solutions have lower computational complexity,

but they often over-estimate the QoT penalties leading to under-utilisation of network

resources [2, 27]. Under such motivation, ML models are introduced to balance this

complexity and accuracy problem.

A cognitive Case-Based Reasoning (CBR) method is proposed in [63] to estimate QoT

based on historically observed data. It uses a knowledge database to store all the histori-

cal information of a lightpath including Q-factor, route, wavelength, total length, number

of co-propagating channels in a link, etc. A new request QoT is determined by comput-

ing the similarity (Euclidean distance) between the new channel’s information and the
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database through CBR-based classification. The optimisation process of the knowledge

database is further studied in [28] to trade-off the database size and computational com-

plexity. In practice, the use of CBR is not restricted to QoT prediction. CBR can also be

used for converged learning purpose for different networks due to its domain knowledge

agnostic nature. For example, the knowledge learned from wireless networks can be

mapped to the optical domain to solve new but abstractly similar problems. Ontology

[64] is essential to abstract the correct network knowledge for such purpose.

A similar database oriented ML approach is also proposed in [24] where a Network-scale

Configuration and performance Monitoring DataBase (NCMDB) is used to store all the

offline monitored network metrics such as laser info, EDFA gain, power, OSNR, etc. A

Multi-Layer Neural Network (MLNN) is used to predict any future request QoT based on

offline training. However, the relatively small training data size and the offline training

mechanism are hard to capture the dynamicity of modern optical networking systems.

Also, the MLNN used in the paper only have one hidden layer, which is too shallow to

capture a complex system behaviour. It is anticipated that more hidden layers and more

training data will help to improve the prediction performance.

MLNN based QoT prediction has drawn significant attention recently due to the well-

proven power of deep-learning in other fields such as CV [65] and NLP [22]. The authors

in [7, 66] propose feed-forward Neural Network (NN) to predict whether future request

QoT will exceed a pre-defined system threshold or not based on metrics such as path

length, the number of EDFAs, maximum link length, wavelength, etc. Training tech-

niques are emphasised to prevent over-fitting by using mini-batches, dropout, etc. An

end-to-end deep learning solution is proposed in [23] to model the Intensity Modula-

tion/Direct Detection (IM/DD) communication systems which are commonly used in

data-centre and metro networks. The model uses a block-based transmitter design to

allow massive parallel processing of the single block messages. Each message is encoded
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into a single one-hot vector and fed into a single MLNN. These MLNNs are then con-

nected to the transmission link. The receiver side uses reversed MLNN architecture of

the transmitter side to decode the message. The model is shown to achieve BER of below

the 6.7% Hard-Decision Forward Error Correction (HDFEC) threshold and information

rate of 42Gb/s can be transmitted beyond 40km. Although these work could be a good

trial exploring end-to-end deep learning applications in optical networking, such method

tends to treat the whole optical communication system as a black box and ignore any

prior system models. This is a great waste in terms of prior system design knowledge.

More importantly, the final communication system represented by deep learning model

will be very hard to inspect. Engineers have no idea what is happening inside the system

because of its end-to-end black box nature. Such an empirical system design without any

optical domain knowledge is not preferred.

Apart from NN based approach, other ML methods are also proposed. A Gaussian

Process (GP) based OSNR regression technique is demonstrated in a field trial [67] to

combat the noise spectrum non-uniformity problem across a broad wavelength range.

GP samples stochastic functions of the transmission link conditioned on monitored SNR

data. Two important features of GP make it suitable to predict QoT. First, because the

data monitoring process is inherently noisy in which the data output fluctuates around

its mean value, GP models the noisy monitoring data by adding additive Independent

and Identically Distributed (IID) Gaussian noise to the mean value. Given this IID noise,

the final regression curve does not necessarily pass through each training point. Second,

the kernel assumption of GP measures the similarity or correlation between any training

points by using the kernel matrix. For example, if two wavelengths are close to each

other, their SNR performances should be nearly identical given their lightpaths are the

same. If two wavelengths are far from each other, their performances are less correlated.

This work forms the fundamental work supporting multi-link QoT computation in optical
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networks. Unlike other offline training ML models, GP is inherently an online training

model. This means the learning model can take as input the real-time monitoring data

and easily adapt to any system variation while the network is evolving.

A "learning, living" network is proposed in [68] by monitoring the link-level BER perfor-

mance of selected wavelength and performing linear regression to estimate new service

request OSNR. The model can learn path-level OSNR performance by summing up

link-level performance. However, there could be a problem with this model. The per-span

OSNR update rule is likely to spread one particular span OSNR degradation to multiple

spans. In other words, when a single link fails (introducing large noise), the learning

process will average this penalty to each traversing link. This is not a practical way to

solve the operational uncertainties in the network. It can lead to under-estimation of

per-span (or per-link) OSNR performance. Moreover, using linear regression to estimate

new service OSNR can easily underfit the training data. This work intrinsically only

utilises monitoring without any ML methods. Another QoT estimation work is proposed

in [69] to apply Random Forest (RF) classification algorithm to predict the probability

of whether an un-established lightpath BER will exceed a pre-defined threshold or not.

The input of the RF model includes the length of the path, span numbers, baud rate,

modulation format, bandwidth. Several combinations of the input features are consid-

ered and the algorithm identifies the ones that will be most likely to meet the BER

requirements. However, attention should be paid to the computational complexity of RF

when the number of sub-trees increases.

In addition to passive monitoring, active probe based monitoring is also used to assist

ML models. The authors in [70] and [71] propose Network Kriging (NK) and norm L2

minimisation as the theoretical algorithm for improving the network knowledge gain

with as few monitoring trials as possible. These techniques are further applied in [72, 73]

for network-scale lightpath QoT prediction. NK and L2 norm help to select the most
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informative monitoring path and minimise the number of active probes by using linear

algebraic matrix computation. However, as active probe method sends additional signals

without carrying meaningful service data, the method tends to increase network blocking

probability and occupy valuable bandwidth resources. The trade-off between placing the

probing signals and the prediction accuracy is studied in [74]. Moreover, the assumption

in [72] that the impairments are flat across the transmission spectrum is not always

true [75]. Such uncertainty problem will be addressed in Chapter 7. Last but not least,

the computational complexity of NK is high for large-scale networks [76], an alternative

way is intermediate node monitoring [6, 77].

3.1.3 EDFA control

EDFA is one of the fundamental components enabling optical long-distance transmission

thanks to its low induced ASE noise. Completely characterising the operation perfor-

mance of EDFA needs a huge amount of fine-grained offline measurements which is

time-consuming. To combat the uncertainties brought by temperature, pump power,

loading states, ageing, etc., the performance of EDFA is extensively modelled by ML algo-

rithms which can interpolate the mapping function over points that are not pre-tested. A

Kernel-Based nonlinear Regression (KBR) method is proposed in [78] to model the power

excursion of a cascaded EDFA system. The model takes as the input all the combination

of channel allocation with 20 slots, and it outputs the standard deviation of the power

excursion with respect to a new input combination. Given a new network loading state,

it can predict the power excursion from how similar the loading state is with the training

data (kernel assumption). As this work is done with only fixed grid, to make it more

adaptable to flex-grid networks in which dynamic defragmentation is often applied,

the authors of [79] further extends this work by formulating a Ridge Regression (RR)

model together with a logistic classification model to determine the contribution of each
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spectral granularity to the post-EDFA discrepancy. According to the prediction model,

intelligent pre-adjustment strategies can be applied for spectrum defragmentation and

wavelength assignment. Moreover, a multilayer perceptron neural network is proposed

in [80] to achieve intelligent adjustment of EDFA operating point for optimising both

the EDFA NF and the ripple of the frequency response of the system. This idea is origi-

nated from the cognitive EDFA control concept proposed in [81]. Such concept is further

used in [25] which proposes a deep NN to predict the power dynamics of a 90-channel

ROADM system. The learning model uses the most advanced deep-learning training

techniques such as ReLU activation function (to overcome gradient vanishing problem),

batch gradient descent (to overcome slow training), etc. The model is shown to enhance

power excursion prediction with 0.1dBm mean squared error in a 90-channel Dense

Wavelength Division Multiplexing (DWDM) transmission system including eight EDFAs,

hence allowing rapid wavelength switching operations. All these work aims to achieve

proactive network decision-making utilising the robust model prediction performance.

However, these models lack self-adaptability as they are trained in an offline fashion.

Online learning is hard especially for the deep learning model proposed in [25] due to

the lack of data.

In addition to characterising EDFA output power performance, the authors in [82]

uses MLNN model to map the EDFA input/output power to NF and gain flatness. It

demonstrates MLNN can be used as an auxiliary tool to characterise EDFA while

eliminating large number of pre-testing points. The method results in a gain prediction

error as low as 0.1dBm. Unlike other black box methods, this work studies the insights

of the EDFA device characteristics leveraging ML, which is a great advantage for system

design in the optical domain.

Instead of offline training and testing, the CBR model is applied in [83] in dynamic

network scenarios. Upon arrival of a new lightpath request, a knowledge database is
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created which stores the amplifier gains of established lightpaths corresponding to the

lightpath information such as OSNR, number of links, total length, etc. CBR retrieves the

entries of the database with the highest similarity compared to the incoming lightpath.

The vectors of gains of respective EDFAs are temporarily chosen and a new choice of

gains is generated by perturbation of such values. Then, the OSNR value that would be

obtained with the new vector of gains is estimated by simulation. The vector associated

with the highest OSNR is considered for tuning the amplifier gains when the new

lightpath is established. This method is inherently an online learning mechanism that

can robustly combat system operational uncertainty. Since OSNR only accounts for the

linear regime, further work should be focused on addressing nonlinearity.

It can be seen that in the studies of EDFA, frequentist methods are used mostly while

Bayesian methods are rarely used. It is due to the fact that EDFA power excursion

problem has no theoretical models that can be used as likelihood function. Therefore,

even there is prior knowledge about the EDFA (gain flatness or NF), the posterior

estimation is unavailable under uncertainty.

3.1.4 Receiver nonlinearity mitigation

The information capacity of current high-speed optical long-haul transmission systems

is limited by the nonlinear noise mainly due to the fibre Kerr effect. Huge research effort

has been focused on mitigating the nonlinear noise [37]. Traditionally, detecting and

compensating for nonlinear noise is done by analytics or deterministic information of

the fixed fibre link. For example, the digital back-propagation [84] or stochastic digital

back-propagation [85]. But due to the computational complexity, these methods are

difficult to be practically implemented in real networks.

To combat the complexity issue of analytical methods, ML methods are investigated in
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the receiver DSP to enhance symbol detection and mitigate nonlinearities. The authors in

[51, 62] propose a cognitive DSP based receiver which is able to identify the modulation

format such as QPSK, 16QAM without the need to get additional information from the

control plane. Unsupervised clustering algorithms and PCA based dimension reduction

are used to achieve this automation. Moreover, Bayesian filtering and Expectation

Maximisation (EM) together with state-space models are proposed in [61] in which the

underlying physics and optical components are taken into consideration during the

formulation of DSP algorithms. The method achieves carrier recovery, XPM induced

polarisation scattering and nonlinear phase noise mitigation. However, as the training

of the EM algorithm depends on the state-space transmission link characteristics, the

method is difficult to be practically used in dynamic optical networks under uncertainty.

Classification algorithms are also used to mitigate nonlinearities. Support Vector Ma-

chine (SVM) classifier is implemented in [86] in the coherent receiver DSP to mitigate

NonLinear Phase Noise (NLPN) which affects detection of M-ary phase shift keying

(M-PSK) signals. The SVM model is used to identify nonlinear decision boundaries that

allow bypassing the errors induced by nonlinear impairments in the constellations of

M-PSK signals. The optimised system has improvements in both launch power dynamic

range and maximum transmission reach. However, as a binary classifier, the proposed

SVM model cannot deal with higher order modulation formats. Further work should be

carried out using multi-class SVM.

To make the ML model independent of transmission link characteristics and modulation

formats, an unsupervised K-Nearest Neighbour (KNN) model is demonstrated in [87].

Only a small labelled data set is needed to learn the link properties and make decisions

on the nonlinear boundaries. By performing multi-class classification, the model can

simultaneously detect multiple kinds of modulation formats. Maximum transmission

distance and nonlinear mitigation improvements are demonstrated in a 16QAM coherent
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transmission. Following this, [88] proposes a non-symmetric demodulation technique in

the coherent receiver DSP based on k-means clustering algorithm. The model mitigates

the effect of time-varying impairments such as the imbalance of in-phase and quadrature

signals, bias drift and phase noise. The demodulator is shown to be computationally

efficient and transparent to the nonlinearity source. Recent research [89] further extends

this method in more advanced systems with Coherent Optical Orthogonal Frequency

Division Multiplexing (CO-OFDM) technologies. The proposed approach uses a nonlinear

equaliser SVM of reduced classifier complexity to mitigate inter-subcarrier nonlinear

crosstalk effects which further allows larger launch power. To mitigate nonlinearity in

OFDM systems, the authors in [90] uses ANN for nonlinear equalisation. Each subcarrier

is trained and detected by one ANN where the number of neurons is equal to the number

of symbols. As the training process is computationally too expensive for so many ANNs,

an Extreme Learning Machine (ELM) equaliser is proposed in [91]. ELM solves the

computation complexity issue by using a generalised matrix inversion to compute the

neuron weights without needing any weight optimisation step (such as gradient descent

and back-propagation). ANN is also proposed in [92] for jointly estimating both linear and

nonlinear noise. The input to the ANN has features such as the normal and tangential

components of the noise variance, CD, number of channels. etc. The output consists

of two neurons for linear and nonlinear SNR values. This work is particularly useful

to separate linear and nonlinear noise. It forms the foundation for in-depth network

diagnose and nonlinearity aware RWA tasks [93].

The learning performances of different ML models, e.g., SVM, ANN, KNN, etc., need

to be compared in terms of complexity, data size requirement and accuracy. It is also

interesting to study the impact of deep learning on nonlinear mitigation because it has

already revolutionised many other fields [21, 22].
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network functions. 

Therefore, optical performance monitoring (OPM) that was 

used for local fault detection in static networks will play a pivot 

role in dynamic optical networks. In [11], a “living network” is 

set up without pre-planning by using the OPM information. In 

addition, the OPM information can be integrated into the SDN 

control plane to dynamically optimize the optical link [8], or to 

reconfigure networks for QoS recovery [12]. Several studies 

have explored network automations assisted by OPM 

technologies [13]–[16]. In order to expose the monitoring 

information to the network controller, local monitoring 

information is transferred to the SDN controller through an 

extended SDN protocol in [8], [13]. However, the massive 

monitoring data could flood SDN control links. The pre-

processed monitoring data will relieve the high bandwidth 

requirements for monitoring data transferring, but it will limit 

the usability of the monitoring data for different network 

analytics applications. In the authors’ previous work [16], 

multiple-layer monitoring information is collected in an 

integrated monitoring hub and an SDN-based monitoring 

analytics framework is proposed for monitoring data 

processing. The collection of the monitoring data uses 

dedicated links rather than the SDN control links. In this way, 

the raw monitoring data that requires a high-capacity link can 

be collected and re-used by multiple monitor-related network 

analytics applications. In addition, the monitoring link can also 

collect the physical parameters and the operation status of the 

network device that is not support SDN protocol, such as 

EDFAs, optical multiplexers and de-multiplexers.  

With the collected monitoring data, network 

configurations can be linked with the corresponding network 

performance. Therefore, ML technologies offer a possible 

method to analyze the data and then to predict the transmission 

performance. Existing quality-of-transmission (QoT) 

prediction techniques in optical networks can be broadly 

categorized into three main types. (i) Techniques based on 

sophisticated analytical models, such as split-step Fourier 

method [17], which exploit the information about various 

physical impairments to predict the BER of a given lightpath 

with good accuracy. These approaches typically involve high 

computational complexity (and hence large computation time) 

thus limiting their application in large and dynamic optical 

networks. (ii) Techniques based on simple approximated 

formulas [18], which are fast but relatively less accurate, thus 

resulting in higher link margins [6]. (iii) ML-based approaches 

[19]–[24] which learn the relationship between monitored field 

data and QoT of already deployed lightpaths to predict the QoT 

of unestablished lightpaths. 

     ML-based QoT prediction has gained significant attention 

recently due to the fact that ML algorithms can inherently learn 

and uncover hidden patterns and unknown correlations in big 

data typically encountered in large SDNs [25]. Existing ML-

based QoT prediction techniques in SDNs include network 

kriging [19], case-based reasoning (CBR) [20], support vector 

machine (SVM) [21], neural network [22], [23], and random 

forest (RF) [24] based methods. The above-mentioned 

approaches suffer from one or both of the following limitations. 

(i) These techniques predict only whether the QoT (in terms of 

BER, Q-factor etc.) of the lightpath under investigation is above 

or below a certain threshold rather than explicitly characterizing 

the quality of the lightpath (e.g. in terms of OSNR). (ii) These 

methods typically rely on information such as network 

configuration, network topology, and transmitter parameters for 

QoT prediction. However, such information alone is 

insufficient to reflect the actual dynamics of optical links due to 

the fact that operational behavior of the network devices (e.g. 

EDFAs) may strongly affect the transmission quality of 

lightpaths. 

In this paper, we propose a ML-based QoT prediction 

technique which not only utilizes network 

configuration/topology and signal parameters information but 

also exploits the dynamics of EDFAs deployed in lightpaths 

under investigation. Furthermore, our approach can explicitly 

quantify the quality of lightpaths in terms of OSNRs instead of 

simply labeling them as good or bad. 

III. FIELD TRAIL DEMONSTRATION OF SDN-BASED NETWORK 

PLANNING WITH ML-BASED QOT PREDICTOR  

Figure 2 shows the architecture of data-driven network 

analytics over SDN-based programmable optical networks. The 

NCMDB collects network performance monitoring data and the 

 
Fig. 2 Architecture of the data-driven network analytics over SDN-based programmable optical networks. 

FIGURE 3.2. Schematic diagram describing the function of SDN control plane
comprising AI algorithms and policies for intelligent optical networks plan-
ning.

3.2 Networking domain

Learning agents can serve as the control plane management applications for network

optimisation. Various ML models and policies can be dependent on the application use

cases. Therefore, as shown in Fig. 3.2, the next generation optical networks control

plane is expected to have a large scale learning agent repository containing different

ML algorithms and policies. For efficient global network optimisation, SDN is preferred

[94]. The control plane acts as the brain of the network that regularly interacts with

the underlying data plane such as transponders, EDFAs, ROADMs, etc. This is to

automate operations and make intelligent decision making during dynamic control and

management of network resources.

3.2.1 Traffic prediction for virtual topology design

Traffic prediction is an important capability enabling flexible virtual resource allocation

and dynamic network planning. Virtual topology is the set of lightpath connections in the
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optical network. It can be dynamically reconfigured to adapt to changing traffic demands

subject to QoT constraints, delay requirements, etc.

A supervised learning method, Auto-Regressive Integrated Moving Average (ARIMA), is

proposed in [95, 96] for traffic forecasting. The algorithm is applied to the time-series

data which is the real-time traffic matrix observed over a window of time just prior

to the current period. Accurate short-time traffic prediction is used to perform virtual

topology reconfiguration. The authors also propose Network Planner and Decision Maker

(NPDM) module to support the ARIMA. The NPDM interacts with other modules to do

virtual topology reconfiguration. The relatively low computational complexity of ARIMA

makes it attractive for real-time prediction purposes. However, the model performance is

not compared with other learning methods, for example, NN model. Hence it is hard to

justify that ARIMA is the most effective method. To tackle the same problem, i.e., virtual

topology reconfiguration, NN model is proposed in [97, 98]. A decision maker module is

proposed to take the input from the prediction of the source-destination traffic matrix

for the next time period which is based on the output of the NN model. The decision

maker determines whether the current Virtual Network Topology (VNT) needs to be

reconfigured or not based on the matrix. Because of the better prediction accuracy (less

than 3% error) and adaptability to changes in input traffic, NN model is preferable than

other models. However, as traffic patterns become heterogeneous, the size of the NN

model needs to increase in terms of its hidden layers, the number of neurons, etc. For

example, deep Recurrent Neural Networks (RNNs). This will leads to increasing demand

for larger training dataset. The training phase will become too computationally complex

to meet the real-time prediction requirement.

Except for supervised learning, unsupervised learning, such as Bayesian inference, is

also proposed [99] for VNT reconfiguration. The authors develop a VNT reconfiguration

framework without the need for the traffic demand matrix. A set of "good" virtual
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networks are memorised, each of which works well for a certain traffic situation. One

of the candidate virtual networks is retrieved for the current traffic pattern through

Bayesian inference. The results demonstrate that Bayesian inference can identify the

traffic situation using the incoming/outcoming traffic at edge routers which is easier to

get access to than the traffic demand matrix. This method is inherently a reactive way

of performing VNT reconfiguration, which is less preferred to the proactive way using

prediction.

Besides designing VNT reconfiguration algorithms, the framework that supports such

capability is also proposed. To formalise the infrastructure of ML-based traffic prediction

for VNT reconfiguration, the authors in [100] proposes a cognitive network management

module correlated to the Application-Based Network Operations (ABNO) framework. The

proposed big data network management architecture can support VNT adaptability based

on traffic prediction by applying data analytics to the monitored traffic data. Focused on

the same cognitive idea but without monitoring, a multi-objective Genetic Algorithm (GA)

for virtual topology design in which the principle of reinforcement learning is applied

in [101, 102]. The authors use previous solutions of the GA for virtual topology design

to update the fitness function for future solutions. This analytical and learning hybrid

method can "teach" the control plane to achieve better decision-making performance.

The genetic algorithm is a search heuristic for optimisation tasks which does not belong

to ML. However, for proactive VNT provisioning, traffic prediction capability is essential

in which ML serves as the fundamental method. The prediction is often built with time

series data.

Recently there are concerns about whether the modern ML and DL methods will perform

better than traditional time series forcasting methods such as ARIMA. Recent study [103]

has demonstrated that traditional time series forcasting methods outperform complex

and sophisticated methods, such as decision trees, Multilayer Perceptrons (MLP), and
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Long Short-Term Memory (LSTM) network models. This finding could have a great

impact in field of VNT.

3.2.2 Failure and anomaly detection

This area of application aims to use ML models to localise, identify and predict a certain

network failure in terms of location, time, or type of failure. In [70, 104], network

kriging is proposed to localise the exact position of malfunction along network links.

This method uses the monitoring information at the receiver side of already established

lightpaths route, when the exact localisation cannot be computed, active probes may

be sent to provide the lacking information. The way of choosing the probe signal is by

maximising the rank of the routing matrix. Depending on the network loading status, the

number of monitoring nodes necessary to ensure unambiguous localisation is evaluated.

The necessity to introduce network kriging is because intermediate node performance

is unknown such that link performance is sometimes ambiguous. Network kriging

aims to solve such problem by indicating the minimum number of effective monitoring

probes in order to minimise the ambiguity or maximise the network knowledge gain. As

aforementioned, intermediate node monitoring can be a good alternative to obtain the

lacking information. More details can be found in Chapter 6 and 7.

A combined ML solution in [105] comprising clustering algorithm and Bayesian networks

is proposed to identify and localise failures in VNT that can lead to an unacceptable

QoS. Experimental characterisation of several causes of failure is clustered to train the

Bayesian network which is further used to identify and localise the most probable cause

of failure impacting a given service. The authors in [105] applies Bayesian network

which can identify whether a fault is occurring along the lightpath. If so, the type of the

fault (such as tight filtering or channel interference) can also be detected. The input of

the Bayesian network consists of time series measurement of BER and received power
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Fig. 2. The GPON-FTTH model based on Bayesian network.

the joint probability of the family f given measurement data
Xo,t can be computed by marginalization:

γti,j,k = P(pa(Xt
i ) = j,Xt

i = k|Xo,t; θ′) ∝
∑

Cz\f
φ∗Cz

(14)

where ∝ means ”proportional to” and the proportionality
factor can be obtained by normalization.

V. APPLICATION OF EM ALGORITHM TO GPON-FTTH
ACCESS NETWORK

We applied in this section, the EM algorithm in order to
learn the conditional probability distributions of the GPON-
FTTH network model proposed in [8], based on a Bayesian
network. Before doing this, we first talk about our motivations,
i.e. the reason for which we need the EM algorithm.

A. Context

In [8], we proposed a model of the architecture and fault
propagation of the GPON-FTTH access network [10] [11]. The
GPON-FTTH network is made up of several PONs (Passive
Optical Network). A PON has a tree-like topology which
connects an Optical Line Terminal (OLT) with a maximum
of 64 Optical Network Terminals (ONTs) in our example
(see figure 3). Each ONT is connected to a RG (Residential
Gateway) via an Ethernet link. A PON is a point-to-multipoint
link through the ODN (Optical Distribution Network). The
ODN can be decomposed into several splitting levels and
each splitting level contains several splitters. Since there is
no interaction between PONs, and all PONs have the same
behavior, we have modeled one single PON. This model can
be replicated to any PON of a GPON-FTTH access network.

The model of the GPON-FTTH network proposed in [8]
is a Bayesian Network (BN) which encodes expert knowl-
edge acquired from ITU-T standards [10] [11]. The detailed
description of nodes and dependencies of the GPON-FTTH
model depicted by the figure 2 is given in [8]. From this
expert knowledge we have built a causal graph of the full chain
of dependencies between faults or root causes, intermediate
faults and observed alarms. We have turned this graph into
a Bayesian network by determining an order of magnitude
of conditional probabilities which quantify the strength of
dependencies between nodes in the graph.

Fig. 3. A simple engineering of the GPON-FTTH network

We have used this model to perform self-diagnosis of the
GPON-FTTH network. In order to assess the performance of
self-diagnosis with this BN model we have used two different
approaches. A first approach described in [8] was to set up
a physical testbed with a PON with two ONTs. Different
faults were emulated, and alarms as well as counters were

373

FIGURE 3.3. The GPON-FTTH model based on Bayesian network. The figure
is taken from [106], detailed explanation of the abbreviations can be found
in [107].

at lightpath end nodes. An identification decision is made based on the monitoring

patterns such as maximum, average and minimum values, presence and amplitude of

steps. Experimental results show that the classification error of Bayesian network is

only 0.8%. However, the method needs previous offline training data available in order

to locate different causes of failures. As the soft failures such as frequency drift may not

happen frequently, the training data is often unavailable.

Other Bayesian methods are also proposed to infer and detect faults in optical networks.

As in [106, 108], a self-diagnosis solution using EM algorithm and Bayesian network

is proposed for Gigabit Passive Optical Network-Fibre To The Home (GPON-FTTH)

access network. The GPON/FTTH network is modelled as a layered Bayesian Network as

shown in Fig 3.3. Layer 1 of the system is the physical network topology of Optical Line

Terminals (OLT), Optical Network Terminals (ONT) and fibre. Fault propagation between
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different network components is modelled in layer 2 using a set of Directed Acyclic Graphs

(DAG) interconnected through layer 1. The strengths of dependencies between layer

2 nodes with conditional probability distributions are quantified to estimate the fault

propagation uncertainties. To cope with the missing data due to improper measurements,

EM algorithm is used in which the missing data is inferred such that the estimation

maximises the expected log-likelihood function (maximum likelihood). As can be seen in

Fig 3.3, the Bayesian network has lots of dependencies between each other, errors may

easily propagate along the network which may lead to inaccurate estimation. Such error

is very hard to be detected due to the model complexity.

Besides Bayesian methods, other ML methods can also be used for network diagnosis.

Supervised learning methods such as regression and classification are proposed in [109]

for anomaly detection. A BER anomaly detection algorithm is proposed to detect any

abrupt changes in BER. It takes as input the historical BER information, BER threshold

and real-time BER per lightpath. The anomaly detection is deployed at each network

node, the output of the algorithm denotes whether the BER is out of a certain threshold

or within a predefined boundary. The output is further fed into another ML algorithm

together with historical BER and historical received power to detect the most likely

failure cause from a set of failure classes. The inputs are encoded into features that

can be quantified by time series, namely received power above the reference level, BER

periodicity and BER positive trend. The classification algorithm maps these feature

probabilities to failure probabilities. The regression algorithm makes prediction for a

short time based on the historical BER data, however, this method may not work for

rapid BER changes due to hard failure. In such case, this method becomes reactive.

A soft failure localisation algorithm for optical networking is proposed in [110]. The

authors apply two techniques for active monitoring during commissioning testing and

passive in-operation monitoring. The latter relies on specifically designed low-cost Optical
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Figure 1 presents a very simplified diagram of the archi-
tecture of an optical node, where only one incoming link
and one outgoing link, as well as the local signals being
dropped and added, are represented. The node consists
of wavelength-selective switches (WSSs), optical ampli-
fiers (OAs), dispersion compensation fiber (DCF), and
channel equalizers; on the architecture, OTC and OSA
monitoring systems are highlighted. OTCmodules are con-
nected to local WSSs in the architecture in Fig. 1. Since
OTC modules use low-speed electronics, its expected cost
is very small. In addition, only one single OTCTx and
one single OTCRx module per node needs to be equipped,
which, although it limits the number of concurrent tests
that can be carried out, also limits the number of consumed
localWSSs ports, which has a significant impact on the cost
of the reconfigurable optical add–drop multiplexers
(ROADMs) [21]. On the other hand, OSAs are placed in
every outgoing link, so the number of OSAs per node equals
the nodal degree. In this case, we have limited the number
of OSAs due to its cost, and although failure localization
can still be carried out, the granularity of the localization
would be at the node level. To achieve a finer failure loca-
tion granularity, more OSAs should be placed, conse-
quently increasing the node cost.

Figure 2 shows an example of the use of the proposed
OTC monitoring system for before-operation tests and fail-
ure localization. One OTCTx is used in the ingress node to
generate the test signal, and one OTCRx per intermediate
and egress node is used to estimate the BER. Note that,
since the lightpath has not been delivered to the customer
yet, the client signal is not connected to the lightpath
in either the ingress nor the egress node at this stage.

A module named signal quality estimation (SQE) running
in the node’s agent is in charge of receiving the measured
BER in the local OTC and correlates to what the client sig-
nal would observe. The TISSUE algorithm, running in the
network controller, is in charge of allocating the OTC mod-
ules in the network nodes, setting up the local connections
from them to the lightpath in the end nodes, receiving BER
estimations and deciding whether the tests pass or not, and
estimating the elements that participate in the exces-
sive BER.

Figure 3 depicts the use of OSAs to localize soft failures
once the lightpath is in operation. OSAs acquire the
whole C-band spectrum, then data for the portion of the
spectrum allocated to the lightpath under study is ex-
tracted. OSA passive monitoring is carried out in the in-
gress and every intermediate node (but not in the egress
one). Two modules running in the node’s agent are in
charge of analyzing the spectrum: i) the feature extraction
(FeX) module first finds the set of relevant points in the
signal spectrum that are used to compute meaningful sig-
nal features, and ii) the signal spectrum verification (SSV)
module aims at analyzing the extracted features to detect
misconfigurations, i.e., central frequency drift and filtering
problems.

The FEELING algorithm, running in the network con-
troller, is in charge of commanding the modules in the
nodes and receiving a diagnosis, as well as the relevant sig-
nal points from them to localize the failure and estimate its
magnitude. It is worth mentioning that FEELINGmust be
able to distinguish between actual failures and normal ef-
fects that could lead to similar evidence, specifically tight
filtering effects due to filter cascading of a normal signal.
FEELING takes advantage of the signal spectrum com-
parison (SSC) module that generates a diagnosis of one sig-
nal focusing specifically on filtering problems. In addition,
failure magnitude estimation modules [laser drift estima-
tor, filter shift estimator (FSE), and filter tightening esti-
mator (FTE)] quantify specific failure effects.

The next two sections are focused on the design of the
proposed active and passive monitoring systems.

III. USE CASE I: COMMISSIONING TESTS AND FAILURE

LOCALIZATION

Figure 4 shows the OTC system design, where a continu-
ous-wave laser is OOK modulated by a Mach–Zehnder
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Fig. 1. Simplified optical node architecture with OTC and OSA
monitoring systems.

Fig. 2. OTC active monitoring for commissioning testing and fail-
ure localization.

Fig. 3. OSA passive monitoring for in-operation failure
localization.

Vela et al. VOL. 10, NO. 1/JANUARY 2018/J. OPT. COMMUN. NETW. A29

FIGURE 3.4. OSA passive monitoring for in-operation failure localisation, the
figure is taken from [110]

Testing Channel (OTC) modules and Optical Spectrum Analyser (OSA). Two algorithms

are proposed: Testing optIcal Switching at connection SetUp time (TISSUE) and FailurE

causE Localisation for optIcal NetworkinG (FEELING). TISSUE is used to localise

soft failures by assessing the estimated BER values provided by the OTC module with

monitored BER. FEELING uses decision tree and Support Vector Machine (SVM) to

classify and localise soft failures impacting a lightpath using OSA, the monitoring setup

is shown in Fig. 3.4. The input data set in the form of paired frequency and power

measured by OSA is transformed into a set of features such as central frequency power,

power around other offset points of the entire spectrum, etc. These features are further

fed into a decision tree which is a multi-class classifier to predict whether a soft failure

belongs to ’Normal’, ’LaserDrift’ or ’FilterFailure’. If the soft failure is determined as

a ’FilterFailure’, a SVM-based classification is further applied to determine whether

the filter failure is due to FilterShift or TightFiltering. This method needs OSA to be

deployed at each intermediate node for power measurment. However, as OSA is a very

expensive device, such investment for the infrequent soft failures is not realistic.
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FIGURE 3.5. A typical intra-datacentre tree-like interconnection topology, the
figure is taken from [111]

3.2.3 Intra-datacentre networking

Intra-Data Centre (DC) networking field also embraced many ML methods applied to

improve the performance. For example, in DCs with hybrid-switching architecture where

an optical circuit-switched network exists together with an electrical packet-switched

network, ML-based network traffic flow classification can be a good candidate solution

to provide rapid and accurate network control and management. Fig. 3.5 shows a typi-

cal data centre interconnection topology involving various sizes of electronic switches.

The authors in [112] propose multi-layer ANN to assign network resources to Trans-

mission Control Protocol (TCP) flows with their corresponding requirements. Because

of the robust optical channel bandwidth aggregation performance and accurate flow

classification performance, the method obtains 54.7% network throughput improvement

compared to a random classification baseline. In addition to this work, an ANN-based

flow classifier is proposed in [113] at the edge of the network whose output is utilised by

an SDN controller in order to optimise global network resources. ANN allows for rapid

and accurate traffic classification at the edge of the network without compromising the

server computing resources. SDN is a promising architecture to deliver such learning

capability in correspondence with application requirements from a global view.
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In [114], the authors propose an adaptive end-to-end Markov scheduling policy which

makes decisions for every time slot and determines the time to reconfigure the trans-

mission schedule according to the most recent queue length information. Such method

aims to solve the problems in all-optical DC networks where there is no buffer for optical

packets, and the reconfiguration delay is non-zero. So decisions have to be made in

advance and adaptively. From all these work, it can be seen that proactive decisions have

to rely on learning from monitoring data. The model adaptability is critical in dynamic

networks.

3.2.4 Passive optical networks

Passive Optical Networks (PON) are systems that bring optical signals to end consumers.

Depending on where the signals terminate, PON can be in the form of Fibre-To-The-Curb

(FTTC), Fibre-To-The-Building (FTTB), or Fibre-To-The-Home (FTTH). AI methods are

also applied in the research of PON. The authors in [115] proposes using GA to optimise

PON design and planning in terms of topology searching and splitter placement. The

authors use street-map graph representation scheme to formulate and minimise the

amount of optical cabling, number of splitters and power budget. GA is also used in

[116] to optimise the first and secondary PON nodes (where the signal power is split)

in terms of nodes position, their split levels, the association of customers to secondary

nodes, and the association of secondary nodes to the primary nodes. GA is widely used

as an alternative to traditional searching algorithms due to its reduced computational

complexity. However, GA does not guarantee to find the optimal solution. This feature

needs to be addressed when the network resource is scarce, or the cost is expensive.

Besides GA related algorithms, other methods are also used in PONs. A teaching-learning

based optimisation algorithm is proposed in [117] with the aim to reduce the number

of Optical Network Units (ONU). It ensures connectivity among wireless routers and
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ONUs in a Fibre-Wireless (FiWi) network. Simulation work is carried out for various

grid size of the geographical area as well as wireless routers. The result shows that the

number of required ONUs is reduced compared to previous random and deterministic

approaches. Therefore the proposed method can be a great potential solution for designing

cost-efficient FiWi network.

Research works using AI methods are also focused on the autonomous diagnosis of

PONs. For instance, EM algorithm is proposed in [106] for optical access network self-

diagnostics. The method is based on Bayesian networks which are parameterised by

conditional probabilities. The conditional probabilities come from a database of alarms

collected on a GPON-FTTH access network. Self-diagnosis is performed to detect the root

cause of alarms by probabilistic Bayesian inference. The performance of the proposed

method is evaluated with respect to an expert system currently used by the Internet

access provider. This raises the issue that most network-wide diagnostic research has to

rely on real network data rather than data from the lab. This renders most of the network

diagnostic research difficult. Another work [118] proposes a hybrid (optical/wireless)

architecture in which SDN is used for collecting and providing traffic-status information.

It modifies the Long-Term Evolution (LTE) radio uplink-downlink configuration using a

proposed learning scheme. The learning scheme predicts the configuration of the next

LTE frame based on the collected real-time uplink and downlink data together with

previous LTE frame data. This allows for an improvement in the packet latency and

jitter performance in a global network view by computing a proactive configuration based

on the prediction. So traffic prediction is also very important in PONs.

Delivering QoS and resolving MAC issues in PONs are another area of research where

AI methods can be applied. Again, GA is proposed to cope with these problems. The

authors in [119] propose GA to balance asymmetric traffic load and reduce congestion

among ONUs in PON networks. Through simulation with actual traffic amount of 120
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sample users, the algorithm successfully reduces the traffic load of each ONU and the

asymmetric behaviour of burst data for a PON system. A dynamic excess bandwidth

allocation algorithm based on GA is proposed in [120] for a converged hybrid PON with

wireless, optimal solution can be achieved with the proposed method in assigning excess

bandwidth. In addition, the authors in [121] use a Genetic Expression Programming

(GEP) algorithm together with the limited packet transmission strategy to predict QoS,

the result shows that the proposed algorithm can optimise traffic queue variation and

reduce the delay of high priority traffic.

Research efforts are also made to integrate Proportional-Integral-Derivative (PID) control

with GA or ANN in PON optimisation. For example, in [122] the authors provide PON

delay guarantees and manage to keep the mean packet delay of high priority services

lower than a maximum threshold by designing an autonomously tuning proportional

controller based on GA. Moreover, they increase the efficiency of the global algorithm

when facing self-similar traffic by adding a dynamic admission control module to transmit

or drop packets. In addition, a PID control strategy is proposed in [123] to control QoS

requirements based on ANN-assisted parameter tuning in Ethernet Passive Optical

Network (EPON). The simulation result shows that the proposed method can ensure the

minimum guaranteed bandwidth levels (QoS) to every profile faster than GA-assisted

PID control scheme. The feedback control loop used in these work guarantees that the

inputs to the optimisation models are accurate which enhances the model awareness

and adaptability.

3.3 Summary

Optical networks have long been studied using AI methods such as GA, CBR, convex

optimisation, etc. for searching and optimisation tasks. However, these solutions only
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perform well given the model inputs are accurate. Very few research work addresses

the performance of these optimisation solutions under network uncertainty. ML is

proven to be an effective method to reduce the uncertainty through monitoring. It is

anticipated that ML and AI methods should be applied in a hybrid way for ultimate

network intelligence.
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SNR PREDICTION WITH GAUSSIAN PROCESS

T
his chapter 1 reports the use of OPM and a ML method Gaussian Process (GP)

to combat system noise uncertainty for SNR prediction. In later chapters it

will be shown that GP forms the fundamental method that supports most of

the extended research.

4.1 Motivation

OPM has been extensively applied in optical networks not only reactively where network

restoration is triggered after failure detection [32], but also proactively where monitoring

data is treated as the training set to train the system model and further predict QoT for

future connections. One challenge in predicting unestablished lightpath performance

by learning from the existing connections is model selection. A common choice would be

regression method in a weight-space view [68, 124]. However, the EDFA gain spectrum

and NF are wavelength dependent while the link loss is wavelength independent, hence

1This work is published in OFC conference proceeding [67]
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channels with distant wavelengths are less SNR-representative than neighbour ones.

This gain/loss wavelength discrepancy results in severe SNR non-uniformity across the

C-band after passing through a cascade of EDFAs. Even under static power equalisation

[125], the unstable EDFA gain excursion and NF perturbation issues due to ageing,

loading, temperature, etc. still exist [126, 127]. In addition, each channel will experi-

ence sophisticated fibre nonlinear distortions due to intra-channel and inter-channel

interference. The induced nonlinear noise is also unobservable and hard to formulaically

analyse. The compound effect on SNR performance will vary severely among channels

and is very difficult to be theoretically parameterised in real-time, especially in the case

of sparse channel distributions because of add-drops.

Due to the compound uncertainty of EDFAs, fibres and nonlinearities, traditional SNR

prediction with static GN model becomes intractable. Given there is no prior knowledge of

what the prediction model is, i.e., function-agnostic, any arbitrarily chosen weight-space

model will result in under-fitting or over-fitting issues. These issues can further lead to

network failure or margin over-provisioning due to poor QoT estimations. Fortunately,

In contrast to the weight-space view method, GP is a stochastic probability distribution

over functions (function-space view) [128], any inference takes place directly in the space

of functions that derived from the data. So rather than claiming the optical link SNR

model against wavelength to be linear, cubic, etc. GP can represent the model obliquely,

but also rigorously by letting the monitoring data "speak" more.

There are many other regression methods such as neural network or SVM which can

also tackle nonlinear regression problems. However, the power of neural network only

works given sufficient training data and model size, finding a suitable neural network

architecture (with specific hyperparameters such as number of hidden layers, number of

neurons, learning rate, optimisers, etc.) for online learning tasks with restricted dataset

size is difficult. A well-tuned neural network model is hard to scale to other systems.
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Moreover, the non-Bayesian methods intrinsically carries no estimation confidence

intervals which can be used later as the decision-making input. GP is a less-parametric

method with very few hyperparameters to tune, and hence more scalable to new dataset.

It also computes estimation confidence intervals as the generated posterior knowledge

given insufficient dataset. So GP as a Bayesian method under small dataset is preferred

in this online learning setting.

4.2 System modelling

As uncertainties happen during the network operation, offline training ML models

[24, 129] are not suitable to capture the online system characteristics. In this case, GP

is considered for such small data set online learning task. Online learning means the

system can take the real-time monitoring data as the training set to achieve "sustained

learning" throughout the network lifecycle. The training phase is on-the-fly and based

on the monitoring data. Fig. 4.1 shows the flow chart of the overall learning algorithm.

The controller updates its database and iterates through the process every time a new

channel is lit. To fit the GP model, the monitoring data (SNR vs λ) of the existing

channels is seen as the training set, a new channel SNR performance is seen as the

test set. It is assumed that lightpaths are established one by one. So each time a new

lightpath is established, its monitoring data is taken into the training set for prediction

of the next single channel establishment.

The monitoring data is intrinsically noisy because the OSNR readings fluctuate around

the mean value over time. GP models additive IID Gaussian noise ε to the mean value

Q(monitored)=Q(mean)+ε (4.1)

ε∼N (0,σ2
Q) (4.2)
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Updating pre-
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FIGURE 4.1. GP learning flow chart. Note that the data collection step is always
running to achieve sustained learning.

where Q(mean) is the mean SNR value and σ2
Q is the measurement noise variance. So

all future inferences are made by taking the measurement noise variance into account.

The final fitted GP curve does not necessarily pass through each training point, but is

always within the variance range σ2
Q . Fig. 4.2 shows an example of the measurement

reading noise when computing the OSNR using power monitoring.

Fig. 4.3 shows the graphical model explanation for GP. The inputs λi (wavelength) and

outputs Q i (monitoring SNR) of the training set are known data while the function node

f i is unknown. Each monitored data Q i is conditionally independent of all other nodes

given the latent variable f i. To predict a new test channel SNR Q∗, GP samples functions

for the corresponding function f∗ that is conditioned on λ∗ and the given training set.

The feasibility of applying GP relies on the kernel assumption which is also applicable

in optical transmission systems: given the same route, if two channels are close to each

other, their noise performances should be more correlated (GP similarity kernel reaches

maximum). Or more formally, any subset drawn from the SNR monitoring data set
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FIGURE 4.2. Additional measurement Gaussian noise ε is added to the training
set.
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FIGURE 4.3. Function-space sampling of GP, the function f is also called latent
variable.

follows a multivariant Gaussian distribution.

We model the similarity kernel (covariance function) using the squared exponential

kernel, or the so-called Radial Basis Function (RBF) [130]

k(λ,λ
′
)=σ2

f exp

(
−(λ−λ

′
)2

2l2

)
+σ2

Qδ(λ,λ
′
) (4.3)
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where σ2
f (signal variance) and l (length scale) are hyperparameters that affect the

shape and smoothness of GP, δ(λ,λ
′
) is the Kronecker delta function. The kernel function

value k(., .) is a scalar which measures the similarity between two channels. We use

cosine similarity to measure correlation. If two channels are too far away, then λ−λ
′

goes to infinity. Thus the kernel becomes 0 (exp(−inf inity)= 0), which means these two

channels have little correlation (k becomes closer to 0). In other words, closer channels

offer more information to the OSNR estimation of the target channel than distant

channels. It is worth noting that there exist about 20 choices of kernels, for example,

polynomial kernel or exponential kernel [131]. The motivation behind the choice of a

particular kernel can be very intuitive. However, the Gaussian kernel (RBF) used in

here is well known to give smooth sampling functions compared to others. This coincides

with the fact that there should not be any abrupt ascends or falls of the OSNR spectrum,

i.e. the smoothness assumption. One interesting future work can be exploring the most

suitable kernel for a particular task.

If there are m channels used as the training points, a m-by-m covariance kernel matrix

K (throughout the chapter matrices are shown in bold font) can be constructed as

K=



k(λ1,λ1) k(λ1,λ2) · · · k(λ1,λm)

k(λ2,λ1) k(λ2,λ2) · · · k(λ2,λm)
...

... . . . ...

k(λm,λ1) k(λm,λ2) · · · k(λm,λm)


(4.4)

The diagonal elements of K measure the self-similarity of each channel and are hence

equal to 1. The amount of the correlation between the training and test channels follows

a joint multivariant Gaussian distribution which is computed from the training data Q

and test data Q∗ according to the prior (initial belief of the sampled hidden function)
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[132]

K∗=
[
k(λ∗,λ1) k(λ∗,λ2) · · · k(λ∗,λm)

]
(4.5)

K∗∗ = k(λ∗,λ∗) (4.6) Q

Q∗

∼N

 0 ,

 K KT∗

K∗ K∗∗


 (4.7)

where K∗ is a 1-by-m matrix, KT∗ is the transpose of K∗. The posterior OSNR estimation

of the test set Q∗ conditioned on the training set and test input λ∗ hence follows the

Gaussian distribution [132]

Q∗|(Q,λ,λ∗)∼N (µ∗,σ∗) (4.8)

µ∗ =K∗K−1Q (4.9)

σ∗ =K∗∗−K∗K−1KT
∗ (4.10)

The pseudocode that summarises the GP algorithm fitting to transmission system is

shown in Algorithm 1. The "\" operation means matrix division. The hyperparameters are

optimised by maximising the log marginal likelihood log[p(Q|λ)] (maximum likelihood).

It is maximised by seeking partial derivatives with respect to σ2
f and l.

An important feature of GP is that it computes the Estimation Confidence Interval (ECI)

that forms critical constraints for control decision making [27]. ECI quantifies posterior

prediction uncertainty which goes high where there is no monitoring data, and goes low

where there is sufficient monitoring data. 95% pointwise ECI is a common choice which

is computed by

ECI =Q∗±1.96
√

Cov[Q∗] (4.11)
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Input:
λ - - training channel (established connections) wavelength;
Q - - training channel (established connections) OSNR;
K - - kernel function;
σ2

Q - - monitoring data noise or variance;
λ∗ - - test channel (unestablished connection) wavelength;
Target:
Q∗ - - unestablished connection OSNR prediction;
Algorithm:
L := Cholesky(K); [133]
A :=LT\(L\Q) - - intermediate computation;
Q∗ :=KT∗A - - posterior OSNR mean;
B :=L\KT∗ - - intermediate computation;
Cov[Q∗] :=K∗∗−BTB - - posterior OSNR variance;
log[p(Q|λ)] :=−1

2QTA−∑n
i logLi− n

2 log2π - - log marginal likelihood to be
maximized during hyperparameter tuning;

Return:
Q∗, Cov[Q∗], log[p(Q|λ)]

Algorithm 1: GP learning of SNR spectrum

4.3 Experimental setup

Fig. 4.4 shows the field trial testbed setup using part of the UK National Dark Fibre

Infrastructure Service (NDFIS) [http://www.ndfis.org/] which connects three geographical

nodes: University of Bristol, Brandley Stoke and Froxfield. 15 equalised 50GHz-spaced

(50GHz grid ITU) 32Gbaud DP-QPSK signals (training data, wavelength ranging from

1545nm to 1565nm) are generated at the transmitter side. The I and Q modulator

branches are driven independently by two uncorrelated 32-Gbaud Pseudo-Random

Bit Sequences (PRBS) of length 215 −1 produced by the PPG. Polarisation Division

Multiplexing (PDM) is achieved by splitting the signal through a Polarisation Beam

Splitter (PBS) into two branches, delaying one branch, and recombining the signal

through a Polarisation Beam Combiner (PBC). The signal is then amplified to 0 dBm at

the launch side. Commonly the optimum launch power would range between -4dBm and
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FIGURE 4.4. Field trial UK testbed with NDFIS, ECL (external cavity laser),
AWG (arrayed waveguide grating), PPG (pulse pattern generator), DP-
QPSK (dual polarisation quadrature phase shift keying), SSMF (standard
single mode fibre), BER (bit error rate).

4dBm depending on the system [16, 40, 68]. We did not optimise this launch power since

the target of this work is to examine the advantage of the learning method rather than

searching for the OSNR performance limit. A Wavelength Selective Switch (WSS) is used

both as an equaliser and interleaver to avoid crosstalk, WSS filter bandpass bandwidth

is set to 50GHz/wavelength. Fig. 4.5 shows the equalised channels at transmitter side.

All the other 32 channels’ SNR values within the wavelength range are treated as the

test data. The SNR test data is measured by setting up a single test channel at each of

the empty wavelength slot, it is torn down once the monitoring value is recorded.

Launch SNR is kept identical among the 15 channels by conducting back-to-back Error

Vector Magnitude (EVM) based BER monitoring using an Optical Modulation Analyser

(OMA) device. The NDFIS loop-back link gives 236km effective transmission length. At

each site, a boost amplifier is used to completely compensate the span loss. Another

200km fibre link is added after the loop-back (giving 436km in total) where signals are

amplified for every 50km before being coherently received. Some of the pre-tested EDFAs
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CHAPTER 4. SNR PREDICTION WITH GAUSSIAN PROCESS

FIGURE 4.5. Launch channels with power equalisation using WSS at the trans-
mitter side.

introduce unexpected noise excursion because of ageing.

In the coherent receiver, absolute BER is monitored at 5 minutes/channel interval and

stored in a local database, the BER is further converted to SNR by

SNRQPSK = [erfc−1(2 ·BER)]2 ·2Rs/Bn (4.12)

where the operator "/" means division operation throughout the thesis. Rs and Bn are

the signal baudrate and noise level bandwidth respectively.

4.4 Results analysis

To exemplify the GP learning model performance, we transmit 15 equalised DP-QPSK

signals from the transmitter side to the coherent receiver, resulting in 436km trans-

mission distance in total. The SNR monitoring data of these 15 channels is used as the

training data for GP. To emulate the situation in which channels are sparsely distributed

(channel fragmentation) due to intermediate node add-drops, the 15 training channels

are randomly distributed across the wavelength band. As an example, the received
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FIGURE 4.6. Receiver side constellation diagrams of three DP-QPSK channels
with different wavelengths before (back-to-back) and after 440km transmis-
sion. The more scattered constellation means signals with higher noise.

constellation diagrams are recorded for visualising the noise uncertainty. Fig. 4.6 shows

the received constellation diagrams of three training channels at different wavelengths

1547.3nm, 1554.5nm and 1560.1nm. Their launch Back-To-Back (BTB) performances

are identical. After transmission, it can be seen that their constellation performances

show various noise degradations.

We model this non-uniformity problem with GP regression as shown in Fig. 4.7. The

GP curve represents the posterior mean estimation for the target channel given all the

training set. In dynamic cases, all the real-time monitoring data is fed to the training set
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95% 
confidence 
integral

0.5dB variation

FIGURE 4.7. Regression lines based on 15 training data points (black dots), blue
line is from GP, red line is cubic polynomial, black line is from least square
linear regression, red shaded regions represent 95% confidence integral of
GP.

for the next step prediction purpose. The process iterates throughout the lifecycle of the

optical network.

We add IID measurement Gaussian noise variance σ2
Q = 0.5dB (as indicated by the black

bar in the figure) to tolerate the intrinsic SNR reading noise. The exponential kernel

hyperparameters σ2
f and l are optimised to be 2.07 and 1.53 respectively by MLE of

the log marginal likelihood. The 95% pointwise ECI indicates the posterior prediction

uncertainty which goes low where training data is sufficient, and goes high where there is

no training data. For example, the high uncertainty case is shown on the most right-hand

side of Fig. 4.7 with large red ECI area. It can be seen from the figure that only 4 test
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data points fall outside of the confidence integral while 88% of the test data is captured

by GP with 95% confidence. It is worth noting that ECI can be taken into account as one

constraint of control plane wavelength assignment. This constraint is used for allocating

more wavelengths to unexplored regions in order to minimise the prediction uncertainty

in those areas.

As Fig. 4.7 indicates, channels with wavelength around 1557nm present the best SNR

performance (global maximum) while channels with the worst SNR performance (global

minimum) locate around 1548nm due to unpredictable accumulated noise. To evaluate

the performance of GP, three other estimation methods are used as baselines. The first

is Least-Square Linear Regression (LSLR): the overall fitted line minimises the sum of

squares of residuals/errors. In other words, it is the line that makes the vertical distance

from the data points to the regression line as small as possible. LSLR is seen as the most

common weight-space method in machine learning. This method has been used in many

research works such as [68]. The second method is similar to LSLR, but it is not a straight

line. From the distribution of the training set in Fig. 4.7, it is intuitively possible that

a cubic function may fit. So least-square cubic regression is used. The third prediction

baseline is Neighbour Average (NA). This method averages SNRs of the adjacent training

channels located at both sides of the target channel. Such manipulation is commonly

used in out-of-band OSNR computation where the noise power level is computed by

averaging the noise power at both sides out of the target channel spectrum band. LSLR

and cubic regression methods are plotted in Fig. 4.7. The LSLR line has the gradient of

0.3048. It can be seen that neither of the methods can capture the training data very

well because they are not flexible enough and tend to underfit the training set. It can

be deduced that by increasing the order of the polynomial function will likely to cause

overfitting.

The prediction error using different methods are plotted in Fig. 4.8. The error is defined
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FIGURE 4.8. SNR prediction error plot using different methods (GP, cubic, linear,
and neighbour-average (NA))

as the absolute value subtracting the monitoring data from the prediction data. The

figure indicates that GP has the smallest prediction error mean and variance. We use

Root Mean Squared Deviation (RMSD) to quantify the mean error, and the maximum

error value to quantify error range. It is further summarised in Fig. 4.9 that GP outputs

the lowest RMSD with 0.7dB and the lowest MAXimum (MAX) prediction error with

1.2dB. GP has the MAX error reduction of 73.3% compared to LSLR (2.5dB RMSD and

4.5dB MAX). This demonstrates that GP is an accurate SNR (QoT) prediction method

compared to others.

To explore the impact of the training set position on the GP performance, we randomly

select three different sets of training data, each consists of 15 training channels. To

simplify the process, we index the wavelength from 1545nm to 1565nm into sequential

numbers from 1 to 50 at 0.4nm/channel scale. According to Table 4.1, for the first row

where the channels are uniformly distributed, GP returns the lowest RMSD prediction

error (0.5dB) compared to the next two rows (0.8dB and 0.6dB). In row 2 and row 3
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FIGURE 4.9. RMSD and MAX of SNR prediction error of the four methods. The
RMSD error for GP, NA, cubic regression and LSLR respectively is 0.7dB,
1dB, 1.3dB and 2.5dB, MAX error is 1.2dB, 2.2dB, 4dB, 4.6dB respectively.

where channels are not uniformly distributed, GP has a slightly worse RMSD error but

is always better than NA and LSLR methods.

The number of available monitoring channels will also influence the learning perfor-

mance. Similarly, Table 4.2 shows the impact of the number of monitoring channels on

the prediction performance of the three methods. 15, 10, 8, 6, 4 and 2 training channels

are shown in the table with the corresponding rows. It can be seen that, generally, the

performance of each of these three methods degrades with the decrease of the number of

training/monitoring channels. When the number of training channels is fewer than 6

(row 4), GP and NA have very close prediction performance. This indicates that when

there is only a few monitoring data available, it is preferred to use the NA method for

prediction since it has much lower computational complexity than GP (GP kernel matrix

dimension is proportional to the number of training channels).
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Impact of monitoring channel position on prediction performance

training channel index GP NA LSLR

2, 8, 11, 14, 22, 23, 28, 30, 31, 33, 39, 42, 45, 48, 50 0.5dB 1.2dB 2.3dB

1, 4, 5, 9, 15, 16, 17, 20, 22, 25, 29, 33, 35, 39, 44 0.8dB 1.1dB 2.8dB

9, 15, 16, 22, 24, 30, 33, 34, 35, 40, 41, 44, 45, 47, 49 0.6dB 1.4dB 2.8dB

Table 4.1: The RMSD performance of GP, NA and LSLR under different 15 training set
situations.

Impact of the number of monitoring channels on prediction performance

training channel index GP NA LSLR

2, 8, 11, 14, 22, 23, 28, 30, 31, 33, 39, 42, 45, 48, 50 0.5dB 1.2dB 2.3dB

8, 11, 14, 22, 28, 31, 39, 42, 48, 50 0.9dB 1.3dB 2.7dB

8, 14, 22, 28, 31, 39, 42, 48 0.9dB 1.4dB 2.5dB

8, 22, 28, 31, 39, 48 1.1dB 1.4dB 2.7dB

8, 22, 39, 48 1.5dB 1.5dB 2.6dB

8, 39 1.6dB 1.8dB 2.9dB

Table 4.2: The RMSD performance of GP, NA and LSLR under different number of
training set situations.
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4.5 Conclusion

We configured a cognitive, network-scale testbed in which signals are transmitted

through the NDFIS system to introduce sufficient uncertainties in the network. We

have shown that by applying GP regression with SNR monitoring, while without any

prior system knowledge, we can make performance predictions with high fidelity using

online passive monitoring data. With GP learning, 1.2dB MAX SNR prediction error and

0.7dB RMSD error are achieved across a large wavelength range which demonstrates

that GP outperforms other methods. GP model also allows estimating SNR prediction

uncertainties by computing estimation confidence integrals. This quantified prediction

uncertainty feature can be potentially leveraged as control plane algorithm constraint

to further optimise global SNR uncertainty. For example, the monitoring on-demand

application which will be introduced in Chapter 7.

During the dynamic network planning and design process, SNR margin saving is essen-

tial to optimise the network resource utilisation which needs an accurate QoT estimator.

The proposed GP learning model is shown to accurately estimate QoT by enabling a "self-

learning" network using monitoring. It can allow network to run close to its performance

limit and save significant margins under noise uncertainties.
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LEARNING OF NETWORK HIDDEN PARAMETERS

T
his chapter 1 describes the work on the inference process for the hidden op-

tical network parameters under uncertainty. Current optical networking has

evolved into fully reconfigurable and dynamic era. However, such complicated

network system unavoidably comes with ubiquitous physical layer uncertainties in

amplifiers, fibres, switches and transceivers. While active diagnostics exist, they are

either invasive or offline. Online knowledge acquisition of the hidden parameters that

abstract amplifier and fibre nonlinear impairments is indispensable but remains a big

challenge under such uncertainty. The limited amount of online monitoring data further

makes most offline-training machine learning solutions infeasible. We present hybrid

supervised/unsupervised Bayesian inference leveraging limited online monitoring data

to circumvent this problem. Our proposed approach uses the Gaussian noise model as the

likelihood function. The posterior estimations of the hidden parameters are refined with

quantified estimation probability through simultaneous exploration and exploitation

of a field-trial network. Such intelligent network analytic is shown to provide accurate

1This work is published and top scored in ECOC conference proceeding [134].
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physical layer insights and minimise real-time impairments uncertainties under small

data set restriction. It forms a reliable foundation for network control and management.

5.1 Introduction

In current coherent optical networks, QoT is largely determined by OSNR or SNR

when nonlinearity is considered. ASE noise and fibre NLI noise are two dominant

impairments contributing to SNR degradation [6, 8, 40, 135]. The modern advances

of network scalability and reconfigurability [136, 137] result in these noise induced

impairments being network state dependent and subject to changes of environment.

In such dynamic networks, operational noise uncertainties are ubiquitous in network

components such as EDFA, fibre links, and optical switches [2, 126, 129] due to add-

drop, ageing, temperature, pump power, etc. Moreover, different signals with diverse

modulation formats and bit rates will suffer different noise degradation. Utilising OPM

(or network telemetry) can to some extent obtain information about the network status,

but it still cannot provide direct knowledge of the hidden parameters that abstract the

transmission induced impairments. Two main hidden and unobservable parameters are

EDFA NF and GN model NLI coefficient ηNL which determine ASE and NLI impairments

respectively [8, 138]. Traditional optical network planning models assuming theoretical

computation of these impairments cannot take into account such operational uncertainty.

Several ANN models are proposed [23, 24, 139] to achieve autonomous SNR predictions

which aim to replace traditional planning models. Unfortunately, the offline training

process using artificial training data only considers offline design uncertainties hence it is

intrinsically unadaptable to operational uncertainties over time in a living, in-operation

network. Moreover, the proposed ANN models tend to disregard prior analytical models

and treat the system as a black box to learn from scratch. This will result in transmission
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impairments being untraceable over time which consequently leads to blindness of

system noise behaviour. Therefore, to capture real-time knowledge of noise induced

impairments and minimise dynamic operational uncertainties, learning models should

utilise real-time online monitoring data for deeper network insights.

Online learning also suffers from the shortage of training data in running optical net-

works where the number of in-service channels is limited. Learning under such restricted

data size still remains a big challenge for optical networking. Fortunately, unlike fre-

quentist methods such as ANN that neglects any off-the-shelf transmission knowledge

and only relies on OPM data which is far from enough, we propose a hybrid super-

vised/unsupervised Bayesian learning architecture to combat such online small data set

restriction [140]. Our proposed Bayesian method combines OPM data with given prior

knowledge from device vendors and analytical models to leverage all the information

available. For online supervised learning, probabilistic methods can be used to compen-

sate for data shortage issue and infer the target value with certain amount of probability.

Since there is no training needed for unsupervised learning, online knowledge of physical

layer ASE and NLI impairments can be refined in real-time with statistical scales of

estimation uncertainty. Such real-time hidden parameter tracking is otherwise impossi-

ble through direct monitoring especially under small data set limitations. It is a brand

new way of carrying out optical network analytics utilising hybrid probabilistic and

generative learning model which differs from traditional pure deterministic models. It is

"hybrid" not only in the supervised/unsupervised way, but also in the analytic/learning

way.

In this chapter we propose and demonstrate a hybrid learning-assisted network analytic

solution that autonomously extracts physical layer hidden knowledge with high fidelity

in a network-scale field trial. SDN architecture [141] is used to collect and process the

OPM data. SDN is a suitable candidate for realising such learning capability because
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it is vendor technology agnostic and its global-wide network view allows information

from various network parts to be effectively collected for centralised control. Due to the

well-proven theoretical accuracy, GN model is used to abstract the physical layer ASE

and NLI noise with EDFA NF and NLI coefficient ηNL respectively. These parameters

are fed into the GN model to predict candidate path SNR performances. Learning is

performed both horizontally and vertically (H/V) throughout the network. Horizontal

"system surface" exploration (H-step) is done by supervised Gaussian Process (GP)

learning using online SNR monitoring data. The learning process of GP has already

been described in Chapter 4. On top of the GP returned information, vertical parameter

exploitation (V-step) using unsupervised Markov Chain Monte Carlo (MCMC) inference

is performed to refine the distribution of the hidden parameters NF and ηNL at network

level. NF knowledge error is shown to be reduced by 15% compared the prior, the final

learning-assisted GN model is shown to have a 70% reduction of SNR prediction error

compared to the static case, this further proves the accuracy of the inference process for

both ASE and NLI impairments. Such hybrid H/V learning of hidden network knowledge

provides deep insights into physical layer uncertainties and guarantees dynamic network

self-awareness for proactive control.

5.2 Scheme for hybrid optical network learning

Fig. 5.1 shows a general 5-node optical network where each node represents a Reconfig-

urable Optical Add-Drop Multiplexer (ROADM). Services are provisioned dynamically

across different nodes, the end-to-end SNR monitoring information is available at each

node receiver side. SNR in combination with synchronised span power information are

collected and stored in a database for hybrid learning-assisted analysis. H-step GP learn-

ing (online supervised learning) is performed to learn any unestablished lightpath SNR

as the QoT metric. On top of the SNR estimations, the V-step link parameter inference
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FIGURE 5.1. Proposed hybrid learning-assisted network analytic architecture in
a general optical network. Each of the node represents a ROADM which can
dynamically transmit and receive signals. The power and SNR monitoring
data is stored in database for online supervised and unsupervised learning.
The updated physical layer knowledge is used by the controller for dynamic
network re-planning.

(unsupervised learning) is performed to evaluate the corresponding link parameters that

affect the QoT.

More specifically, Fig. 5.2 illustrates the detailed network control scheme assisted by

learning. The system is separated into three blocks: model parameter inputs, system

models and observation/monitoring. Information such as data rates, source-destination

pairs, etc. are treated as control plane requests (inputs). The inputs for physical layer

QoT estimation are (1) GN model nonlinear distortion coefficient ηNL; (2) filter wave-
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FIGURE 5.2. Schematic view of the learning architecture. Control plane deci-
sions are made to efficiently satisfy the network requests based on network
knowledge. Data plane QoT model serves as a lower level abstraction of
the physical layer. Because of network uncertainties the model estimation
output does not fit the monitoring data. Unsupervised learning MCMC
inference can be applied to re-optimise those feeding parameters which can
be verified by the difference between the new output and monitoring data.
Online supervised GP is used to estimate the missing SNR information in a
network scale.

length detuning δλ; (3) EDFA gain characteristic G (gain » 1); (4) EDFA NF. Any other

parameters influencing the QoT performance are neglected [138]. The QoT estimation

together with physical layer parameters are fed to the control plane as constraints to

meet heterogeneous service requests. Due to operational uncertainties of the physical

layer model parameters, after service provisioning the estimated SNR does not match

the monitoring value. Based on the end-to-end monitoring data (SNR, power) and prior
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knowledge of the lightpath, unsupervised inference MCMC (V-step) is applied to refine

the model parameters until the estimation and monitoring data converge. It is worth

noting that due to the power monitoring capability (e.g., Optical Channel Monitor (OCM)

deployed ubiquitously across the network, the wavelength detuning δλ and EDFA gain

are seen as observable parameters, thus the real-time knowledge of these two parameters

do not require inference. The final QoT estimation after learning is used for proactive

network planning.

However, such unsupervised inference can only learn path-level physical layer parame-

ters given the end-to-end path SNR monitoring data is available. To enable inference at

network level where sometimes there is no signal available for path monitoring, online

supervised learning (H-step) can be applied. For example, in Fig. 5.1, a set of λ1 is sent

through path A-B-C, another set of λ2 is sent through path A-B, to apply V-step inference

for path B-C at a new wavelength λ3, online supervised GP regression for both path

A-B-C and path A-B are performed to estimate path B-C SNR in order to do further

unsupervised inference, i.e., inference over inference.

5.3 Data monitoring and system pre-testing

As a key enabler to such self-learning capability, autonomous collection and processing of

the ubiquitous monitoring data across the network is required. Fig. 5.3 depicts the SDN-

enabled monitoring platform implemented for network self-learning which is also an

experimental implementation of Fig. 5.1. The UK NDFIS is used for field trial loopback

transmission, NDFIS runs through different geographic nodes across the country serving

as a real transmission network, hence offering sufficient uncertainties to the system.

Monitoring data from transmitter (node A), link EDFA, optical spectrum analyser (OSA)

deployed at intermediate node [27] (node B) and coherent receiver (node C) is collected
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and synchronised in a MongoDB cloud database [24].

The monitoring database serves as the centralised information hub to collect all the

remote monitoring data, it also interfaces with network control applications and SDN

controller. There are mainly three sources of information: transmitter, optical path and

receiver. The transmitter information includes modulation format, wavelength, power,

bandwidth, baud rate. Optical path information includes EDFA I/O power, gain, EDFA

pump laser status, temperature. Receiver side information includes CD, PMD, SNR,

power, etc. For each connection request, a unique record ID is generated to connect all the

affiliated data in parallel. JavaScript Object Notation (JSON) is used as the file format

in the database, data is synchronised through unique time stamps. The monitoring data

is updated once per minute. The SDN-based applications query the selected record ID

which is the key for traversing the data tree.

16 equalised 50GHz-spaced 32Gbaud DP-QPSK channels are generated at the trans-

mitter side with wavelength ranging from 1545nm to 1565nm (relative EDFA gain flat

region). Perfect filtering is assumed in all filters. CD and PMD are fully-compensated

in the DSP. Each EDFA fully compensates the span power loss to ensure each channel

launch power per span is 0dBm, this is controlled by passive EDFA I/O monitoring

and OSA spectrum information. In this case, the EDFA gain is seen as an observable

parameter. Some of the pre-tested EDFAs introduce unexpected additional ASE noise

due to device ageing. The signal SNR is computed by averaging the BER monitored in

the receiver optical modulation analyser (OMA) using [68]

SNRQPSK = [erfc−1(2 ·BER)]2 ·2Rs/Bn (5.1)

where Rs and Bn are the signal baudrate and noise level bandwidth respectively.

The received signals are first filtered by a WSS with 0.4nm band pass filter and then

pre-amplified to 3dBm for coherent detection. We use Keysight N4391A OMA which
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consists of a 40GHz dual polarisation coherent receiver with local oscillator followed by a

DSP unit. BER monitoring is performed using the built-in BERactual counting software.

The Pseudo-Random Bit Sequences (PRBS) length is 215−1 at transmitter side PPG, 50

sequences are counted for each epoch, yielding a minimum detectable BER of 6.1E-7 per

epoch. Smaller BER detection is applicable for necessary cases by counting more PRBS

per epoch. CD and PMD are fully compensated in the DSP by assuming dispersion of

16ps/(nm·km).

During network planning, GN model is used to predict system performance due to its

well-proven robustness for nonlinear noise estimation. GN model also serves as lower

level abstraction of the physical layer from which we can draw posterior parameter

estimations. SNR is predicted by the GN model with [40, 135]

SNRrx = k ·P∑N
i=1 P ASE

i +P3 ·ηNL +κ ·P (5.2)

where P is per span launch power, k is the calibration coefficient, N is the number of

spans, P ASE
i is the ASE noise power in span i, ηNL is the NLI coefficient, κ= (SNRTX )−1

is the inverse of the transmitter and receiver subsystem noise. P ASE can be further

expanded as [138]

PASE = h ·v ·NF ·G ·B (5.3)

where h is Planck’s constant, v is the optical carrier frequency, G is EDFA gain, B=50GHz.

Equation 5.3 is under the assumption that G>>1. It is worth noting that strictly the

gain term should be G-1. Since the gain is usually set to 15dB, this results in 3% error

which is regarded negligible.

Among these model parameters, the channel power and EDFA gain can be directly

monitored in real-time by reading the EDFA I/O power. SNRTX is characterised before

service provisioning and assumed constant due to its negligible variation over time
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FIGURE 5.3. Caption on the next page.
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FIGURE 5.3. SDN-based network-scale monitoring testbed. At node A trans-
mitter side, 16 equalised 50GHz-spaced 32Gbaud DP-QPSK signals are
interleaved and transmitted through NDFIS field trial, 4x16 WSS is used
as interleaver and filter to avoid crosstalk. NDFIS connects three national
geographical nodes: Bristol, Brandley Stoke (25km), Froxfield (95km). Sig-
nals are transmitted to Froxfield and looped back giving 240km effective
transmission length. In each site, EDFA is used to fully compensate the
span loss. Channel launch power per span is set as 0dBm, launch OSNR
is kept identical among the 16 channels by conducting back-to-back EVM
based BER monitoring. A 1x4 WSS is connected after loop-back as node
B (intermediate node), serving for gain flattening filtering and channel
add-drop. 4x50km (amplified per 50km) lab-based transmission is made
after node B before signals are coherently received at node C. monitoring
data from all devices is uploaded to SDN database for application plane
use where machine learning algorithms are implemented. API: application
programming interface, ECL: external cavity laser, PPG: pulse pattern gen-
erator, DP-QPSK: dual polarisation quadrature phase shift keying, AWG:
arrayed waveguide grating, BER: bit error rate, WSS: wavelength selective
switch, SSMF: standard single mode fibre, UK: United Kingdom

[2]. Back-to-back (BTB) measurement is carried out by connecting node A to node C

and monitoring BTB BER performance versus OSNR to calculate SNRTX as shown in

Fig. 5.4. OSNR is controlled by coupling additional white Gaussian ASE noise into the

system. Both the theoretical line without transceiver noise and the experimental line

are plotted. The disparity of the two lines is because that the transceiver noise exists

in the denominator of the SNR computation. As the OSNR is small, the linear ASE

noise is relatively large compared to the transceiver noise. Given the transceiver noise

is negligible, the measured SNR/BER value becomes nearly identical to the theoretical

value (without transceiver noise). The measurement and theoretical SNR/BER values

diverge with the increase of OSNR (equivalent decrease of ASE noise). SNRTX can be

computed by substituting a best fit point from the experimental line. As there is no BTB

nonlinear noise, The OSNR degradation only accounts for ASE noise. SNRTX is found

to be 19.3dB using equation 5.1 and 5.2.
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experiment

theory

FIGURE 5.4. BTB characterisation of transceiver BER versus OSNR perfor-
mance. Red solid line represents experimental regression line, black dashed
line represents theoretical performance in the absence of transceiver noise.

5.4 Unsupervised MCMC inference (V-step)

As power can be monitored ubiquitously across the network by EDFAs, Optical Channel

Monitor (OCM) or OSAs, the uncertainties are most likely to happen to the knowledge of

EDFA NF and NLI coefficient ηNL which are the key parameters abstracting transmis-

sion linear and nonlinear noise respectively. We do vertical inference to learn deep into

these hidden parameters.

Fig. 5.5 shows the flow chart of the network parameter learning process. After loading

the pre-defined parameters, path SNR estimations are computed to compare with the

monitoring value. If they are identical, then the pre-defined parameters are correct,

otherwise the parameter tuning process has to be performed as a Monte Carlo process

until the estimation error is minimised. The detail of the Monte Carlo process is described
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Computing link SNR 
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FIGURE 5.5. Flow chart of the parameter tuning process.

as the following.

Given the direct/observable knowledge of the target probability distributions of NF

and ηNL is unavailable, we fit the GN model containing the uncertain parameters as

the Bayesian likelihood function P(Qmonitored|NF,ηNL), we define our prior knowledge

P(NF,ηNL) (ideal distribution) placed on NF and ηNL as Gaussian distributions

NF,ηNL ∼ 1p
2πσ2

exp(− ([NF,ηNL]− [NF,ηNL]0)2

2σ2 ) (5.4)

for which the priors [NF,ηNL]0 come from data sheet information (NF) and GN model

nonlinearity computation (ηNL) respectively. The posterior estimation (actual distribu-
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tion) of the parameters can be determined with

P(NF,ηNL|Qmonitored)= P(Qmonitored|NF,ηNL)P(NF,ηNL)
P(Qmonitored)

(5.5)

where P(Qmonitored) is a normalisation constant that is very hard to determine explicitly.

By applying MCMC on top of GN model, we can ignore P(Qmonitored) and directly draw

samples from the posterior

P(NF,ηNL|Qmonitored)∝ P(Qmonitored|NF,ηNL)P(NF,ηNL) (5.6)

MCMC calls for a likelihood function to maximize. Due to improper prior assumptions

placed on [NF,ηNL], the GN model QoT prediction Q ∼ NF,ηNL will be inconsistent

with the monitoring value Qmonitored. We model the likelihood function P(Q|NF,ηNL)

based on the difference between Q ∼ NF,ηNL and Qmonitored by mapping the error to

0-1 probability with Gaussian exponential

P(Q|NF,ηNL)= exp(−k(Qmonitored − [Q ∼ NF,ηNL])2) (5.7)

where k is a normalising coefficient. Hence the likelihood is maximised when the pre-

diction and monitoring data converge. This also allows a closed-form expression for the

posterior distribution (equation 5.5) given the Gaussian conjugate priors [142] placed

on NF and ηNL. Sampling of the NF is in the unit of dB whereas using its absolute

value should be more appropriate. The sampling range is controlled to be no less than

0, whereas for optical amplifiers, the more efficient range would be no less than 3dB.

Inference of such bi-variate MCMC is conditioned on the network loading status which is

fully-observable in the SDN controller: as more channels are loaded, sampling of ηNL is

constrained to be no less than its previous value. Specifically, we define the channel of in-

terest to be centred at a 7-slot window. The choice of 7 slots is because placing more than

7 channels around the target channel will not increase its nonlinearity further. Sampling
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under any loading status is only considered to be performed given the corresponding

window state and bounded by an upper-threshold for the worst case from historical

inference data. Sampling for the entire window is performed so that in equation 5.7 the

sum of the squared norm residuals
∑∥∥Qmonitored − [Q ∼ NF,ηNL]

∥∥2 reaches minimum

(equivalently maximising the likelihood).

Specifying proposed distribution:
θ = NF,ηNL - - definition
q(θ)∼N [θ|µ,σ] - - Gaussian proposal distribution;
p(x)= textexp(−kx2) - - squared exponential likelihood mapping;
q(θ j|θ j−1)= q(θ j−1|θ j) - - symmetric random walk;

Sampling process:
for i = 1 : N do - - N is the number of channels in the 7-slot window

Monitoring path SNRi;
Specifying prior for θ according to datasheet;
for j = 1 : M do - - M is the total number of MCMC iterations (sampling trials)

sampling u ∼U[0,1] - - uniform distribution from 0 to 1;
sampling θ ∼ q(θ j|θ j−1) - - Monte Carlo sampling for the next guess that

depends on the current guess with Gaussian;
substitute new θ j to estimate new SNR j

error j =
∥∥∥SNRest j −SNRmonitored

∥∥∥
If u < F(θ j,θ j−1)= min[1, p(error j)

p(error j−1) ]
θ j = θ j

else
θ j = θ j−1

end if
error j = error j−1

end for
updating θ in database

end for
Return:
θ, SNR

Algorithm 2: Pseudocode of CWMH algorithm to infer network hidden parameters.

Component-Wise Metropolis-Hasting (CWMH) sampling is adopted [143]: we assume

Gaussian distribution for the component (parameter of interest) centred at the previous
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accepted sample to be our proposal distribution. The next stochastic sample guess

q(NF ′,η′NL) is drawn from the current Gaussian

q(NF ′,η′NL)∼N [(NF0,ηNL0),σ2] (5.8)

where σ2 is the variance that depends on the component, i.e., the optical parameter.

The Monte Carlo sampling process follows symmetric random walk. A new sample pair

NF ′,η′NL is accepted if the likelihood P(Q′|NF ′,η′NL) increases, otherwise there is a

probability of Pre j that the jth sample pair is rejected where

Pre j = 1− P(Q j|NF j,ηNL j )

P(Q j−1|NF j−1,ηNL j−1)
(5.9)

The pseudocode of MCMC inference is shown in Algorithm 2, CWMH is used so that

the components NF and ηNL are updated in turn instead of simultaneously during each

sampling process. First order Markov chain is used so that the next guess only depends

on the current guess (Gaussian distributed) and ignores all the historical samples

P(θn|θn−1, ...,θ2,θ1)= P(θn|θn−1) (5.10)

5.5 Performance of MCMC

Fig. 5.6 shows the joint bivariant Gaussian distribution approximated by CWMH sam-

pling for a single channel transmission at Plaunch = 0dBm, λ= 1556nm from node A to

node C (Fig. 5.3). In the case where spans are not of the same length, for computational

convenience, the composite NFcomp is used to represent the equivalent average noise

figure of all the cascading EDFAs (n) along the lightpath [144]

NFcomp = NF1 + NF2

G1
+ NF3

G1G2
+ ....+ NFn

G1G2...Gn−1
(5.11)
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NLI coefficient

NF

frequency 

density

(a)

(b) (c)

FIGURE 5.6. (a) Joint bi-dimensional frequency density distribution of single-
channel transmission noise figure and NLI coefficient posterior inference.
(b) Noise figure Probability Density Function (PDF) following a Gaussian
distribution centred at 7.1 and its sampling iteration path including burn-in
period. (c) NLI coefficient PDF following a Gaussian distribution centred at
2100 and its sampling iteration path including burn-in period.

where G is the span loss or the EDFA gain. ηNL represents the sum of all spans NLI

coefficients along the path [8]

ηNL =
n∑
i
ηi (5.12)
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All the EDFAs I/O power are monitored to ensure complete compensation of all span loss.

The mean of the Gaussian distribution is located where the actual value is most likely

to be, i.e., the Maximum A Posteriori (MAP) estimation conditioned on the prior and

monitoring data. The projections of the joint distribution are further shown in Fig. 5.6

(b) and (c), each representing the PDF of the posterior estimation of NFcomp and ηNL

respectively. The priors placed on NFcomp and ηNL are 5.5dB and 1950W−2 respectively.

As Fig. 5.6 (b) and (c) indicate, the iterations of the sampling guess for NFcomp and ηNL

start from the prior values, after a burn-in period, they converge to the MAP with the

highest sampling frequency, representing the highest probability. Finally we capture the

MAP estimation to be 7dB and 2100W−2 respectively. The closed-form expression for the

NF posterior distribution is

NF ∼N (θ|MAP,σ2
NF )= 0.66exp[− (θ−7)2

0.72
] (5.13)

In particular, the NLI parameter ηNL distribution exihibits relatively higher densities in

other regions far from the MAP, this is due to its less contributed weight on the total

noise performance in this setting compared to NF.

To verify the robustness of the inference process, we load 4 more adjacent channels in

the 7-slot window to introduce more nonlinear noise to the target channel. We perform

MCMC again for the new loading state. Fig. 5.7 shows the resulting posterior joint

distribution and its projections for NFcomp and ηNL of the target channel. The MAP

estimation for NF is 6.8dB which is very close to the previous estimation. It is worth

noting that due to previous inference knowledge, the prior placed on NF is 7dB instead of

5.5dB, the iteration starts from 7dB and converges to 6.8dB. However, ηNL is theoretically

independent of launch power but dependent of loading state, hence the prior placed on

ηNL will not come from previous MAP but needs additional GN model simulation. As

shown in Fig. 5.7(c), the iteration starts from ηNL = 3800W−2 (prior from simulation) and
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NLI coefficient

NF

frequency 

density

(a)

(b) (c)

FIGURE 5.7. Joint bi-dimensional frequency density distribution of 5-channel
transmission noise figure and NLI coefficient posterior inference. (b) Noise
figure PDF that follows a Gaussian distribution centred at 6.8 and its
sampling iteration path including burn-in period. (c) NLI coefficient PDF
following a Gaussian distribution centred at 5300 and its sampling iteration
path including burn-in period.

converges to the MAP estimation 5350W−2. In other cases where signal launch power is

changed while loading state keeps the same, the prior knowledge placed on ηNL should
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come from previous inference instead

Pn(ηNL)= P(ηNL|Qn)= P(Qn|ηNL)Pn−1(ηNL)
P(Qn)

(5.14)

where Pn−1(ηNL) is the prior knowledge from the previous inference result.

We examine the true value of each inline EDFA NFi by doing offline NF measurement

with an OSA. The additional noise introduced by laser is avoided by interpolation and is

subtracted from the total noise emitted by the EDFA. We keep the input power and gain

in each EDFA identical as the online case. The laser source spontaneous emission (SSE)

noise is subtracted from the total noise emitted by the EDFA according to [145]

NFdB = 10log(
PASE

GhvB0
+ 1

G
− PSSE

hvB0
) (5.15)

where PASE is the total noise spectral density at 0.1nm including SSE at the signal

wavelength, PSSE is the 0.1nm SSE spectral density at the signal wavelength, B0 is the

effective noise bandwidth of the OSA, G is the optical gain, v is the optical frequency, h

is Planck’s constant. All the measurements are carried out using an OSA with 0.1nm

resolution. Fig. 5.8 shows the SSE noise measurement before passing EDFA.

Fig. 5.9 shows the offline NF testing result at λ= 1556nm, the composite NF calculated

from the test values is 6.7dB which is very close to the inference value. Prior data

sheet knowledge of NFprior = 5.6dB is also shown as a reference, due to the Gaussian

conjugate prior placed on the NF, the posteriori estimation follows Gaussian distribution

hence 95% CI can be computed. The prior sits out of the CI range of the inference

while the offline measurement mean sits right within the range, indicating there is 95%

chance the true composite NF average will fall close to our inference value. Taking the

offline measurement mean value as benchmark, inference dramatically decreases our

knowledge error of NF from 1.1dB (prior knowledge) down to 0.1dB (MCMC).
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EDFA Education Kit Manual Page 19 of 26 

 

 

1547 1549 1551 1553 1555 1557

Wavelength (nm)

Figure 18.  Measure SSE power levels 1 nm on both sides of signal wavelength. 
 
8. Disconnect the DFB laser from the OSA. 
 
9. Connect the DFB laser output port to the input port of the first isolator, which is 

the input signal port for the EDFA.   
 
10. Connect the output port of the second isolator, which is also the output signal port 

of the EDFA to the OSA. 
 
11. On the OSA, measure the optical powers at 1 nm on both sides of the signal 

wavelength in dB/(resolution).  Use these powers to interpolate a value at the 

signal wavelength.  This is the ASE spectral density, PASE. 

 

 

Figure 19.   Measure ASE power levels 1 nm on both sides of the signal 

wavelength. 

 
12. Measure the optical power on the OSA at the signal wavelength in dBm.  This is 

the EDFA output signal power, Pout.   
 

 Amonics Education Kit Series  

FIGURE 5.8. Measurement of SSE power levels with 1nm on both sides of signal
wavelength. This is the signal before amplification.

As the number of channels increases, inference of both NF and NLI coefficient is shown in

Fig. 5.10. The theoretical ηNL is computed by GN model. Both theoretical and inference

of ηNL show degradation of the rate of increase with respect to channel number, this is

due to the fact that adding adjacent or close channels to the target channel causes much

more nonlinear noise than distant channels. In this case, inference of ηNL saturates

after adding 6 or more channels at a normalised value of 5.7. In contrast, inference of

NF keeps constant while the loading state is changing, demonstrating an accurate and

robust NF inference process.

5.6 Hybrid learning at network per-link level

In chapter 4 we have introduced GP as a regression method to cope with online learning

task with restricted training data set. In this section, GP will be used as the H-step

learning to predict any unestablished channel SNR to further estimate the hidden
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FIGURE 5.9. Offline measurement of noise figure of all the cascading EDFAs
and their equivalent composite average as black line, inference of NF is
shown as red line together with 95% confidence integral from posterior
Gaussian distribution, data sheet indicated NF is shown in blue line.

parameters of the link.

Network level SNR estimation is often computed by summing up per-link level SNR

performance, this also applies to situations where link-level SNR performance is un-

known and has to be computed from the lightpaths passing through the link. The basic

assumption is that both ASE and nonlinear noise are linearly accumulated along the

lightpath as indicated in Fig. 5.11(a) with the following equation [68]

Q(λ)l ink# j−1 = (Q(λ)path# j −Q(λ)path# j−1)−1 (5.16)

where Q(λ)path# j and Q(λ)path# j−1 come from GP-based H-step inference for wavelength

λ of link j using other wavelengths’ OPM data of path j and j-1 respectively.

94



5.6. HYBRID LEARNING AT NETWORK PER-LINK LEVEL

0 2 4 6 8 10

number of channels added

0

1

2

3

4

5

6

7

no
rm

al
iz

ed
 N

LI
 c

oe
ffi

ci
en

t(
1/

W
at

t2
)

0

2

4

6

8

10

N
oi

se
 fi

gu
re

(d
B

)

theoretical NLI coefficient
inference of NLI coefficient
inference of noise figure

FIGURE 5.10. Inference of NLI coefficient and NF with change of channel load-
ing, NLI for both learning and theoretical case reach saturation threshold
when 6 or more channels are loaded.

To emulate such living network scenario, we transmit 16 equalised training channels

at node A transmitter side, wavelength ranging from 1554nm to 1564nm. As shown in

Fig. 5.11(b) which is a simplified view of Fig. 5.3, after the first NDFIS link, 8 of them

are dropped and coherently received at the intermediate node B, the remaining channels

are coherently received at node C, so path A-B ans A-C can be monitored. As previously

explained, link A-B parameter set NF,ηNL can be inferred by applying MCMC to the

OPM data collected at node B. However, to update the knowledge for link B-C parameter

set we have to use equation (5.16) with the monitoring data generated at both node B

and C.

As shown in Fig. 5.12, H-step GP regression is performed based on the OPM data collected

at node B and C, representing path A-B and path A-C SNR performance respectively.
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FIGURE 5.11. (a) Conceptual diagram of transmission performance Q over many
links, the noise performance is assumed to be linearly accumulated so that
a single link performance Q(λ)l ink# j−1 can be calculated from the path per-
formance Q(λ)path# j and the path performance ending at previous node j-1
with the same origin Q(λ)path# j−1. (b) Simplified network field trial scenario
where 16 equalised 0dBm 50GHz-spaced 32Gbaud DP-QPSK signals are
generated at node A and transmitted through A-B-C. 8 signals are dropped
at the intermediate node B using a WSS. Link A-B is NDFIS-based trans-
mission and link B-C is lab-based transmission. EDFAs compensate all the
span loss.

Test set is generated by placing additional test channel to each of the empty slot and

monitoring their SNR performances. GP returns SNR prediction error of 0.6dB RMSD,

0.9dB MAX for path A-C, and 0.3dB RMSD, 0.6dB MAX for path A-B. Link B-C SNR

performance estimation (point R in the figure) is computed by selecting the channel of

interest (wavelength #8 in the figure) and importing the SNR prediction data at GP

intersection points P (Q(λ)path# j) and Q (Q(λ)path# j−1) into equation (5.16). It is worth

noting that the estimated link B-C performance at λ = #8 excludes transceiver noise
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P
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R

� of interest

FIGURE 5.12. GP-based SNR learning using 8 training channels for path A-
B and A-C, link B-C performance (point R) is further calculated at the
corresponding wavelength of interest with GP intersection points P and Q
using equation (5.16).

penalty SNRtx as it is cancelled in the subtraction, hence this term is omitted in the

GN model estimation. V-step inference for link B-C NF,ηNL is further performed using

MCMC on top of prior knowledge and the GP returned data such as point R for λ= #8.

In comparison, we also run Gradient Descent (GD) with respect to NF,ηNL which treats

this inference process as an optimisation problem (fixed parameter and random data

assumption in MLE), GD is seen as a frequentist iterative parameter tuning method

which is commonly used in neural networks. As we are searching for the global minimum

of the estimation error, GD is applicable. In cases where global maximum point is wanted,

Gradient Ascent (GA) is used instead. The parameter set is updated based on the slope

of descent [146]:

[NF,ηNL]new = [NF,ηNL]−α∇∑∥∥Qmonitored −Qestimated
∥∥2 (5.17)
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where α is the learning rate.

After refining knowledge of all the individual links by monitoring and learning, we

substitute the parameters back into GN model equations. Parameter set [NF,ηNL] is

shared among the 7-slot window, i.e., the nearest existing parameter set within the

window range is applicable to the target channel prediction. If multiple sets exist, the

average value is used. In particular, the path level A-C SNR performance is computed by

summing up all the concatenating links performance:

Q(λ)pathA−C = (Q(λ)−1
l inkA−B +Q(λ)−1

l inkB−C)−1 (5.18)

Fig. 5.13 shows the SNR performance prediction error for each link A-B, B-C and A-C

using the updated GN model. In comparison, model prediction error without parameter

learning (using improper priors, black dots), only with NF parameter learning through

MCMC (blue dots), and all-parameters learning through gradient descent (green dots)

are also plotted. By keeping improper analytical ηNL prior and just using MCMC to

update the NF, the model reduces the maximum prediction error over the wavelength

set from 2.7dB to 1.4dB, resulting in 48% error reduction. Further error reduction is

achieved by substituting updated ηNL which brings the prediction error further down to

0.8dB, resulting in 70% error reduction compared to the static case. Such further error

reduction also verifies the accuracy and robustness of the MCMC inference process for

ηNL.

In addition, parameter tuning using GD (red dots) results in the prediction error distri-

bution having larger maximum error (1.3dB) and higher variance than MCMC, this is

due to the its intrinsic over-confidence in parameter estimations that tends to overfit

the training set. Depending on the initial point, gradient descent is likely to be stuck in

local optima point which does not provide the parameter global distribution as MCMC.

Fig. 5.14 shows a general case of local optima and global optima. In our inference case, as
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2.7dB

1.4dB

1.3dB
0.8dB

FIGURE 5.13. SNR prediction error plot for path A-B, B-C and A-C using static
GN model with improper parameter knowledge (black dots), GN model with
gradient descent learning for all parameters (green dots), GN model with
MCMC self-learning NF ONLY (blue dots), and GN model with MCMC
self-learning for all parameters (red dots) respectively. Specifically, with
updated ηNL added in the model through MCMC inference, prediction
error decreases from 1.4dB to 0.8dB, demonstrating an accurate nonlinear
distortion parameter learning process. Gradient descent tends to overfit the
training data as the error variance is relatively large shown by the green
dots.

shown in Fig. 5.6 (c), ηNL PDF has several local maxima points which can give relative

"good enough" solutions, but they are not the true value. GD is likely to be stuck in those

local optima. The resulting prediction model is said to be not as generalisable as using

MCMC.
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local optima

global optima

FIGURE 5.14. GD is likely to be stuck in the local minima or local optima
position, it is hard for GD to jump out and find the global optima then.

5.7 Summary

We have shown that by applying hybrid supervised/unsupervised online learning, unob-

servable physical layer parameters such as EDFA noise figure and GN model nonlinear

interference parameter ηNL can be extracted at network per-link level. These parameters

represent critical lower level physical layer information that may not otherwise be traced

in real time with direct monitoring. It is worth mentioning that the GN model does

not need to be necessarily used for our method, any network models that can abstract

physical layer and output certain observable features are applicable, inference can run on

top of that model to draw posterior knowledge given the monitored features. To exemplify

such learning capability, we configured a cognitive, field-trial testbed in which signals are

transmitted through NDFIS network to emulate sufficient uncertainties. Under noise

non-uniformity condition, we have shown that by applying H-step GP regression with
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monitoring, we can make online predictions with high fidelity using monitoring data.

GP model also allows to estimate SNR prediction uncertainties by computing confidence

integrals. This quantified prediction uncertainty feature can be potentially leveraged

as control plane algorithm constraint to further optimise global SNR uncertainty such

as the monitoring-on-demand application [27]. Further details of how to leverage the

confidence integrals will be demonstrated in Chapter 7.

By applying unsupervised V-step MCMC inference on top of GN model and path OPM

data, we are able to refine the improper parameter priors placed on GN model and

further enhance the prediction accuracy. In the case of EDFA NF parameter, our in-

ference method achieves 0.1dB estimation error, which is 90.9% less compared to the

static case (1.1dB) without learning. In common network scenarios where there is no

end-to-end online monitoring data available for a specific path, simultaneous H/V infer-

ence can be applied given the monitoring data for other paths is available. It is worth

noting that such probabilistic learning process does not find the exact value for each

parameter to perfectly match the model prediction with the monitoring data as gradient

descent does. Perfect matching normally results in model predictions not generalising

well on future monitoring data sets, i.e., overfitting to the training set. By assuming

Gaussian distribution of all the parameters, the adopted MAP value represents a good

approximation of the true value with degrees of estimation uncertainties calculated

from the closed-form expression of the distribution. Again the quantified parameter

estimation uncertainty can be used for more applications as a byproduct. The accuracy

of the parameter learning process is further examined by replacing the improper priors

with the inference output. SNR prediction error is reduced from 2.7dB to 0.8dB, yielding

70% equivalent uncertainty reduction during dynamic network design and planning.

Such parameter inference capability potentially provides a way to separate the ASE and

nonlinear noise, hence delivering valuable real-time feedback information for control
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plane optimisation algorithms.

In summary, we have proposed and demonstrated a comprehensive self-learning solu-

tion for optical networks which is enabled by centralised monitoring and hybrid online

learning. By simultaneous supervised (H-step) and unsupervised (V-step) learning of

the network system, physical layer impairment abstractions can be refined dynami-

cally and autonomously with statistical scales of precision. Such quantified estimation

probability can be potentially leveraged for control plane decision making. Knowledge

uncertainties of the network is reduced significantly allowing the network to run close

to its performance limit. Such probabilistic learning capability forms a powerful toolset

towards ultimate optical network intelligence which is able to gain real-time physical

layer insights autonomously.
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6
INTERMEDIATE NODE MONITORING

T
his chapter 1 contains relevant research work to integrate the intermediate

node OSNR monitoring (in the linear regime) function into optical networks.

Such monitoring capability is further leveraged to provide global network

information for network diagnose and planning.

6.1 Introduction

Traditional optical networks establish rigid connections (lightpaths) at fixed bit rate,

where the channels are modulated with a common (fixed) modulation format and fixed

lightpaths. The planning and recovery decisions are made only by transmission distance

and hardware assumptions which is unaware of the real-time conditions of the physical

layer [5]. The emergence of heterogeneous QoS requirements from applications continues

to drive the evolution of traditional optical networks. Advanced technologies such as

flexible transponders [147], coherent transmission [31] and ROADMs [148] have con-

1This work is published in OFC conference proceeding [77]
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siderably enhanced the network dynamicity and flexibility. Offline network planning

methods are mainly developed under static optical transmission models, so they have

difficulty in capturing such complex system behaviour [149]. As data rate grows from

recent 100G to future 400G and above, the control plane has to dynamically adjust its

resources (bandwidth, modulation format, lightpath, etc. according to each connection

requirement. In this case, static planning can no longer support such a flexible network

where impairments become more path dependent and unpredictable.

The advances of various OPM technologies have made the optical network fully cognitive,

i.e., being able to perceive real-time optical performance and feed the information back

to the control plane. In this case, OPM becomes indispensable to bridge the control plane

and the underlying hardware. Previous research has shown that OPM plays an important

role in network optimisation and re-planning. However, most of the information comes

from the receivers and transmitters, hence the control plane holds limited information

about each individual link [150].

The most critical feature that represents QoT in current flexible optical networks is OSNR

[6]. In such case, OSNR monitoring is imperative and should be placed ubiquitously

across the physical layer. In current coherent receivers, in-band OSNR can be easily

computed by the statistical-moment based or the Error Vector Magnitude (EVM) based

methods which represent lightpath-level metrics [6]. However, reliable and distributed

in-band OSNR monitoring is also needed at intermediate nodes (e.g., ROADMs) to obtain

OSNR performance at per-link level. Due to the lack of intermediate node monitoring,

previous research proposes active monitoring [33] to measure unestablished lightpath

performance. It works by indicating the minimum number of informative monitoring

probes in order to maximise the network knowledge gain. Although this approach

proves to be effective, the assumption that impairments are flat across the transmission

spectrum may influence the prediction accuracy [75]. Such uncertainty exploration will
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be addressed in Chapter 7. Moreover, the computational complexity of network kriging

is high for large networks [76]. Therefore, an alternative method is proposed here, i.e.,

intermediate node monitoring, to solve the network uncertainty at link level. It is capable

of providing straight-forward intermediate node OSNR information that can potentially

enable low-complexity link-level network planning.

In this chapter, we propose and experimentally demonstrate in a field trial an "in-depth"

optical network monitoring mechanism that applies both intermediate node and receiver

side OSNR monitoring. We demonstrate that each link status can be monitored and used

to update the network planning table, and the restoration decision is made based on

the updated table. The closed-loop monitoring and control scheme runs throughout the

life-cycle of each signal. The final results comparing with static planning shows the effect

of the monitoring mechanism in guaranteeing QoT for the restored connections.

6.2 Intermediate node monitoring

In-band OSNR monitoring in principle should be Modulation Format (MF) independent

and tolerant to spectrum narrowing effect. The latter is induced by cascaded WSS. We

apply a reference optical spectrum based OSNR monitoring algorithm [16, 151, 152] using

a high-resolution OSA. This method has been proven to be MF independent and WSS

filtering effect insensitive. It is worth noting that in real applications this monitoring

function can be implemented using lower cost coherent reception and Radio Frequency

(RF) measurement device. The MF independence and spectrum narrowing tolerance

capabilities were investigated in [16, 152]. We address the feasibility of integrating this

monitoring function into ROADMs.
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FIGURE 6.1. Offset frequency power monitoring method to compute in-band
OSNR, the back-to-back spectrum is used to determine parameters K1,K2,
ASE noise is assumed flat within the channel bandwidth.

6.2.1 In-band OSNR monitoring algorithm

Fig. 6.1 shows the working principle of the algorithm. The signal spectrum before

transmission is monitored back-to-back as the reference. Three signal spectral powers

P1,P2 and P3 are measured at three frequencies f1, f2, f3 within the signal band, f1 is

the center frequency and f2, f3 are two offset frequencies. The power ratios K1 = P2/P1

and K2 = P3/P1 are determined from the reference spectrum. After transmission, the

signal OSNR will be degraded mainly due to the ASE noise which can be modelled as

white Gaussian noise. Two parameters α and β are introduced to model WSS filtering

penalty on the signal spectrum, by monitoring the spectral powers PCF1,POF2,POF3

after transmission, we have

PCF1 = Ps1 +Pn1 (6.1)

POF2 = Ps2 +Pn2 = K1α
NPs2 +Pn1 (6.2)

POF3 = Ps3 +Pn3 = K2β
NPs3 +Pn1 (6.3)

N is the number of filters the signal traversed, Ps1,Ps2,Ps3 are the signal power at

f1, f2, f3 respectively, and Pn1 is the ASE noise power at f1, f2, f3. Solving the above
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FIGURE 6.2. Coupling additional ASE noise into signal to emulate OSNR
degradation and calibrate parameters for α,β,γ.

equations gives the value of Ps1 and Pn1 hence OSNR can be computed as

OSNRdB = 10log[γ
Ps1

Pn1
] (6.4)

where γ= 1.7 is a calibration coefficient which depends on device power monitoring sen-

sitivity and WSS filter setting [16, 152]. Such power-based OSNR monitoring technique

only considers ASE noise induced by EDFAs, nonlinear noise is not considered.

6.2.2 Monitoring performance

By conducting back-to-back ASE noise loading for 32GBaud dual-polarization QPSK

signals, the performance of the in-band OSNR algorithm using Finisar WaveAnalyzer

1500S [153] is evaluated. 50GHz fixed grid is used for each channel spacing. Different
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FIGURE 6.3. In-band OSNR (measured within 0.1nm noise bandwidth) moni-
toring accuracy with different WA frequency resolutions, 1GHz resolution
gives the best accuracy with ±0.6dB error.

OSNR levels after transmission are emulated by coupling additional ASE noise into the

signal as shown in Fig. 6.2. The OSNR value ranges from 15dB to 30dB. As there is no

intermediate filtering, N is set to 0, hence αN =βN = 1. The choices of two spectral power

measurement frequencies f2, f3 are set at f2 = f1 +20Hz, f3 = f1 +23.5Hz according

to [16]. The WaveAnalyser (WA) frequency resolution is set to 150MHz, 500MHz,

1GHz, 2GHz to explore the accuracy of the monitoring performance. Out-of-band OSNR

computation is used to obtain the benchmark which is used to assess the monitoring

performance [154]. As shown in Fig. 6.3, 1GHz resolution gives the best OSNR monitoring

accuracy with a maximum error of 0.6dB while other resolution settings have worse

accuracy. Theoretically, the finer resolution should give better accuracy [16], but due

to the device monitoring sensitivity at finer frequency resolution (±1GHz error), the
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FIGURE 6.4. In-band OSNR (measured within 0.1nm noise bandwidth) monitor-
ing accuracy for 26Gbaud DP-16QAM with ±0.5dB error.

spectral power reading at the nominal frequency is not stable with 150MHz or 500MHz.

So 1GHz resolution is used to relax the sensitivity issue. Similarly, this method is used

to test 26Gbaud DP-16QAM signal and ±0.5dB OSNR error is achieved with 1GHz

frequency resolution as shown in Fig. 6.4.

6.2.3 Node architecture supporting monitoring

Fig. 6.5 shows the hardware implementation supporting the in-band OSNR monitoring

function in the optical backplane switch [155]. The optical switch is an essential element

in ROADMs. It is worth noting that the function can also be installed at any point of

the network, for example, an inline EDFA output port. However, this will result in the

device being only able to monitor a single route. The key components are tap coupler,

WSS (or programmable optical filter) and WA. All the devices are pre-connected in the

programmable optical switch. The signal power is tapped from the traffic port and then
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fed into the WSS. The filter (bandpass with central frequency and bandwidth) is re-

configured dynamically to choose the channel of interest for monitoring. WA is connected

to the output of the WSS for in-band OSNR computation. The signal spectrum data is

stored in the database which is available for every intermediate node. The central and

offset frequencies are autonomously located by searching for the spectrum peak power.

Monitoring parameters K1,K2,α,β,γ are pre-calibrated and stored locally in the device

controller.

6.3 Monitoring in the networking scenario

So far, we have introduced the intermediate node in-band OSNR monitoring function.

This section will apply this integrated monitoring function in a field trial network testbed

for centralised network planning.
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FIGURE 6.6. Flowchart of network service restoration using "in-depth" monitor-
ing at intermediate nodes.

6.3.1 Field trial network

Fig. 6.6 shows the flowchart of the network restoration mechanism in the case of failure:

(1) network pre-planning based on shortest path or physical layer impairment model

[156]. (2) Link OSNR and receiver BER monitoring. In particular, in-band OSNR is

monitored at per-link level using our proposed method, BER is monitored at the receiver

side as a DSP by-product. (3) The control plane processes the monitoring information

to update the planning table and trigger protection/restoration when failures happen.

(4) Once failures are detected (receiver side BER exceeds a pre-FEC threshold), the

control plane runs control plane heuristic algorithm to adopt either Modulation Format

Switching (MFS) or LightPath Re-Routing (LPRR) for network service restoration [157].

(5) The control plane further switches the Bandwidth Variable Transmitter (BVT) WSS

ports to perform the restoration process.
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The flexible BVT for on-demand signal MFS operation is shown in Fig. 6.7. Eight External

Cavity Laser (ECL) sources ranging from 1551.721nm to 1555.747nm are combined and

sent into a 32Gbaud DP-QPSK modulator which gives 50GHz-spaced transmission. The

BVT contains a pool of optical subcarriers and modulators which are pre-connected to

the input and outputs of the first WSS. The selection of subcarriers is performed by

setting up the filter in the first WSS. The selection of modulations on a given subcarrier

is achieved by directing this subcarrier to the output port of the WSS, where each of the

output port is pre-connected with a modulator. Re-routing is realised by directing the

modulated subcarrier to different output ports of the second WSS [158].

The NDFIS network is used to emulate a real networking scenario. Fig. 6.8 shows the

network topology which uses four WSSs to emulate four intermediate nodes. Link 1, 3,

4, 5 are 50km and link 2 is 100km (all SSMF). NDFIS fibre system is used in link 1. It

runs from the University of Bristol to Bradley Stoke and then loops back, forming 46km

effective transmission length. Signals are transmitted through path A-B-D, A-B-C-D
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FIGURE 6.8. BVT setup at the transmitter side, MFS and LPRR are perfomed
by programming the corresponding WSS ports

and A-C-D. Link launch power is set to +1dB. An ASE noise generator is switched and

coupled into different links to emulate the link ASE noise. A high-resolution OSA Finisar

WA is switched at any node for intermediate node monitoring by tapping the optical

power. The proposed in-band OSNR monitoring technique is implemented in the WA for

OSNR computation. The regression line (such as GP regression as proposed in Chapter

4) based on the monitoring OSNR data is used to predict unestablished channel OSNR

performance for the link.

The monitored OSNR is stored in "Cassandra" database via a personal computer. The

control plane north-bound application which is written in Python polls the database to

gather monitored information and updates its planning table. The Python application
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communicates with the control plane when restoration is required. The control plane

further executes the command by talking to the WSS agents. Assuming M channels are

monitored in each link, each link is indexed as j and connects node i and i+1, a new

path has to pass J links. Then the cost function C for choosing the correct restoration in

LPRR is

C = min
J∑

j=1

∑M
m=1[OSNRi −OSNRi+1]

M
(6.5)

6.3.2 Network re-planning performance

As shown in Fig. 6.9(a), (b) and (c), the in-band OSNR is monitored at each intermediate

node using the proposed method. Three channels in each link are selected for monitoring.

Before t0, all links perform as statically modelled, i.e., the noise performance correlates

with distance. The path A-B-D is selected by default as it is the shortest path (Fig. 6.9(a)).

From t0 to t3, the ASE noise is randomly coupled into link 2 (A-C), link 3 (B-C) and link

4 (B-D). For demonstration purpose, restoration is only performed for link 4 (B-D) where

two 16QAM (channel 2, channel 3) and one QPSK (channel 1) signals are monitored.

Link 4 is set as a permanently failed link.

As the OSNR monitored at node D (Path A-B-D) decreases as shown in Fig. 6.9(a), the

control algorithm detects link 4 as a failed link. It deletes any candidate path that

contains link 4 (B-D) and updates its planning table at t1 to select the newest best

candidate path. The re-planning table shown in Fig. 6.9(d). At time t2, path A-B-C-D

is selected as it is the current best route due to the monitoring data for both A-B-C-D

and A-C-D. It also deletes 16QAM for path A-B-D from the planning table for protection

purpose because the failed link can no longer support 16QAM QoT requirement.

The receiver side BER is also simultaneously monitored as shown in Fig. 6.9(e). At time

t2, the BER of 16QAM signal reaches its pre-FEC (21%) threshold which is 2.4E-2 at
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FIGURE 6.9. (a) Path A-B-D OSNR monitoring, at time t0 link B-D noise per-
formance starts to degrade. (b) Path A-B-C-D OSNR monitoring, at time t3
link B-C noise performance starts to degrade. (c) Path A-C-D OSNR moni-
toring, at time t2 link A-C noise performance starts to degrade. (d) Dynamic
network routing table, the planning table of candidate modulation format
pool for each path is omitted. (e) 16QAM and QPSK BER performance
vs OSNR is monitored at the receiver. (f) Receiver side OSNR monitoring
with/without dynamic re-planning.

22.7dB OSNR. This indicates that 16QAM can no longer transmit along path A-B-D. For

demonstration purpose, both MFS and LPRR are performed to restore the 16QAM signal

with a lower-level modulation format (QPSK) and a new route (through monitoring)

respectively. As shown in Fig. 6.9(e), the signal is switched from point P (16QAM) to Q

(QPSK), the recovered QPSK constellation diagram shows less noise degradation. During

the process of LPRR, the controller selects a new subcarrier wavelength from the BVT

subcarrier pool. At time t2, link 2 (A-C) is degraded ( Fig. 6.9(c)), the controller modifies

the dynamic routing table as shown in Fig. 6.9(d), the new flexible path A-B-C-D is

selected as the best candidate route.

The re-routed 16QAM constellation diagram shows better performance as shown in

Fig. 6.9(f). From t3 to t4, ASE noise source is switched to link 3 (B-C), path A-C-D

becomes available again and any path containing link3 (A-B-C-D) is deleted from the

table (Fig. 6.9(d)). Fig. 6.9(f) shows the receiver side OSNR difference between the

restored lightpath through LPRR with dynamic re-planning and static planning without

intermediate node monitoring. In static planning, the restored channel is re-routed

to path A-C-D (according to t0) where link 2 (A-C) is noisy. Since the receiver side

monitoring data only provides path-level information, the controller cannot detect link 2

(A-C). The resulting received OSNR after LPRR to path A-C-D is much worse than path

A-B-C-D selected by the intermediate node OSNR monitoring.
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6.4 Conclusion

In this field trial, We have experimentally demonstrated a link-level cognitive optical

network with dynamic re-planning capability. The dynamic re-planning and restoration

are enabled by feeding the "in-depth" intermediate node OSNR information. The in-band

OSNR monitoring technique is able to compute OSNR value for QPSK and 16QAM

modulation formats within 0.6dB monitoring error. By feeding the monitoring data to

a centralised database, the network control plane is able to gain a global view of the

network status at per-link level and dynamically recover impaired signals. The final

recovered lightpath OSNR using the proposed monitoring mechanism shows better

performance compared to the static planning case. This "in-depth" monitoring capability

can potentially provide a low-complexity, link-level optical network cognition without

the need of network kriging.
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7
MONITORING ON DEMAND BY LEARNING

T
his chapter 1 contains relevant research work which demonstrates the optimum

OSNR monitoring strategy at the intermediate nodes. The in-band OSNR

monitoring technique and the experimental architecture used in this chapter

are explained in Chapter 6, this chapter is an expanded work.

In current dynamic optical networks with cascaded filters and amplifiers, OSNR can

vary significantly from channel to channel. Under such uncertainty, OSNR prediction

for unestablished channels becomes indispensable but remains a big challenge. For

protective network planning purposes such as margin threshold setting or wavelength

assignment, it is desirable to evaluate the worst OSNR performance of each network link.

Such exploration will unavoidably employ active monitoring probes which may cause

interruptions to the network. An efficient active monitoring strategy that optimises the

choice of probes or monitoring trials is needed. We propose a "self-learning" monitoring

strategy integrated at intermediate nodes. Our method can intelligently select the

1This work is a top-scored OFC conference proceeding paper [27] and is accepted by the Journal of
Optical Communications and Networking (JOCN) as an invited OFC special issue journal
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channel to be monitored in order to search for the target global maxima of OSNR

degradation for a specific link. Our monitoring scheme detects intermediate node OSNR

in the linear regime. It is shown that our method can predict the target OSNR value with

only 0.5dB error while reducing the required monitoring data by up to 91% compared

with conventional methods.

7.1 Introduction

As shown in chapter 6, in-band OSNR monitoring function can be potentially integrated

into ROADMs to obtain per-link OSNR information for each signal. However, For the

purpose of designing a proactive network with efficient self-diagnose capability, it is

not necessary to monitor the entire network. As the network expands, large amounts

of data will be generated from the ubiquitous monitoring devices across the network.

This may cause additional operational load of the network control plane due to finite

flow entries [159, 160]. The aforementioned data is not only restricted to QoT estimation,

but also to offline machine/deep learning training and cross-layer network optimisation.

The latter may require data from the past or different network layers. On the other

hand, probe signals are often utilised for active monitoring purposes [33, 161] which

can cause additional interference and blocking with existing network services [162, 163].

Since sending probe signal is both operationally expensive and influential to network

performance, it is desirable to minimise the number of probes or monitoring trials.

The strategy used in this chapter assumes that no active probe is required if there is

an established connection, otherwise probe channels may be used for unestablished

connections.

Besides optimising active monitoring trials, network diagnosis also needs to be agile

and real-time. In the case of end-to-end coherent service provisioning, the OSNR of
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each channel can be monitored simultaneously by each corresponding receiver as a DSP

by-product [6]. However, for intermediate nodes where a single OSNR monitoring device

is deployed, the OSNR of each channel cannot be monitored simultaneously. As such,

sharing the intermediate-node monitoring device among multiple channels remains an

unsolved challenge.

For proactive network planning, the worst OSNR performance of the link is critical

to be tracked. Failures can be proactively avoided once the worst OSNR degradation

case is addressed. It can be used as a satisficing constraint (no more than the worst

case threshold) when performing wavelength assignment and routing. As studied in

Chapter 4, the state-of-the-art EDFA comes with intrinsic gain and NF spectrum non-

uniformity characteristics. This further contributes to OSNR non-uniformity across the

C-band [164, 165]. Even under static gain equalisation control, EDFA power excursion

and offset filtering problems also lead to OSNR uncertainty [129]. Such uncertainty is

difficult to formulaically analyse. Furthermore, the network status can change quickly

due to dynamic add-drops, which makes the system a "black box". Instead of conducting

complete examination of the black box, intelligent monitoring strategies are required

to search for the worst OSNR performance of a link with as few monitoring trials as

possible.

In Chapter 4 we propose and demonstrate a Gaussian Process (GP) based SNR learning

method under noise uncertainty. In Chapter 6 we introduced a centralised intermedi-

ate node in-band OSNR monitoring. In this chapter, we propose and experimentally

demonstrate a Monitoring on-Demand (MoD) strategy at intermediate nodes to eliminate

redundant monitoring trials based on the work done in Chapter 4 and 6. The experiment

is carried in a 100Gb-based 50 GHz-spaced 16-channel cross-city field trial network.

Techniques in Chapter 4 and Chapter 6 serve as the principal methods supporting this

chapter. We expand the work in the previous chapters by further demonstrating that
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pure GP learning without BO requires much more monitoring data for our prediction

purpose. It can be shown that through learning of the existing channel performance

and on-demand hardware switching, MoD retrieves key OSNR information with up to

91% data saving and significant time saving than other strategies, which enables an

intelligent and data-efficient monitoring process.

7.2 MoD node architecture

The flexible monitoring function at intermediate nodes is realised using the node archi-

tecture proposed in Chapter 6. Fig. 7.1 shows the architecture again. The key components

are tap coupler, WSS (or programmable optical filter) and WaveAnalyser (WA). All these

hardware devices are pre-connected in the programmable optical switch. The signal

power is tapped from the traffic port and then fed into the WSS. The filter (bandpass with

central frequency and bandwidth) is re-configured dynamically to choose the channel of

interest for monitoring. WA is connected to the output of the WSS for the in-band OSNR

computation. The signal spectrum data is stored in the database which is available for

every intermediate node.

The controller computes the OSNR value of the current channel (see Chapter 6) and

dynamically re-configures the filter to choose the next channel of interest. The process of

making the re-configuration decision follows the Bayesian optimisation learning model.

The decision is influenced by the OSNR performance it has monitored so far.

As mentioned in chapter 6, this monitoring function can be implemented using lower cost

coherent reception and RF measurement device [16, 152]. In such case, to realise physical

layer autonomous in-band OSNR monitoring, single channel filtering is important so

that the algorithm can autonomously locate the central frequency by searching for the

maximum power (as there is only one channel). Then accurate offset frequencies can
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FIGURE 7.1. Monitoring on-demand physical architecture where all pro-
grammable devices are pre-connected in the optical switch integrated in
ROADMs for dynamic on-demand switching, signal power is tapped and
then filtered by a WSS to choose the channel of interest for OSNR monitor-
ing.

be located accordingly. It is worth noting that there actually exist many methods in

literature to monitor the in-band OSNR. For example, the Delay-Line Interferometer

(DLI) based methods [166, 167] which are based on single channel filtering. Our proposed

MoD algorithm is not restricted to monitoring with WA, it aims to be applicable to other

in-band OSNR monitoring techniques as well. So single channel filtering is assumed.

7.3 Bayesian optimisation

As mentioned in Chapter 4, optical transmission systems come with intrinsic ASE noise

spectrum non-uniformity due to EDFAs, filters, etc. This non-uniformity problem gets

even worse after cascading many independent EDFAs in a transmission link. This

causes distant channels to be less OSNR-representative than the neighbour ones. As it is

analytically intractable to parameterise the ASE spectrum in dynamic optical networks,

GP model can be used to "learn" from monitoring data. An important feature of GP is
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that it computes the ECI that forms critical constraints for control decision making, ECI

quantifies posterior prediction uncertainty which goes high where there is no monitoring

data, and goes low where there is enough monitoring data. 95% pointwise ECI is a

common choice.

Each time a single channel is monitored, the control strategy of the monitoring device

based on the MoD architecture follows a "self-taught" monitoring process. Bayesian

Optimisation (BO) determines the next monitoring point (λnext) based on learning from

the OSNR performances that have been monitored so far. Fig. 7.2 shows the flow chart of

the overall learning model.

(i) Monitoring selected 

channel performance 

(OSNR vs �)

(ii) Updating database and 

network planning table

(iii) Fitting GP to the given 

training set

(iv) Fitting BO on top of GP 

(v) Switching to the next �

with MoD

FIGURE 7.2. Monitoring on-demand switching strategy driven by Bayesian
optimisation.

BO is intrinsically a decision trade-off algorithm on top of GP ECI. A large ECI area is

an indicator of a high variance. The bounded region becomes more explorable because of

the high estimation uncertainty. In the meantime, since we are only interested in the

worst case OSNR performance, i.e., the global maximum point of OSNR degradation per
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link, the region around the monitored high OSNR degradation values (high mean) is

likely to contain a worse value. Therefore we should also exploit this high mean region.

Here we define that for link i connecting node j and j+1, the OSNR degradation in dB

is

OSNR i
deg =OSNR j −OSNR j+1 (7.1)

To fit BO to GP, a utility (or acquisition) function "probability of improvement" (PI)

[168] is applied to deal with this fundamental exploration and exploitation trade-off.

PI computes the probability of establishing the next probe channel to be monitored (or

filtered) as

UPI(λnext;Dn) :=Pr[OSNR(λnext)>µ+
OSNR]

=Φ[(µn(λnext)−µ+
OSNR)/σn(λnext)]

(7.2)

where µ+
OSNR is the best OSNRdeg been monitored so far, µn(λnext) and σn(λnext) repre-

sent the posterior GP returned OSNRdeg mean (quantified degree of exploitation) and

variance (quantified degree of exploration), Φ is the standard cumulative distribution

function. PI returns the area under the posterior Gaussian distribution above µ+
OSNR,

the larger the area, the higher probability of improvement. The point with the highest

probability of improvement (the maximal expected utility) is selected [169]. BO returns

the next optimised monitoring or probing choice λnext by maximising the utility function

UPI . The pseudocode of BO-driven MoD function is summarised in Algorithm 3.

7.4 Field trial testbed

Fig. 7.3 depicts the field trial network using part of the UK NDFIS system. The NDFIS

allows experiments to be carried out in a real-world operating network, hence introducing

sufficient operational uncertainties. 16 equalised 50GHz-spaced 32Gbaud DP-QPSK

signals are available at the transmitter side and ready to be launched into the network.

125



CHAPTER 7. MONITORING ON DEMAND BY LEARNING

Input:
t = 1 : n - - total number of channels;
D[λ(wavelength),OSNR] - - GP regression of channel OSNR;
σ2

Q ,K - - GP kernel function and monitoring variance;
Target: λt - - next probing channel;
Algorithm:
for t = 1,2,...,n do {

find λt by combining attributes of the posterior distribution in the PI function
UPI and maximising

λt = argmaxλ[UPI(λ|D1:t−1)]
monitor the objective value OSNR(λt)
augment the data set

D1:t = {D1:t−1, [λt,OSNR(λt)]}
update GP

} end for
Return: λt, D1:t

Algorithm 3: BO-driven MoD function for channel selection

Channel power is set to 0 dBm/channel/span by each EDFA to avoid unwanted nonlinear

distortion. Signals first enter the NDFIS link running from Bristol to Brandley Stoke

and further to Froxfield which gives 236km effective loop-back transmission distance.

Another 200km fibre link (lab-based) is connected after the loop-back (giving 436km

in total) where signals are amplified every 50km. Launch OSNR is kept to 30dB by

coupling additional noise to all the 16 channels to simplify the scenario. Channels with

different wavelengths undergo different OSNR degradations after the link. We treat the

transmitter as the first node, MoD is performed in the intermediate node where signals

pass WSS (add-drop), coupler (tapping power), filter (selecting the channel of interest),

and enter WA for in-band OSNR monitoring.

The WA monitoring device can be either shared among different fibre links by switching

the optical switch ports, or among different channels in the same link by controlling

the filter. In this work, we are focused on the latter case where the exploration and
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FIGURE 7.3. Field trial testbed using NDFIS, signals are transmitted from
Bristol to Froxfield and looped back to Bristol, the detailed intermediate
node architecture is shown in Fig. 7.2, ECL (external cavity laser), PPG
(pulse pattern generator), DP-QPSK (dual polarisation quadrature phase
shift keying), SSMF (standard single mode fibre).

exploitation trade-off is made to find the worst OSNR performance of a target link with

as few monitoring trials as possible. Specifically our target is to find max[OSNR i
deg],

in this experimental setup this is equal to finding max[30dB−OSNR j+1] according to

equation 7.1 where OSNR j+1 is the intermediate node to be monitored.

It is worth noting that our proposed method is also applicable to mesh networks, i.e., with

different signal launch OSNR at the beginning of each link. As section II describes, we

are able to monitor any intermediate node OSNR j, hence this makes OSNR degradation

possible for each individual link using equation 7.1. If we are interested in the lightpath

metric, we can sum up the degradations of the traversed links. Or we can use the
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following equation [68]

1
OSNRpath

=
n∑

i=1

1
OSNRl ink−i

(7.3)

where OSNRl ink−i is the end-to-end OSNR for link i.This assumes that ASE noise is

linearly accumulated throughout the lightpath. If an unestablished signal OSNR is

unknown for a specific link, we can use the proposed GP regression method to infer the

OSNR for the wavelength in that link.

7.5 GP performance evaluation

BO computes PI according to GP ECI (selection of the next channel to be monitored). The

global OSNR degradation maximum point is estimated by further GP regression with

the newly monitored data. It is necessary to evaluate the performance of GP prediction

for un-established channel OSNR with limited online monitoring data.

Fig. 7.4 show the GP predictions of unestablished channel OSNR under different link

loading and monitoring conditions. Wavelength is indexed into 1 to 81 representing

1562.6nm to 1530.7nm at 0.4nm grid (50GHz ITU), i.e., covering the whole C band. Hy-

perparameters are optimised to be σ2
f = 2.07 and l = 1.53. The measurement uncertainty

is set to σQ = 0.1dB. All the OSNR reference values are used as test data to evaluate the

corresponding GP prediction accuracy. We define the true/reference OSNR of the link as

the OSNR values that are monitored by our proposed in-band method. They are used as

benchmark. The OSNR test data is measured by setting up a single test channel at each

of the empty wavelength slot. It is torn down each time the reference value is recorded.

Due to cascaded EDFA power amplification characteristics, the link OSNR performance

varies with the loading status, by setting up only a single test channel, the impact of

channel loading to EDFA is kept to minimum.

128



7.5. GP PERFORMANCE EVALUATION

0
2
0

4
0

6
0

8
0

W
a

v
e

le
n

g
th

 In
d

e
x

4 6 8

1
0

1
2

2
 tra

in
in

g
 c

h
a
n
n
e
ls

T
ru

e
 lin

k
 O

S
N

R

0
2
0

4
0

6
0

8
0

W
a

v
e

le
n

g
th

 In
d

e
x

4 6 8

1
0

1
2

5
 tra

in
in

g
 c

h
a

n
n

e
ls

T
ru

e
 lin

k
 O

S
N

R

0
2
0

4
0

6
0

8
0

W
a

v
e

le
n

g
th

 In
d

e
x

4 6 8

1
0

1
2

1
0

 tra
in

in
g

 c
h

a
n

n
e

ls

T
ru

e
 lin

k
 O

S
N

R

e
x
c
u
rs
iv
e

re
g
io
n

(a
)

(b
)

(c)
(d
)

FIGURE 7.4. GP prediction of unestablished channel OSNR performance with
(a) 2 training channels, (b) 5 training channels, (c) 10 training channels, (d)
16 training channels.
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Fig. 7.4(a) has only two monitoring/training channels, it can be seen that the fitted GP

curve can hardly capture the link OSNR performance due to too few training data points

available. Fig. 7.4(b) and Fig. 7.4(c) increase the training data size to 5 and 10 respectively,

each shows relative improvement in capturing the true link OSNR behaviour. However,

the performance is still poor in some excursive regions including the global maximum

point. Finally GP is able to predict the whole link OSNR with reasonable accuracy when

the number of training channels reaches 16, as shown in Fig. 7.4(d). The prediction

error for each training case is shown in Fig. 7.5. Training cases with 2 training channels,

5 training channels, 10 training channels and 16 training channels have root mean

squared error (RMSE) of 1.5dB, 1.2dB, 0.8dB and 0.5dB respectively. This means that

adequate online monitoring data (more than 16) is essential to capture accurate link

OSNR performance.

It is worth noting that, without involving the self-taught MoD function, GP prediction

with randomly generated training set does not guarantee that the current estimated

global maximum point is the true target value, i.e., the worst OSNR degradation of the

link. The only way to gain confidence about this estimation is to use as many monitoring

data points as possible for training. Such amount of online monitoring data is hard to

obtain without sending monitoring probes. In the case of active monitoring, the number

of monitoring probes should be optimised to avoid interruption to existing services.

7.6 Self-learning on-demand monitoring

By applying BO on top of GP, the next monitoring channel of interest depends on

the ECI computed by GP posterior mean and variance as well as the current global

maxima monitoring points. Fig. 7.6 and Fig. 7.7 show the details of BO process. Different

monitoring decisions are made depending on the normalised acquisition function (AF) uPI
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FIGURE 7.5. OSNR degradation prediction error with different GP training data
sets. It can be shown that with more training channels, the corresponding
mean and variance of the prediction error decrease.

computed by PI. The cyan region represents the estimation uncertainty (95% confidence

integral) which goes high where there is no monitoring data, and goes low where there is

monitoring data. The next channel of interest (next best guess) is marked by a star on

the AF curve.

In Fig. 7.6 which contains 4 monitoring data points, the algorithm tends to prioritise

exploration given the 4 points spread in large ranges across the wavelength band. So the

indicated next best guess locates within high ECI region. After 5 steps, in Fig. 7.7, MoD

starts to exploit the region with high posterior mean according to GP as the indicated

next best guess no longer locates in high ECI region. As more channels are monitored

and utilised to be the next step GP training data, the BO decision will be made around

the global maximum. It is worth mentioning that due to the stochastic function sampling

process of GP, each time BO re-runs, the posterior mean and variance may differ from

the previous value. So the choice for the next channel of interest may vary.
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FIGURE 7.6. BO-driven MoD after GP fitting with 4 training set where the
algorithm tends to explore high ECI region as indicated by the normalised
acquisition function.

Fig. 7.8 evaluates the number of filter switching times required to find OSNRdeg global

maximum. As mentioned in Chapter 6, the in-band OSNR monitoring device can only

compute a single channel OSNR, so selection of the next channel of interest is done by

adjusting the filter (or WSS in our experiment) position in the MoD architecture. Two

other switching strategies are used to assess the performance of MoD: 1. Sequential

Monitoring (SM): sequentially switching to each channel in the link from left to right; 2.

Random Monitoring (RM): the switching or monitoring order is stochastic. Note that by

using SM and RM strategies, active probing method becomes clumsy since the required

monitoring probe has to loop across the whole C band without optimisation. In the case of

16 channels monitoring (Fig. 7.4(d)), with a total number of 40 switching times, BO first

finds the highest OSNR degradation located at λ = 194650GHz (wavelength index #59)

with 8 switching times, 62.5% quicker than SM (13 times) and 400% quicker than RM

(40 times). 75% of the BO data (after 8 switching times) is constant when searching for
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FIGURE 7.7. BO-driven MoD after GP fitting with 5 training set where the
algorithm starts to exploit high posterior mean region as indicated by the
normalised acquisition function.

the link worst OSNR degradation (11dB). This means the rest of the constant data can

be omitted after the first detection, resulting in 50% saving (8 channels out of 16). This

demonstrates that BO can take the monitoring process out of the loop by intelligently

selecting the channels that provide the largest information gain.

Fig. 7.9 demonstrates the capability of BO in locating the target OSNR with "just enough"

monitoring data. The complete link OSNR performance for each wavelength slot is tested

and recorded as benchmark data, the fitted GP curve using BO has the posterior global

maxima at exactly the same point as using all the 16 training channels that capture the

whole link OSNR performance as already shown. BO achieves 0.5dB prediction error

(relative to the reference value) for the target OSNR while the data needed is halved.

This proves the capability of MoD in retrieving the most critical OSNR information with

up to 91% data saving (8 out of 88 if C band is fully loaded), and in the mean time,
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FIGURE 7.8. Monitoring performance in terms of switching times needed to
find the global maxima.

retaining identical prediction accuracy compared to full exploration with 16 channels.

7.7 Summary

In this field trial we have demonstrated a self-taught monitoring-on-demand function

driven by Bayesian optimisation on top of Gaussian process at intermediate nodes where

a single in-band OSNR monitoring device has to be shared among different routes and

channels. We apply the in-band OSNR monitoring algorithm described in Chapter 6

which is implemented in a high-resolution OSA and can be dynamically switched to

monitor any channel on-demand. The algorithm takes back-to-back signal spectrum as

reference spectrum together with real-time offset monitoring power to compute target

in-band OSNR value. The algorithm achieves OSNR monitoring accuracy of 0.6dB with

1GHz device frequency resolution.
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FIGURE 7.9. Prediction of OSNRdeg global maxima with MoD (8 monitoring
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With such monitoring capability, Bayesian optimisation is then applied to learn from

already established connections. It aims to minimise the number of monitoring trials

needed for locating the worst OSNR degradation of the link. It has been shown that

by using pure GP regression, at least 16 sparsely distributed monitoring channels are

required to completely capture the whole link OSNR performance including the global

maximum. BO significantly accelerates the process with only 8 monitoring trials to

rapidly find the target OSNR value. In situations where active monitoring probe has to

be used, BO is expected to save up to 91% of the monitoring trials (whole C band channels)

while accurately predicting the global maximum with 0.5dB error. In practice, the global

minima points are also of interest to operators, more channels can be allocated to the

lower degradation regions to allow better transmission performance. Such intelligent

self-taught learning strategy enables a data-efficient, out-of-the-loop monitoring process.

It can be critical in accelerating the monitoring process and saving the number of probe
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signals for active monitoring purposes.
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CONCLUSION AND FUTURE WORK

T
his thesis contains relevant research work that applies machine learning and

data mining techniques to optical networks. Through using effective optical

monitoring data, it is shown that much more valuable network knowledge can

be generated. These knowledge offers robust solutions to optical network planning and

management and cannot be obtained by any other means without learning.

8.1 Summary

This work began by introducing relevant cognitive architectures that support ML in

optical networks. They rely on the ubiquitous monitoring capabilities across the network.

For example, monitoring from the EDFA I/O ports, receiver DSP units, intermediate

node, etc. Apart from the monitoring capability, device programmability realises network

flexibility which makes intelligent network re-configuration possible. All these decisions

are made in the network control plane.
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Such network flexibility unavoidably brings uncertainties of network knowledge. The

uncertainty in physical layer impairments such as ASE or nonlinear noise will ultimately

result in unreliable network planning which leads to resource over-provisioning or

network failure. Simple monitoring data can only provide observable straight-forward

information. To obtain more insightful knowledge or accurate prediction performance,

data mining or machine learning techniques are needed.

In the literature review chapter, relevant research work that applies ML and AI tech-

niques to help optimise network performance is extensively reviewed. As AI in optical

networking is a relatively new area of research, research work on other networks using

AI such as network virtualisation is also introduced. In the physical layer domain, neural

network is a common method that has been widely used in QoT estimations, EDFA

control and optical performance monitoring. Unsupervised algorithms such as EM clus-

tering or PCA are shown to be effective for nonlinear noise mitigation. A common point

is that none of these proposed learning solutions can do without real-time monitoring.

In the networking domain, AI can leverage the SDN architecture to function as the

control plane management applications for global network optimisation. For example,

genetic algorithm is especially helpful in physical topology design and resource allocation

given a global view of the network. Bayesian inference is a powerful tool to detect and

locate network failures or anomaly intrusions. AI methods are not only applied to optical

networks, but also data centre networking and virtual networks.

Although there is lots of work addressing AI methods in optical networks, few of them

mentions the fact that the optical networks are difficult to generate a huge amount of

data (big data) like other machine learning applications. This causes an argument within

the field as to whether it is a suitable time to employ deep learning. Another critical

issue with a lot of existing literature is that they apply offline learning models to learn

an online/running network performance. Such learning process does not guarantee to
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Learning improvements over traditional methods

methods mean SNR
prediction
error

NF estima-
tion error

Link-level
SNR predic-
tion error

MoD number
of monitoring
trial

traditional
method

2.5dB 1.1dB 2.7dB 88

heuristic
learning
method

1.3dB N/A 1.3dB 16

Probabilistic
learning
method

0.7dB 0.1dB 0.8dB 8

Table 8.1: Summary of learning performance improvements over traditional and heuristic
methods.

capture the real-time network behaviour and is intrinsically an unreliable solution. This

thesis addresses network online learning capability while the network is evolving. Such

online learning capability depends on relatively small data set from a sliding window.

How to efficiently leverage the small online monitoring dataset is one of the key points

of this work.

As can be seen from Table 8.1, ML methods can significantly improve the performance

of a network planning model compared to traditional methods with no learning or

heuristically low-level learning. The low-level learning refers to simple ML methods such

as averaging neighbouring points, MLE, etc. The KPI is the prediction error reduction

for QoT metrics. Such prediction performance improvement can adapt each signal to its

transmission performance limit, and hence increase the network throughput [2]. It has

been shown in [170] that, compared to the worst case design, controlling the prediction

error to 0.1dB results in a reduction of the maximum number of regenerators to 16% -
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47% depending on the network load for a national network topology. Further reduction of

the error from 0.1dB to 0 (perfect knowledge) results in another 4% regenerator saving.

Therefore, the acceptable prediction error for a specific system depends on the budget for

regenerator placement, or the expected throughput of the network.

Due to system uncertainties, Gaussian process is proposed to estimate online signal SNR

without any prior system knowledge which takes real-time passive monitoring data of

existing services as training data. It has been shown that 1.2dB MAX SNR prediction

error and 0.7dB RMSD error are achieved across a large wavelength range which

outperforms other learning methods. GP model also allows estimating SNR prediction

uncertainties by computing confidence integrals. This quantified prediction uncertainty

feature can be potentially leveraged as control plane algorithm constraint to further

accelerate on-demand monitoring process, or even more probabilistic control actions.

GP forms the Horizontal-step (H-step) to explore network surface performance (SNR

prediction) while Bayesian inference method MCMC can be used to further gain deeper

network insights. By applying unsupervised Vertical-step (V-step) MCMC inference

on top of the GN model, we are able to refine the improper parameter priors placed

on the GN model and further enhance the prediction accuracy. These parameters can

abstract the system ASE and nonlinear noise performance hence are critical to be

traced in real-time. In the case of EDFA NF parameter, our inference method achieves

0.1dB estimation error, which is 90.9% less compared to the static case (1.1dB) without

inference. Hybrid H/V learning is proposed and demonstrated in a field trial network

to achieve per-link noise parameter abstraction. SNR prediction error is reduced from

2.7dB to 0.8dB by substituting the refined parameters into the GN model, yielding 70%

equivalent uncertainty reduction during dynamic network design and planning.

Besides using the receiver DSP monitoring as the raw data fuelling learning models,
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intermediate node in-band OSNR monitoring is also implemented using an on-demand

node architecture. The in-band OSNR monitoring technique adopting offset optical power

monitoring is shown to measure OSNR value for QPSK and 16QAM modulation formats

within 0.6dB monitoring error. By feeding all the "in-depth" monitoring data to the SDN

controller, it is demonstrated that efficient network protection and restoration can be

performed with programmable bandwidth-adaptive transmitters.

As the intermediate node OSNR monitoring device has to be shared among many chan-

nels, an on-demand self-taught monitoring strategy is proposed to eliminate redundant

monitoring data and accelerate the monitoring process. By utilising the confidence inte-

grals computed by GP regression, Bayesian optimisation technique can be used to locate

the next channel of interest in order to find the global maxima of the OSNR degradation

for fibre links with as few monitoring trials as possible. It is demonstrated in a field trial

that BO can save up to 91% of the monitoring data in the worst case when C-band is

fully loaded. Such intelligent monitoring strategy enables a data-efficient, out-of-the-loop

monitoring process and can be critical in saving monitoring trials when sending probing

signals for monitoring purposes is operationally harmful and expensive, or when control

decisions have to be made rapidly.

There are also drawbacks of the proposed methods. Bayesian methods are suitable for

learning with small dataset since the given information is relatively incomplete. GP

intrinsically is equivalent to a NN model with an infinite number of hidden layers. This

property makes GP computationally expensive with large training set as the kernel

matrix dimension will become excessively large. If the training phase has abundant

monitoring data, for example, over thousands of training data points, frequentist methods

such as NN should be used. The same complexity problem applies to MCMC inference

because the Monte Carlo sampling process has to iterate over thousands of samples

to converge. Gibbs’ sampling is one potential solution to reduce the computational
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complexity.

Introducing monitoring capability at network intermediate nodes has the potential to

reduce the computational complexity of algorithms such as network kriging. It can

also avoid sending active measurement probes when the passive monitoring signals

are not enough. However, additional cost is needed to deploy the monitoring device

ubiquitously at each intermediate node. There is a trade-off between the extra cost of

intermediate-node monitoring and the computational complexity of active or kriging

methods.

As can be seen from this work, AI and ML methods can be used in many aspects to

optimise the network performance. For example, QoT prediction, parameter inference and

on-demand monitoring strategy. In a nutshell, AI and ML can make accurate predictions

and perform optimal control plane decision making based on the prediction. To avoid

black-box issues, ML models should be complementary to existing planning models. It

is believed that the state-of-the-art ML is able to help further with optical network

planning to achieve ultimate network intelligence under uncertainty.

8.2 Future work

Deep learning (DL) has gained much attention in recent years, whether it is suitable for

current optical networking to embrace DL or not becomes an interesting topic. As shown

in Fig. 8.1, the performance of AI prediction capability grows with the increase of training

data size. When the training data size is small, most traditional ML models perform

better than DL. But after a critical point, the DL performance exceeds traditional models

and becomes much better while traditional model performance reaches a bottleneck.

As to a specific network system, finding the critical point is non-trial for optimised
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FIGURE 8.1. AI performance with increase of the amount of training data.

performance. To increase the training data size, more features should be considered,

for example, different loading conditions, different launch power, different modulation

formats, different data rates, etc. DL models normally have to rely on some form of big

data analytic tools with data cleaning and pre-processing (such as pruning) capabilities.

It is significant to have a monitoring platform that can collect all kinds of monitoring

data ubiquitously in the network, such a platform forms the fundamental building

block for DL research. It is worth mentioning that such monitoring platform can only

generate large training data set over a long time period while the network is live for

client services. It is very hard for such data collection to be carried out in research

labs, therefore collaborations with commercial telecommunication companies are desired.

Recent findings show that sophisticated DL models such as RNN and LSTM do not show

better performance than traditional time series forcasting methods such as ARIMA [103].

This finding addresses the importance of setting the appropriate traditional methods as
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the baseline.

The same extension work can also be applied to GP learning. given current optical

network performance monitoring data size is far from enough, DL performance is much

worse than traditional learning models. In this work, we have only considered identical

modulation format (QPSK), power (0dBm) and bit rate (32Gbaud). Further work should

consider more complex network states when applying GP prediction. In that case, the

regression is no longer a 1-D model, but a multi-dimensional model. By increasing

the dimensionality or the feature space, the final GP learning model will be more

adaptive to more complex systems. Different kernels can be explored accordingly. Also,

the experiment carried out in this work uses a metro-size NDFIS system. Further

research can be carried out to study ultra long-haul transmission and short-distance

access network. The former network has much longer transmission distance hence

introduces large uncertainties to be addressed by ML. Suitable ML-assisted planning

model should be adopted based on the network topology size, the level of programmability

or flexibility of the network, and the technology used in the network (such as WDM,

flex-grid, space division multiplexing, etc.).

Increasing the feature space or dimensionality is not always a good solution. It is different

from increasing the training data size, which in most scenarios, can make ML models

better. A large feature space can lead to overuse of ML computing resources. For example,

in a Neural Network (NN), increasing the feature space means adding more neurons

to the input layer. As the input layer size increases, the hidden layer size may also

need to increase to support the enhanced algorithm flexibility. As such, a good trade-off

between the ML model performance and the feature space is needed. This can be solved

by applying unsupervised learning methods such as principal component analysis. Or

domain expertise can be applied prior to ML models to analyse the importance of each

feature.
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The work undertaken in both Chapter 4 and Chapter 5 provides a probabilistic way

of dealing with network planning and optimisation. The MCMC inference process is

able to sample across the whole distribution of interested network parameters, hence

giving quantified estimation uncertainty. This feature can be further used to form control

plane constraints. For example, as GP generates Confidence Integrals (CI), during the

wavelength assignment process, new channels are preferred to be assigned to large CI

regions in order to explore more information about the wavelength region. As the net-

work nonlinearity can be estimated by GN model parameters with Gaussian probability

distribution, future control plane RMSA algorithms can take this Gaussian distribution

as a range constraint for nonlinearity-aware optimisation. Moreover, different sampling

techniques can be explored to find the minimum number of iterations needed for pa-

rameter distribution inference. This would accelerate the inference process, but may

compromise with higher computation.

As shown in Chapter 5, ML models can be used together with theoretical models in a

hybrid way to learn a network performance. In the control plane routing algorithms,

monitoring data can also be used as a hybrid component with heuristic functions. For

example, we can define a hybrid function as f(n) = h(n) + p(n) where h(n) is the heuristic

model and p(n) is the monitoring data, or the function that can learn from the monitoring

data. Hence the hybrid function becomes physical layer aware, and at the same time,

analytically tractable. Such hybrid method balances the issues that pure ML models will

transform the system into a black box, and that pure heuristic models are not cognitive.

As shown in Table 8.2, different flows of future research work are listed in a prioritised

order on top of this work. Considering the long-run research directions, the benefit of

this work is to evoke the importance of online machine learning to optical network

management as a complementary tool. With the frameworks of network cognition, the

power of real-time data resources can be fully utilised to generate much more valuable
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Future work list

1. Exploring the proposed online learning methods with dif-
ferent network topology (linear, mesh), different network
size (long-haul, metro, access), different modulation for-
mats and baud rates.

2. Exploring deep-learning methods to find the correct level
of training data size to drive a deep learning model.
Compare the performance gain of DL models with our
proposed online learning.

3. Developing an online data monitoring and pre-
processing platform to drive different types of ML mod-
els.

4. Reducing the computational cost of complex ML models
so that the learning process is rapid and can be adapted
to more advanced networks such as 5G network.

5. Combining monitoring and ML predictions with optical
network heuristic functions to develop a hybrid planning
method for control plane decision making.

Table 8.2: A schematic summary of future work.

network knowledge. Unlike offline learning method, online learning is more suitable for

networking case as it captures real-time system performance and is able to adapt rapidly

while the system is evolving. Machine learning has great potential to revolutionise

optical network planning and management under uncertainty.
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