515 research outputs found

    Risk management in liner ship fleet deployment: a joint chance constrained programming model

    Get PDF
    This paper provides a tangible methodology to deal with the liner ship fleet deployment problem aiming at minimizing the total cost while maintaining a service level under uncertain container demand. The problem is first formulated as a joint chance constrained programming model, and the sample average approximation method and mixed-integer programming are used to deal with it. Finally, a numerical example of a liner shipping network is carried out to verify the applicability of the proposed model and solution algorithm. It is found that the service level has significant effect on the total cost

    Models and Solutions Algorithms for Improving Operations in Marine Transportation

    Get PDF
    International seaborne trade rose significantly during the past decades. This created the need to improve efficiency of liner shipping services and marine container terminal operations to meet the growing demand. The objective of this dissertation is to develop simulation and mathematical models that may enhance operations of liner shipping services and marine container terminals, taking into account the main goals of liner shipping companies (e.g., reduce fuel consumption and vessel emissions, ensure on-time arrival to each port of call, provide vessel scheduling strategies that capture sailing time variability, consider variable port handling times, increase profit, etc.) and terminal operators (e.g., decrease turnaround time of vessels, improve terminal productivity without significant capital investments, reduce possible vessel delays and associated penalties, ensure fast recovery in case of natural and man-made disasters, make the terminal competitive, maximize revenues, etc.). This dissertation proposes and models two alternatives for improving operations of marine container terminals: 1) a floaterm concept and 2) a new contractual agreement between terminal operators. The main difference between floaterm and conventional marine container terminals is that in the former case some of import and/or transshipment containers are handled by off-shore quay cranes and placed on container barges, which are further towed by push boats to assigned feeder vessels or floating yard. According to the new collaborative agreement, a dedicated marine container terminal operator can divert some of its vessels for the service at a multi-user terminal during specific time windows. Another part of dissertation focuses on enhancing operations of liner shipping services by introducing the following: 1) a new collaborative agreement between a liner shipping company and terminal operators and 2) a new framework for modeling uncertainty in liner shipping. A new collaborative mechanism assumes that each terminal operator is able to offer a set of handling rates to a liner shipping company, which may result in a substantial total route service cost reduction. The suggested framework for modeling uncertainty is expected to assist liner shipping companies in designing robust vessel schedules

    Will liner ships make fewer port calls per route?

    Get PDF
    Traditional liner shipping route networks consists of many port calls per route. However, container ship sizes have increased substantially over the past few years. These large container ships benefit from economies of scale at sea, but might suffer diseconomies of scale in ports. Therefore, we investigate whether larger container ships will lead to fewer port calls per route. First, we discuss the influence of fewer port visits on some aspects that are difficult to include in a mathematical analysis. Thereafter, we propose a mathematical approach to obtain networks with fewer port calls per route. Liner shipping route networks are generated by distinguishing between hub routes and regional routes. Hub routes are used to connect a small number of hubs, while regional routes connect all other ports with its nearest hub. An iterative approach is used to generate networks, which are evaluated using a mixed integer program in which the joint ship allocation and cargo routing is solved. A case study is performed with different combinations of seven hub ports. In the case study, three capacity scenarios are considered: low, base and high capacity. Our networks generate profits that are more than 25% higher compared with the best known networks in literature

    Liner Service Network Design

    Get PDF

    New challenges in fleet deployment considering EU oil sanctions

    Get PDF
    Due to European Union (EU) oil sanctions, tanker shipping companies need to redeploy their tankers by moving tankers between ship routes with the consideration of flag states of tankers, but the literature lacks quantitative methods for this problem. To fill this research gap, this paper studies an integrated problem of fleet deployment, fleet repositioning, round trip completion, and speed optimization with the consideration of flag states of tankers. The problem is formulated as a nonlinear integer programming model to minimize the total cost, including the fleet repositioning cost, the mismatch cost, and the fuel cost, during the planning period while satisfying the total crude oil transportation demand of each voyage and the minimum shipping frequency. Some linearization methods are used to transform the nonlinear model to a linear one which can be directly solved by Gurobi. The average solving time required for 17 computational instances is 4.5 minutes, which validates the effectiveness of the proposed model. Sensitivity analyses, including the influences of the unit fuel price, the total crude oil transportation demand, the mismatch cost of completing a round trip by a deployed tanker, and the repositioning cost for each deployed tanker, on operations decisions, are conducted to obtain managerial insights

    The Robust Bulk Ship Routing Problem with Batched Cargo Selection

    Get PDF
    Maritime transportation forms the backbone of the world merchandise trade. In this paper, we consider a problem that combines three interconnected subproblems in tramp shipping: the fleet adjustment problem, the cargo selection problem, and the ship routing problem. For cargo selection, we consider the decision behaviors under the setting of Contract of Affreightment (COA), in which cargoes should be rejected or accepted as a batch. In view of the uncertainties observed in maritime transportation, we formulate the problem in a robust way so that the solutions can protect the profitability of shipping companies against variations in voyage costs. We first provide compact mixed integer linear programming formulations for the problem and then convert them into a strengthened set covering model. A tailored branch-and-price-and-cut algorithm is developed to solve the set covering model. The algorithm is enhanced by a multi-cut generation technique aimed at tightening the lower bounds and a primal heuristic aimed at finding high-quality upper bounds. Extensive computational results show that our algorithm yields optimal or near-optimal solutions to realistic instances within short computing times and that the enhancement techniques significantly improve the efficiency of the algorithm.</p

    Bunker Consumption Optimization in Liner Shipping: A Metaheuristic Approach

    Get PDF
    Taking into account increasing volumes of the international seaborne trade, liner shipping companies have to ensure efficiency of their operations in order to remain competitive. The bunker consumption cost constitutes a substantial portion of the total vessel operating cost and directly affects revenues of liner shipping companies. “Slow steaming” became a common strategy among ocean carriers to decrease vessel sailing speeds and reduce bunker consumption costs. However, decreasing vessel sailing speeds may require deployment of more vessels on a given shipping route to provide the agreed service frequency at each port of call. Several bunker consumption optimization methods were developed in the past to capture those conflicting decisions. This paper describes existing bunker consumption optimization methods, outlines their drawbacks, and proposes a new metaheuristic approach. Numerical experiments demonstrate efficiency of the suggested metaheuristic in terms of solution quality and computational time. DOI: 10.17762/ijritcc2321-8169.15065
    corecore