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Abstract

A tramp ship operator typically has some contracted cargoes that must be carried and seeks
to maximize profit by carrying optional cargoes. Hence, tramp ships operate much like taxies
following available cargoes and not according to a fixed route network and itinerary as liner
ships. Marine fuel is referred to as bunker and bunker costs constitute a significant part of
the daily operating costs. There can be great variations in bunker prices across bunker ports
so it is important to carefully plan bunkering for each ship. As ships operate 24 hours a
day, they must refuel during operations. Therefore, route and schedule decisions affect the
options for bunkering. Current practice is, however, to separate the two planning problems
by first constructing fleet schedules and then plan bunkering for these fixed schedules. In
this paper we explore the effects of integrating bunker planning in the routing and scheduling
phase and present a mixed integer programming formulation for the integrated problem of
optimally routing, scheduling and bunkering a tramp fleet. Aside from the integration of
bunker, this model also extends standard tramp formulations by using load dependent costs,
speed and bunker consumption. We devise a solution method based on column generation with
a dynamic programming algorithm to generate columns. The method is heuristic mainly due
to a discretization of the continuous bunker purchase variables. We show that the integrated
planning approach can increase profits and that the decision of which cargoes to carry and on
which ships is affected by the bunker integration and by changes in the bunker prices.

Keywords: Tramp Shipping, Routing, Scheduling, Bunkering, Column Generation.

1 Introduction

It is estimated that over 80% of world trade is carried by the international shipping industry
(UNCTAD [2011]) and world trade therefore depends on the industry’s efficiency and competitive
freight rates. Hence, research to increase efficiency within maritime transportation is important,
and, taking the mere size of this huge industry into consideration, even small improvements can
have great impact.

An important part of utilizing the existing fleet efficiently is routing and scheduling the ships,
i.e. assigning cargoes to ships while simultaneously finding the sequence and timing of port calls



for all ships. Many ship operators use experienced planners to manually route and schedule the
fleet. However, increased competition and recent trends of mergers among and pooling of shipping
companies have increased the pressure as well as the difficulty of devising efficient schedules man-
ually due to the increased fleet sizes (Christiansen et al. [2004]). Therefore, there is a need for an
automated approach to the planning that can both aid the construction of efficient schedules and
enable fast changes to existing schedules in case of new opportunities or changed demand.

In this paper we focus on tramp shipping where ships operate much like taxies following the
available cargoes and not according to a fixed route network and itinerary as in liner shipping.
Routing and scheduling within tramp shipping is therefore a more dynamic and ongoing process
compared to that of liner shipping. A tramp operator often has some contracted cargoes that must
be carried and seeks to maximize profit by carrying optional cargoes found in the spot market.

Despite the above motivation, routing and scheduling within maritime transportation has not
received as much attention as similar land based transportation problems (Christiansen et al.
[2004]). Research in this area has, however, increased in recent years. Tramp ship routing and
scheduling is very closely related to the well researched Vehicle Routing Problem (VRP) and its
variants but there are, however, important differences that facilitate the development of tramp
ship specific methods. To mention a few, we note that optional cargoes are not considered in the
standard VRP and that ships pay port fees and operate around the clock.

Marine fuel is also referred to as bunker fuel or simply bunker while refueling is called bunkering.
Fuel costs constitute a significant part of daily operating costs and since bunker prices can vary
significantly across ports, it is important to carefully plan the bunkering of each ship. The recent
increase in oil prices adds further motivation for operators to plan bunkering optimally, yet many
still use manual planning. Ships operate 24 hours a day so they must refuel during operations.
Hence, route and schedule decisions will affect the options for bunkering. Consequently, it seems
natural to integrate bunker planning in the routing and scheduling phase and consider the combined
routing, scheduling and bunkering problem. Current practice is, however, to separate the two
problems by first constructing fleet schedules and then plan bunkering for these fixed schedules.

In this paper we explore the effects of integrating bunker planning in the routing and schedul-
ing phase. We present a mixed integer programming formulation for the integrated problem of
optimally routing, scheduling and bunkering a tramp fleet. This model extends standard tramp
formulations by accounting for bunkering time, variations in bunker prices and bunker ports costs
and further by using load dependent costs as well as speed and bunker consumption. We devise
a heuristic solution method that can simultaneously select which optional cargoes to carry, how
cargoes should be allocated to ships, determine ship routes and schedules, and decide when, where
and how much each ship should bunker during its schedule depending on forward curves for bunker
prices. The method relies on column generation with a dynamic programming algorithm to gen-
erate columns. Computational results show that this integrated planning approach can increase
profits for tramp operators, and that the decision of which cargoes to carry and on which ships is
affected by the bunker integration and by changes in the bunker prices.

The remainder of the paper is organized as follows. In Section 2 relevant literature is presented.
Section 3 provides a problem description as well as a mathematical model for the problem, while
the devised solution method is described in Section 4. Section 5 describes some instance generators
that we have developed to acquire necessary data on cargoes and bunker prices. In Section 6 we
tune the devised algorithm and in Section 7 we explore the effects and benefits of integrating bunker
planning in the routing and scheduling phase through a comparison of the integrated approach and
the sequential approach. We also investigate the method’s sensitivity to bunker prices. Finally,
concluding remarks and suggestions for future work are discussed in Section 8.

2 Literature review

Mathematical formulations and discussions on solution methods for a wide range of maritime
problems on all planning levels can be found in Christiansen et al. [2007]. Furthermore, a thorough
review of literature focused on ship routing and scheduling before 2005 can be found in the three
review papers, Ronen [1983], Ronen [1993], and Christiansen et al. [2004].

Recent work on tramp ship routing and scheduling include Fagerholt and Lindstad [2007] who



describe a decision support system based on a multi-start local search heuristic. Korsvik et al.
[2010] use tabu search to solve the problem and show significant improvements on large and tightly
constrained cases compared to the multi-start local search heuristic. Malliappi et al. [2011] solve
the problem using a variable neighborhood search. Several extensions of the standard tramp ship
routing and scheduling have also been considered. E.g. Brgnmo et al. [2007], Brgnmo et al. [2010]
and Korsvik and Fagerholt [2010] all consider flexible cargo sizes while Fagerholt et al. [2010],
Norstad et al. [2011] and Gatica and Miranda [2011] all consider speed as a decision variable.
Kobayashi and Kubo [2010] and Lin and Liu [2011] consider simultaneous cargo allocation for a
problem with multiple and non compatible cargo products. Finally, project shipping as a segment
of tramp shipping is explored in Andersson et al. [2011b] and Fagerholt et al. [2011] while split
loads are considered in Korsvik et al. [2011], Andersson et al. [2011a] and Stéalhane et al. [2012].

The tramp ship routing and scheduling problem is closely related to vehicle routing problems.
Most similar to our problem is the vehicle routing problem with pickup and deliveries and time
windows (VRPPDTW). We refer the reader to Desaulniers et al. [2002] for a problem description
and a discussion on solution methods. There are, however, important differences between the
maritime version of the problem and the land based one, creating the need for tailor made models
and solution methods for the maritime industry. Ronen [1983], Ronen [2002] and Christiansen
et al. [2004] elaborate on these differences but to mention a few, we note that ships pay port fees
and operate continuously. Hence, the ships have different starting positions and starting times, as
some ships can be occupied with prior tasks at the beginning of the planning period. Even in the
multi-depot version of the VRPPDTW vehicles must return to their home depot whereas ships do
not have to return to their starting point. Finally, the distinction between contract cargoes and
optional cargoes leads to a priority on cargoes that is not used in VRPPDTW where all customers
must be serviced at minimum cost. In contrast, the tramp objective is to maximize profit as in
the less known Pickup and Deliver Selection Problem, see Schénberger et al. [2003].

A solution method that has received much attention and achieved great success within vehicle
routing is column generation. This method is not as frequently used within maritime transporta-
tion. This is partly because the large number of constraints reduce the solution space to such an
extent that - combined with the major uncertainty within maritime transportation - the possible
schedules for each ship only consists of a few voyages. Hence, all feasible combinations can be
enumerated and, so, it is often sufficient to apply a priori column generation. However, within
tramp ship scheduling both Appelgren [1969] and Brgnmo et al. [2010] have found dynamic column
generation more efficient than a priori column generation. Brgnmo et al. [2010] explore flexible
cargo sizes and use branch-and-price to solve the problem. They discretize the cargo quantities to
obtain a subproblem that is a shortest path problem with pickup and delivery and time windows,
and use dynamic programming to solve it. They report that in their experiments, the dynamic
approach is both faster and enables them to deal with larger or more loosely constrained instances
than the a priori generation approach. In line with that, recent years have shown an increase in
the number of maritime papers that explore dynamic column generation, see e.g. Kobayashi and
Kubo [2010], Hennig et al. [2012] and Stalhane et al. [2012]. Furthermore, Desauliniers et al. [2005]
devoted two whole chapters to column generation in maritime problems.

Within vehicle routing examples of theoretical research on refueling policies can be found in
Hong Lin et al. [2007] and Lin [2008]. Aside from the theoretical work, software products for
refueling, called fuel optimizers, have been developed for the trucking industry. In Suzuki [2008]
a description of these systems as well as a literature review is given while Suzuki and Dai [2012]
discuss solution methods. These systems use the latest price data to calculate which truck stops to
use and how much fuel to purchase at each stop to minimize refueling costs. All the above work on
refueling policies are for single vehicles traveling on a fixed route. Hence, there is no integration of
refueling into the routing and scheduling phase. Also, since customers have already been assigned
to vehicles, the interdependency of vehicle routes is ignored and the problem is decomposed into
independent one-vehicle problems while we have to consider the entire fleet at once.

Within air transportation work on refueling policies can be found in Darnell and Loflin [1977],
Stroup and Wollmer [1992], Abdelghany et al. [2005] and Zouein et al. [2002]. However, they also
consider refueling policies for fixed routes and do not allow aircrafts to divert from their routes for
refueling. In fact, since routes are fixed, the refueling policy problem relates more to liner shipping
where the combinatorial aspect, i.e. the route selection, from tramp shipping is not present.



Within liner shipping Yao et al. [2012] explore refueling policies that incorporate sailing speed
as a decision variable. As they consider a liner service, they too assume a fixed route and do not
allow ships to divert from their routes for refueling. Similarly, Besbes and Savin [2009] also explore
refueling policies for liner ships for a fixed route. In contrast, Notteboom and Vernimmen [2009]
consider the impact of increasing bunker prices on the actual design of liner services.

Within tramp shipping, as far as we know, only two papers address the issue of optimal refu-
eling. Oh and Karimi [2010] consider a multi parcel chemical tanker and propose a mixed integer
programming model for finding an optimal bunker strategy. They incorporate speed as a decision
variable and take uncertainty of fuel prices into account but again they assume a prefixed route. In
contrast, Besbes and Savin [2009] instead find a profit maximizing refueling strategy while simul-
taneously optimizing routes. They formulate the problem as a stochastic dynamic program. Their
setup is, however, completely different from the one considered in this paper as they approach the
problem from a much more strategic level. They only consider one ship and do not consider any ac-
tual cargoes. Instead they assume a stochastic revenue process that leads them to explore optimal
cycles in the network. In fact, they view the problem more as an inventory management problem
with no end, and, consequently, seek to maximize the long term average profit. They characterize
the optimal refueling policy when prices are constant over time and do not differ across ports and
when prices are constant over time but differ across ports. However, they do not consider the case
where prices vary over time and at the same differ across ports as we intend to do.

3 Problem Description

In this section we give a problem description starting with the pure tramp ship routing and schedul-
ing problem. We then move on to include bunkering and present a mathematical model for the
Tramp Ship Routing And Scheduling Problem with Bunker Optimization (TSRSPBO).

3.1 The Pure Tramp Ship Routing and Scheduling Problem

A tramp ship operator has some long term contracts that obligates him to carry some cargoes and
can choose to carry additional cargoes, so called spot cargoes, if fleet capacity allows it and it is
found to be profitable. The objective is to create a profit maximizing set of fleet schedules, one for
each ship, where a schedule is a sequence and timing of port calls representing cargo loading and
discharging. The optimal solution therefore combines interdependent, and hence simultaneous,
decisions on which optional cargoes to carry, the assignment of cargoes to ships and the optimal
sequence and timing of port calls for each ship.

A cargo is mainly characterized by the quantity to be transported, the revenue obtained from
transporting it and the pickup and discharge port. There is also a service time for loading and
discharging and a time window giving the earliest and latest start for loading. In some cases there
is also a time window for discharge.

A tramp fleet is usually heterogeneous, comprised of ships of different sizes, load capacities,
bunker consumptions, speeds, and other characteristics. Ships can be occupied with prior tasks
when planning starts so each ship is further characterized by the time it is available for service
and the location it is at when it becomes available. The characteristics of a ship determine which
cargoes, ports and canals it is compatible with. E.g. the draft of a ship can prohibit it from
entering a shallow port.

As we consider a fixed fleet we can disregard fixed costs. The main sailing cost is fuel cost
and this is different for each ship and load dependent. In traditional tramp ship routing and
scheduling models, sailing cost, and in turn bunker consumption, is assumed independent of the
load of the ship. We, however, will not make such an assumption. When loading and discharging,
ship dependent port costs are incurred. While loading and unloading, ships also consume bunker
although much less than at sea. Other costs can be relevant depending on the specific operator.

A mathematical arc flow formulation for the pure routing and scheduling problem can be found
in Christiansen et al. [2007]. Tt is formulated as a pickup and delivery problem with time windows
and capacity constraints. The model, just as most other tramp ship routing and scheduling models,
assumes that sailing costs are fixed with no consideration to the great variations in bunker prices



or the port costs incurred when bunkering. Furthermore, the time consumption of bunkering
is not considered. In our work, we integrate considerations for bunker price variations, bunker
port costs as well as the time aspect of bunkering and extend the pure routing and scheduling
formulation to include variables for bunker purchases for each ship, new constraints to incorporate
these variables and, finally, an extended objective function that reflects this new way of calculating
bunker costs, and in turn sailing costs. We also incorporate load dependent bunker consumption.
Bunker consumption also depends on the speed of the ship. However, in reality the speed is not
necessarily fixed but instead allowed to vary with the load of the ship. E.g. if a ship sails at ’full
speed’, the actual speed depends on the load of the ship. Likewise, a speed setting often incurred
is 'TECO speed’, i.e. the most economical speed, and this speed also depends on the load of the
ship. We assume each ship sails at "ECO speed’ and, so, the actual speed and bunker consumption
depend on the load of the ship. Load dependent bunker consumption means that costs are also
load dependent which further allows us to use load dependent port and canal costs.

3.2 Incorporating Bunker

Bunkering can take place at a bunker port where ships enter port just to refuel or at a pickup or
discharge port since almost all ports involved in shipping also sell bunker. Bunkering at a pickup or
discharge port has the obvious benefit of avoiding detours just for bunker, only incurring port costs
once and even saving time if concurrent bunkering is allowed. However, price variations between
ports can easily be large enough to compensate for the extra cost of a detour, the extra port costs,
and also the extra time consumption. In fact, a few ports seem to dominate bunker sales because
of their strategic location along major trade routes thereby limiting the detours necessary for ships
to refuel there. Two examples of such ports are Malta and Singapore (Oh and Karimi [2010]).

A bunker option is mainly characterized by its geographical location, port costs, bunker price
and time window in which this price is assumed to remain valid. Several bunker options can
represent the same physical bunker port but at different times and, hence, with different prices.
Time dependent port costs or port opening hours can also cause a separation of one bunker port
into many bunker options with different prices and associated time windows. Due to high volatility
in bunker prices these time windows are bound to be narrow and without loss of generality we
assume they are so narrow that no ship will use the same bunker option twice. If time windows
are not narrow enough for such an assumption, each time window can simply be split into several
smaller time windows each with an associated bunker option until the assumption is valid.

Ships operate 24 hours a day so there is no natural end to the optimization problem. Hence, the
condition of the fleet at the end of the planning period affects optimization in the next period. With
bunker included in the optimization process, the initial bunker inventory for each ship is therefore
an important part of fleet data. Likewise, any remaining bunker onboard ships at the end of their
schedules must be considered a valuable resource for the next planning period independent of future
demand. To account for this resource, we put a premium on any quantity above the initial bunker
level for each ship and call this quantity bonus bunker. Similarly, ships that end their schedule
with less bunker than the initial level must pay for using this resource. As we discuss later, it
is in fact a vital part of the solution method that this bonus bunker is accounted for. However,
the actual value of it is difficult to price. Using the price of the last visited bunker port is not
possible for ships that due to a high initial bunker inventory or idleness did not refuel during their
schedule. It also leads to arbitrage since visiting an expensive bunker port last to purchase a small
amount will drive up the resell price even though the bonus bunker might have been bought at a
really cheap bunker port. Likewise, there is no incentive to fill up the tank if a ship passes a cheap
bunker port last. Allowing bonus bunker to be resold at an average price of the region that the
ship ends its schedule in motivates repositioning ships to regions with high bunker prices with no
consideration for future cargo demand. Therefore, we calculate premiums for bonus bunker at an
average price of all bunker options with time windows containing the end of the planning horizon,
i.e. a geographically independent forecast of the average bunker price at the end of the planning
horizon. Ship data will now also include a minimum and maximum bunker level corresponding to
a required safety level and tank capacity, respectively.

Concurrent bunkering can easily be added to the model but we have chosen not to include it
and further chosen to assume that all bunker options have the same pumping rate for bunkering.



The reason is that we want to be able to differentiate bunker options on their prices and geo-
graphic location rather than their ’timing’ as this allows us to explore the solution’s sensitivity to
changes in bunker prices. Furthermore, when taking the time for port clearance, berthing etc. into
account, the time spent actually pumping bunker onboard the ships can be considered negligible
and considering the trade off between solution time and complexity we have chosen to assume a
fixed time for bunkering at all options regardless of the amount purchased.

3.3 Mathematical model

Let V be the set of ships in the fleet and index it by v, and let B denote the set of bunker options
indexed by k. Since not all ships are compatible with all ports, we get ship specific bunker sets
denoted BY C B. Furthermore, we assume that there are N cargoes and index them by 3.

Let Np ={1,--- ,N}and Np = {N+1,--- ,2N} denote the set of pickup and discharge nodes
respectively. We represent each cargo 4 by a pickup node i € Np and a discharge node N +i € Np.
We define N' = NpUND as the set of all cargo related nodes and partition Np into Np = NocUNp,
where M¢ and Np contain pickup nodes for contract cargoes and optional cargoes, respectively.
Associated with each ship v is now a standard network (N7, A?) not including bunker options.
The standard network nodes, N¥ C Np UNp U {o(v),d(v)}, correspond to cargoes that ship v
is able to carry and two ship specific nodes representing, respectively, the origin and an artificial
destination for ship v. Ship v is able to carry a cargo ¢ if it has sufficient capacity, is compatible
with the specific load and discharge ports and is in general compatible with cargo ¢ on all accounts.
The ship specific cargo nodes are given by Np = Np NN for pickups and NP, = Np NN for
discharges. The set of standard network arcs, AY, is a subset of {(¢,5)]i € N?,57 € NV} and
contains all the arcs traversable by ship v, e.g. with respect to time and bunker consumption.

For each ship v we extend the standard node set, A’?, by adding a node for each element in
B and index the full set by i. Likewise, we extend the standard arc set, A", by adding all arcs
connecting nodes in A\ d(v) with nodes in BY and traversable by ship v with respect to time and
bunker. We do not connect the destination node, d(v), with bunker nodes, as we do not want idle
ships to bunker since this could send them in the exact opposite direction of their next (unplanned)
port stop and since their unplanned voyages could involve port stops with very attractive prices. For
each ship v we thereby obtain an extended cargo-bunker network (Nv, Av) = (N? UBY, A" U AY%)
where A% denotes arcs connecting bunker nodes to nodes in N \ d(v).

For v € V and i € NV we define a continuous variable [? that denotes the load onboard ship v
just after completing service at node ¢. With (i, j) € A? we then associate a load dependent time
consumption T} (1¥) when traversed by ship v carrying a load of I¥ and calculated from the arrival
at the port of node i until the arrival at the port of node j. It accounts for service time at the
port of node ¢ whether it is a loading, discharging or bunkering node, and the sailing time from
the port of node i to the port of node j. We also associate a load dependent bunker consumption
function BY;(I7') that accounts for bunker consumption while traveling from node i to node j but
not including bunker consumption while in port at node ¢. This port consumption is instead
accounted for by B}. Finally, we have the variable cost function C;’](lf ). Like time consumption,
this accounts for costs related to visiting the port of node i and sailing costs from the port of node
1 to the port of node j. Note however, that the cost of purchasing bunker is not included, as it is a
dynamic node cost dependent on the amount of bunker purchased at the node. Instead, this cost
will be added separately and accounted at a bunker unit price of Py for k € B while bonus bunker
is 'resold’ at a unit price P. Also note that if nodes 7 and j correspond to the same physical port,
Cy (1Y) does not include port costs, T7(I7) does not include travel time and Bf;(l¥) = 0. We also
have a revenue R; and a quantity Q; for all cargoes i € N'p. We denote the cargo capacity of ship v
by V& 4p and the bunker capacity by Byy,,. The safety level for bunker inventory is denoted Byy;,
while the initial bunker level onboard the ship is denoted Bj. Finally, we denote by [T3;n:, Thrx;)
the time window associated with node i € N, For o(v) this window is collapsed into the time
ship v is available for service. For the mathematical formulation we need the following variables:

v

iy VEV, (i,§) € Av. Binary variable that is equal to 1, if ship v visits node i just before node

7, and 0 otherwise

T

ty, velV,ic N". Denotes the time ship v begins service at node



I¢;, v € V. Denotes the cargo load onboard ship v just after completing service at node ¢

I%;, v € V. Denotes the bunker load onboard ship v just after completing service at node ¢

[7, v € V. Denotes the total load onboard ship v just after completing service at node ¢

yi, v €V, k € BY. Gives the bunker purchased by ship v at option k € BY

We can now give an arc flow formulation of the TSRSPBO:
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The objective function (1) maximizes profit by subtracting all costs from revenues for serviced
cargoes and adding the value of bonus bunker. The premium for bonus bunker is negative if the
bunker level at the destination node is less than at the origin node. Constraints (2) and (3) ensure
that all contract cargoes are carried by exactly one ship and that all spot cargoes are carried by at
most one ship. Constraints (4) and (6) together with the flow conservation constraints in (5) ensure
that each ship is assigned a schedule starting at the origin node and ending at the destination node.
If a ship is idle for the entire planning period, the assigned schedule is simply represented by the
arc (o(v),d(v)). Constraints (7) ensure that if the route for a ship v visits node 4 directly before
node j, the service at node j cannot begin before service time at node i plus the service time at
node ¢ and travel time from node ¢ to node j with ship v. Waiting time is allowed and, hence, the
constraints have an inequality sign. Together with the time window constraints (8) they take care
of the temporal aspect of the problem. If ship v does not visit node 4, the service time ¢} is artificial.
Constraints (9), (10) and (11) ensure that the cargo load variables are correctly updated along the
chosen route, adding the cargo quantity to the load variable if visiting a loading node, similarly
subtracting the cargo quantity if visiting a discharge node and simply maintaining the previous
load variable value if visiting a bunker node. In (12) the initial load condition for each ship is given
since we assume that the ship is empty at the time it is available for service. Constraints (13)
and (14) state intervals for the ship cargo capacity for loading and discharging nodes, respectively.
Constraints (14) could be omitted as constraints (13) together with the precedence and coupling
constraints (20) and (21) ensure that the upper bound will never be exceeded. Constraints (15)-
(18) place similar restrictions on the bunker load variables: Constraints (15) and (16) ensure that
the bunker load variables are updated correctly, constraints (17) give the initial bunker level for
each ship while (18) give lower and upper bounds for the variables ensuring that a ship will never
arrive at a port with less bunker than the safety level and will never carry more bunker than
its bunker capacity allows. Constraints (19) restrict the bunker purchase amounts for each ship.
Constraints (20) are precedence constraints ensuring that a cargo cannot be discharged before it
has been picked up, i.e. node i must be visited before node N + i. Constraints (21) couple pickup
and discharge nodes for each cargo together to ensure that the same ship will service both nodes.
Finally, the flow variables are restricted to be binary in (22).

The research presented in this paper has been conducted in collaboration with the Danish
shipping company Maersk Tankers A/S involved in, among other things, transportation of refined
oil products worldwide. Based on their situation we focus on full ship loads. Note, however, that
the mathematical model presented above is also valid for multiple cargo problems. In the case of
full ship loads it is common industry practice to simply distinguish between a laden and a ballast
ship, i.e. loaded or empty, rather than calculating the actual load, ;. We will adopt this practice
and can thereby use binary load variables, I = [¢,;, that is equal to 1 if the ship is laden and 0 if the
ship is ballast. The time and bunker consumption functions as well as the cost functions thereby
become dependent on a binary operator and ship capacity, Viyp, and all cargo load quantities,
Q;, are set equal to 1. When considering full ship loads and not including bunkering, pickup and
delivery of a single cargo must be performed directly after each other and, hence, the two tasks can
be considered as just one task. This simplifies the model and constraints (9)-(14) and (20)-(21)
can in that case be disregarded (as well as the bunker related constraints (15)-(19)). However,
when including bunkering, bunker stops can be made in between pickup and delivery of a cargo so
the two tasks cannot be aggregated into one. Instead the problem must be modeled similar to a
multiple cargo problem as above.

4 Solution Method

The mixed integer programming model (1)-(22) could in theory be solved by commercial optimiza-
tion software for non-linear problems. In practice, however, problem instances will be too large
to achieve solutions in a reasonable amount of time. This section therefore describes a solution
method tailored for the TSRSPBO.

In the mathematical programming model (1)-(22), constraints (4)-(22) are ship specific with no
interaction between ships. They constitute a routing and scheduling problem for each ship where
time windows, cargo and bunker capacity as well as bunker purchases are considered. We denote



these ship specific constraints ship routing constraints and further notice that the objective function
also splits into separate terms for each ship. The only constraints linking the ships together are
the so called common constraints in (2) and (3) which ensure that each contract cargo is carried
by exactly one ship and that each spot cargo is carried by at most one ship. This suggests use
of decomposition and column generation since it allows the complex and ship specific constraints,
concerning the routing and scheduling, to be handled separately in subproblems, one for each
ship. Only the common constraints remain in the master problem in which feasible ship schedules
constitute the columns. This way the original problem is transformed into a master problem with
a reduced number of constraints but with a potentially very large number of columns.

Often ship scheduling problems are so tightly constrained that it is possible to a priori generate
all master problem columns. This is done by generating the optimal schedule for each feasible
cargo set for each ship. Such an approach has been attempted in Brgnmo et al. [2007]. However,
as already mentioned, Brgnmo et al. [2010] find it computationally advantageous to apply dynamic
column generation even though a priori generation can be applied. The inclusion of bunker decisions
in the scheduling process will further complicate the determination of an optimal schedule for a
given cargo set and can, hence, make a priori generation very time consuming. In line with this,
we apply dynamic column generation to solve the problem (see e.g. Desauliniers et al. [2005] for
a general description or Christiansen et al. [2007] for a maritime version). Therefore, we initially
consider only a subset of the master problem columns and iteratively add new columns that have
the potential to improve the current solution. We find these columns by iteratively solving the
subproblems, also called pricing problems.

4.1 The Master Problem

The common constraints (2) and (3) in combination with the objective function (1) constitute the
master problem. They must, however, be expressed by new path flow variables corresponding to
feasible ship schedules and constraints must be added to ensure that each ship is assigned exactly
one schedule. We let RV denote the set of all feasible schedules for ship v. Each cargo set can
correspond to several feasible schedules as the order of cargoes in the schedule will correspond to
different geographical routes. Schedules can also differ in bunker port calls, the amounts purchased
at each bunker port and even in the timing of port calls. For a given set of cargoes there will be
at least one profit maximizing schedule corresponding to the optimal bunkering strategy and the
optimal timing of port calls. However, due to the subproblem solution method we might generate
several different schedules for the same cargo set. We denote the profit of a schedule by py for
r € RY and define a binary schedule variable A\? that is equal to 1 if ship v is chosen to sail schedule
r, and 0 otherwise. The profit p? is calculated based on information from the underlying schedule,
which holds all necessary information, i.e. the ship it is constructed for, the cargoes carried, the
bunker ports visited as well as the bunker quantities purchased, and the timing of port calls during
the schedule. Finally, we let a}, denote the number of times ship v carries cargo 4 in schedule r.

The master problem is now given by the following path flow reformulation of the original arc
flow model:

maxz Z DEA (23)

veEV rerRY
s.t.

oS ana =1, Vi € Ne, (24)
vEV rerY

SN ana <, Vi € No, (25)
vEV rerY

S =1, Yo eV, (26)
reRv

AU e {0,1}, Yo eV, reR. (27)

The above model is based on all feasible schedules but it is not necessary to include all of them.
Instead, column generation is applied to dynamically generate them as needed. This process



begins with the solution of the restricted master problem (RMP) which is the linear relaxation of
the original master problem (23)-(27) but with only a subset of the columns included. Iteratively
we then generate new promising columns by solving the subproblems.

4.2 The Subproblem - Generation of promising schedules

Constraints (4)-(22) split into one independent subproblem for each ship. Since these are all
essentially the same problem, we simply consider the generic subproblem for ship v and refer to
‘the subproblem’. Note though the interdependence between the subproblems due to the common
constraints. The ship routing constraints in the subproblem ensure that any solution is a feasible
schedule for ship v and the objective ensures that only schedules with the potential to improve
the current solution of the RMP are generated. This, in turn, means finding schedules with
positive reduced costs in the current solution of the RMP, i.e. finding columns r with p, — ¢”a,.,
where o is the dual vector of the current solution of the RMP. Let u; be the dual variables for
constraints (24) and (25) and w, be the dual for constraint (26). Next, let o; = u; for all i € Np,
To(v) = Wy corresponding to the origin node and o; = 0 for all other 7. Since we consider the
generic subproblem we can drop the superscript v and the subproblem is then given by:

max Z Rz( Z xij> — Z (Cw(ll) + O'i)xij - ZykPk + P(le - BMin) (28)
ieNp JEN (i,5)€A keB
s.t.
(4) — (22). (29)

The subproblem finds the maximum reduced cost feasible schedule with respect to the current
dual values. If this schedule has a positive reduced cost it will be represented by a new column in
the RMP. The subproblem can be modeled as a resource constrained shortest path problem and
is N'P-hard since it is a generalization of the shortest path problem with time windows which is
itself N'P-hard (see e.g. Desrosiers et al. [1995]). We therefore devote Section 4.4 to an efficient
solution method for the subproblem.

4.3 Full Column Generation Scheme

The full column generation scheme is an iterative process starting from the RMP with only a small
initial column set. To ensure feasibility of the initial problem, we include a dummy column for each
contract cargo. Each dummy column corresponds to an artificial ship carrying exactly one contract
cargo. The revenue from each dummy schedule is —M, where M is a large constant. Feasibility
with respect to the generalized upper bound constraints (26) must also be ensured, i.e. each ship
must be assigned a schedule. Therefore, we include an empty schedule with 0 profit for each ship
corresponding to the ship being idle for the entire planning horizon, and leave the corresponding
(o(v),d(v)) out of the subproblem networks.

Once the RMP has been solved, the optimal dual solution values are transferred to each of
the subproblems which are then solved to obtain new schedules. All new schedules with positive
reduced cost are transformed into columns which are added to the RMP. The updated RMP is
resolved to obtain new dual values that can again be transferred to the subproblems. This process
of iterating between the master problem and the subproblems continues until no promising columns
can be found, i.e. until no schedules have positive reduced costs.

Since all the intricate and nonlinear constraints and costs are transferred to the subproblems,
the master problem can most often be solved by commercial linear programming software. As each
subproblem must be solved a potentially great number of times to obtain all necessary columns,
a fast solution method for the subproblem is vital for the effectiveness of the column generation
scheme. Since the subproblem considered here is N'P-hard, solving it can be very time consuming
and a choice between heuristics and optimization must be made depending on the desired solution
quality and computation time. However, often it is only slightly more time consuming to find
several schedules at a time, and, hence, let each subproblem generate several columns in each
iteration. This can speed up the solution process considerably, and the subproblem solution method
presented in the next section exploits this fact.
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Once the column generation process terminates, an optimal solution to the linear relaxation of
the full master problem is obtained. In order to ensure an optimal integral solution, the column
generation scheme must be embedded in a Branch & Bound search, resulting in a Branch & Price
algorithm. In our computational studies we have, however, encountered relatively few fractional
solutions and for these fractional solutions, the integrality gap was acceptable. Therefore, we
have not implemented a Branch & Bound algorithm. Instead, integrality has been enforced by
the simple, but non-optimal, approach of solving the integer version of the RMP once column
generation terminated. In Section 7 we verify the quality of these forced integer solutions by
comparing them to their corresponding upper bounds obtained from the fractional solutions.

4.4 Solving the subproblem

Shortest path problems with resource constraints (SPPRC) are often encountered in both land and
air based transportation, e.g. as a subproblem in vehicle routing and crew rostering. The problem
is most often solved by dynamic programming algorithms on the underlying networks and we will
also use this approach. We refer the reader to Desaulniers et al. [1998], Irnich and Desaulniers [2005]
and Irnich [2008] for a thorough introduction to the SPPRC, dynamic programming algorithms
and concepts such as labels, resource extension functions and dominance functions.

The overall idea behind these algorithms is to construct partial paths, which in this case cor-
responds to partial schedules, from the origin node, o(v), to all its successor nodes and iteratively
extend these partial schedules to all possible successor nodes until no schedule can be extended.
At this point, any schedule that reaches the destination node d(v) represents a resource feasible
solution. Throughout the algorithm each partial schedule is represented by a label and two sched-
ules arriving at the same node can be compared by defining a partial order relation between labels.
This partial order allows us to determine if one label dominates another that can, hence, be dis-
carded. This dominance concept ensures that only the best schedules, i.e. Pareto optimal, are kept
during the iterative process of the algorithm as only they can contribute to the optimal schedule.
The algorithm relies heavily on the domination procedure to efficiently eliminate dominated labels,
thereby reducing the potentially huge label set.

The reduced cost objective function (28), aside from the constant node costs and the load
dependent arc costs, also has costs that are linear in the continuous bunker purchase variables
y associated with the bunker nodes and in the bunker load variable at the destination node.
Toachim et al. [1998] present an optimal dynamic programming algorithm to solve the shortest path
problem with time windows and additional linear costs on the node service start times. Similarly,
Christiansen and Nygreen [2005] consider a maritime transportation problem with linear costs in
the node arrival times. This inclusion of linear node costs means that the common time-constrained
shortest path problem labels with constant cost are replaced by linear cost functions over time
intervals and that the standard list of non dominated labels with constant cost are replaced by a
piecewise linear cost function obtained from minimizing over the arcs into each node.

A similar approach could be considered here to handle the continuous bunker purchase variables.
Note though, that the linear node costs in our problem concern variables that are associated with
a single node rather than in the common variable time as in Ioachim et al. [1998] and Christiansen
and Nygreen [2005]. We would therefore have to aggregate the labels into a piecewise linear function
of a common variable such as the bunker inventory onboard the ship on arrival at the node the
schedule ends in. However, the research in this paper is on a more tactical level than an operational
one. We are looking for a guide line on where to bunker and roughly how much to bunker at each
bunker stop. The operational planning problem of exactly how many tons of bunker with decimal
accuracy is not relevant in our setting where decisions are based on bunker price forecasts rather
than actual prices. Therefore, we have chosen to avoid the added algorithmic complexity just to
achieve decimal accuracy. Instead, we will discretize the bunker purchase variables when solving
the subproblem and apply a standard label setting algorithm. We apply the algorithm to extended
cargo-bunker ship networks with discrete bunker purchases. This way there will be several nodes
in the subproblem for the same bunker option - one for each possible bunker purchase quantity.

When discretizing the bunker purchase variables an obvious concern is how to do this in a
manner that does not take the heuristic solution too far away from the optimal solution. We
therefore note that logically the optimal decision at each bunker stop is to either fill up the tank
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or to purchase just enough bunker to allow the ship to sail to the next bunker stop. In advance,
we cannot now how much bunker is required to get to the next bunker stop but we can obviously
fill up the tank. When tuning and testing the devised solution method in Section 6 and Section 7
we see that when constructing bunker schedules, the majority of bunker stops actually correspond
to filling up the tank to its capacity. As we want to retain this optimal decision amongst the
possible purchase quantities, we let each bunker node correspond to the situation of filling up the
tank to a certain inventory level rather than purchasing a specific amount of bunker. Note that
using a mix of these two types of bunker purchases can almost aggregate some bunker nodes, e.g.
if the ’fill up tank’ node corresponds to bunkering 833 tons and the fixed amount node is 800
tons. Therefore, we only use ’fill up to’ nodes so that the purchase quantities span as much as
possible of the feasible interval of possible purchase quantities. Each original bunker node in the
subproblem is replaced by a set of bunker nodes all associated with the original bunker node but
each corresponding to a different 'fill up to’ level. If any arcs connecting these new nodes to the
rest of the network are infeasible with respect to bunker consumption and safety levels, they can
of course be removed. Note, that the actual amount of bunker purchased is not fixed as it depends
on the bunker inventory on arrival at the node. Instead, the bunker purchase contribution to the
reduced costs must be calculated dynamically as bunker inventory levels are iteratively updated.
The premium for bonus bunker must also be calculated dynamically.

Each ship has its own bunker tank capacity and safety level and these, in turn, describe the ship
specific interval of feasible bunker purchase quantities. We divide this bunker purchase interval,
[Barin, Baaz), into L discrete bunker purchase quantities, where L is a parameter of the algorithm
that we tune in Section 6. Note that this parameter could be different for each ship but as the tank
capacities do not vary too much in size on the fleet we consider, we have chosen to use the same
parameter for all ships. Dividing (Bpsaz — Bain) into L intervals and rounding the result down to
the nearest 25 tons yields the refinement level ¢q. Each original bunker node in the subproblem is
now replaced by L nodes with purchase quantity levels Byraz, Byaz — 4 - -+, Bayaw — (L —1)g. If
L =1 the only option is to fill up the tank to its maximum capacity.

With the discretization of bunker purchases, the notion of bonus bunker becomes a vital part
of the solution procedure. If this premium for unused bunker is not included in the model, it
becomes more important to find combinations of bunker purchase quantities that let ships finish
their schedules with empty tanks than to find cheap bunker options. L.e. the effect of price changes
on the optimal bunker plan is almost non existent.

Before setting up the networks, we make an assumption that reduces the potential size of
the networks: A ship makes at most one bunker stop in between cargo stops. Data from the
collaborating tramp operator on distances, port costs, fleet bunker consumption and fleet bunker
tank capacity shows that this assumption is indeed very reasonable.

When setting up the ship specific networks we utilize the assumption of full ship loads. Aside
from intermediate bunker stops, this assumption means that we always know where a loaded ship
is going: to the discharge port of the onboard cargo. We therefore set up the networks by further
duplicating all the bunker nodes, i.e. K - L with K = |B”|, as many times as there are potential
time feasible arcs in the standard network, (N7, .A?), excluding arcs leading to the destination
node. Note that 'potential time feasible’ means that any arc connecting nodes in ANV \ d(v), and
which is feasible with respect to time, is considered here. A ’potential time feasible’ arc does not
have to belong to A as it can be infeasible with respect to bunker constraints. Figure 1-3 illustrate
this extension process of the standard network for a small example with 2 cargoes and only one
bunker option that has been discretized into just one node, i.e. L = 1. Figure 1 shows the standard
network, Figure 2 shows the extended cargo-bunker network that utilizes the assumption of full
ship loads while Figure 3 shows the normal cargo-bunker network setup that would be used in
case of multiple cargoes onboard. Note the double headed arrows in Figure 3 which have just been
aggregated for the sake of simplicity in this figure. Nodes L; and D; correspond, respectively, to
pickup and discharge of cargo i while node B correspond to the bunker node.

Setting up the networks in such a manner means that all paths in the networks respect the
cargo capacity and precedence constraints as they are implicitly considered in the network setup.
Furthermore, each arc in the network now corresponds to either a laden or a ballast ship and,
hence, the load dependent time and bunker consumption as well as costs can now be considered
fixed and calculated in advance. In total, this network setup allows us to disregard the onboard
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Figure 1: Standard NW  Figure 2: Extended CB NW  Figure 3: Normal CB NW

cargo as a resource and this reduction in resources simplifies both the labeling, domination and
path extension procedures considerably. All these advantages do, however, come at the expense of
an increase in the potential node and arc count of (N? + N — 1)K - L and (2N? — 2N — 1)K - L,
respectively, compared to the normal cargo-bunker network illustrated in Figure 3. A significant
number of these extra nodes and arcs can, however, be removed by preprocessing, especially with
respect to time windows. A further reduction in the node and arc count can be achieved by noting
that some of these new bunker nodes can be aggregated into one without sacrificing the reduction
in resources. First, all bunker nodes that are successors to the origin node and correspond to the
same bunker option and purchase level can be aggregated. Secondly, all bunker nodes that are
successors to a single discharge node and predecessors to other pickup nodes and correspond to
the same bunker option and purchase level can be aggregated. This reduces the potential size
of the network by (N2> — N — 1)K - L nodes and also (N?> — N — 1)K - L arcs compared to the
extended cargo-bunker network illustrated in Figure 2. This gives a potential network size of
2N +2+ (2N + 1)K - L nodes and N? 4+ 2N + (N? + 3N + 1)K - L arcs. We illustrate this final
network setup in Figure 4 for the same example as above.

0==0
-® /® @)
=20

Figure 4: Reduced extended CB NW

During network construction, standard preprocessing techniques are applied to tighten time
windows and, in turn, reduce the number of arcs, see e.g. Desrosiers et al. [1995]. Each network
now have cargo nodes, bunker nodes and an origin and destination node. Each node has an
associated time window, an associated port and for bunker nodes also a bunker price. Each node
also has a bunker window holding the minimum and maximum level of bunker allowed onboard a
ship on arrival. For cargo nodes and the destination node this window is [BY;,,,, B/,.] and for the
origin node it is [B§, B§]. For the bunker nodes, the window becomes [BY,,,, F], where F' is the
'fill up to’ level at the corresponding bunker node. Each arc in the network now has a constant
time and bunker consumption as well as cost and we denote these by T;;, B;; and C;;, respectively.
We abuse notation slightly by now letting B;; denote bunker consumption corresponding to both
traveling from i to j as well as the consumption from port operations at node ¢ (as opposed to
B} (17) that did not include port operations at node 7). Note that C;; still does not include bunker
purchases or the bonus bunker premium as these will be added dynamically during the algorithm.

Since we solve the subproblem as a shortest path problem, we assign the negative of the fixed
cost part of the reduced costs to each arc (7, j), and denote this by CA’” Le.

Cij = Cij + o0; — R; V(i,j) € ./Zl, (30)

where R; = 0 for i ¢ Np. The remaining part of the reduced cost expression in (28), i.e. the node
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costs for bunker purchases and node premiums for bonus bunker, must be added dynamically as
partial schedules are extended and bunker purchase amounts are determined.

Time windows on bunker nodes are, as mentioned, so narrow that a ship can never visit the
same bunker node twice. In our data sets, the time windows for cargo loading are also tight enough
that, in combination with the long voyage lengths, there do not exist any time feasible cycles in the
networks. We model the subproblem on an acyclic graph, and if cycles do in fact exist, nodes with
wide time windows must be split into several duplicate nodes with smaller time windows. Although
this produces an acyclic network, it does not ensure that cargoes are not lifted several times in one
schedule as this simply corresponds to visiting several of the duplicate nodes for the same cargo.
To avoid this, the label for a path must include information on nodes visited so far. This would,
however, be computationally intractable due to the labeling process and the domination procedure.
Therefore, we relax the subproblem to allow non elementary paths and refrain from keeping track
of the nodes previously visited. Hence, routes can be produced where a cargo is picked up more
than once, i.e. have a;. > 1 for some 4. Such a column will not be added to the master problem.

For a schedule s we denote by C(s) the negative of the reduced cost for the schedule, i.e. the
sum of the arc and node costs where the arc costs are }; Cij. The node costs depends on the
bunker purchases during the schedule and also the premium for bonus bunker if the schedule ends
at the destination node. These are schedule dependent and will therefore be calculated dynamically
in the algorithm for each specific schedule. To each schedule s; ending in node ¢ we associate a
label L(s;) = (C(s;),T(s;), B(s;)) where T(s;) and B(s;) denote, respectively, the arrival time at
node i and the bunker inventory level on arrival at node i on schedule s;.

The domination procedure must ensure that all schedules that are not Pareto optimal, and only
these, are discarded during the algorithm. For this, we note that a schedule s; ending at node ¢
dominates another schedule s also ending at node i if and only if £(s;) # L(s}), C(s;) < C(s}),
T(s;) < T(s}) (since there is no cost for waiting) and B(s;) > B(s}). Any two schedules arriving
at the same node can now be compared according to this partial order relation and dominated
schedules and labels can be discarded.

When extending a partial schedule, the resource extension functions ensure correct exten-
sion of the label associated with the schedule. For the time resource this means that 7'(s;) =
max{Tnj,T(s;) + T;;} and that the extension is only allowed if T'(s;) + T;; < Tarzj. When
extending to a bunker node, the bunker resource is updated as B(s;) = By x; with an associated
dynamically calculated purchase quantity y; = Barx; — (B(s;) — Bij). Note that this updates the
bunker inventory immediately on arrival at the node and remember that By x; is defined as the
fill up to’ level for bunker nodes. I.e. a ship filling up its bunker tank to e.g. 1200 tons might
actually leave the node with 1199 tons as a small amount of bunker is consumed while bunker-
ing. If j is a cargo related node, we have B(s;) = B(s;) — B;;. For the destination node, d, we
get B(sq) = By, with an associated dynamically calculated bonus bunker amount, y4, given by
B(s;) — Bijq — Bp. With this setup, s; can only be extended to node j if B(s;) — B;; > Bunj and
B(s;)— Bi; < Buxj. The latter requirement ensures that a schedule with arrival bunker inventory
higher than the ’fill up to’ level at a bunker node will not visit such a node. Finally, the negative
of the reduced costs are updated as follows:

C(s;) = C(si) + Ciyj + y; Py, Vj € B, (31)
C(s;) = C(si) + Cij, VieN, (32)
C(sa) = C(si) + Cia — ya- P, (33)

Using labels, resource extension functions and domination procedure as described above, we
apply dynamic programming to the subproblem with nodes sorted topologically according to time.

When the algorithm terminates, several resource feasible and Pareto optimal schedules might
exist. We add all schedules with positive reduced cost, i.e. C(p) < 0, to the master problem. Due
to the reselling of bonus bunker, all schedules will have the same amount of bunker at the end,
namely the initial inventory level of the ship. Schedules can, however, differ in both reduced costs
and time. Therefore, we can have multiple columns corresponding to the same cargo set in the
master problem if they correspond to different end times, e.g. due to differences in bunker plans.

Finally, it should be noted that due to the discretization of bunker purchases and the assumption
of at most one bunkering in between cargo stops, the subproblem solution method described above
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is heuristic. To ensure an optimal solution to the master problem, the subproblems should be
solved to optimality once the heuristic approach fails to find schedules with positive reduced costs.
As previously discussed, the planning problem considered here is of a more tactical nature and,
hence, an optimal continuous solution is beyond the scope of this research. We do, however, rerun
the dynamic programming algorithm with an increased number of possible purchase quantities, i.e.
an increased value of L, for the fixed cargo routes found by the initial optimization of the master
problem. We discuss this further when tuning the algorithm in Section 6.

5 Problem Instance Generators

In order to both tune and test the devised algorithm thoroughly, we have developed instance
generators that independently generates cargoes and bunker prices. These instance generators are
based on industry data from the collaborating tramp operator. Although this operator operates
world wide, the cargoes naturally divide into two groups traveling within two separate parts of the
world with only 5% of cargoes traveling between them. We therefore limit our analysis to one of
these cargo groups, namely the one responsible for almost 70% of the overall cargoes. We have
excluded some remote regions that generate very little, if any, demand. This leaves us with a cargo
area covering the Mediterranean, the North-West part of Europe, the East Coast of Canada and the
US, the Mexican Gulf and the Caribbean Sea. We have selected 38 ports that are representative
for the ports in this area. Both generators therefore assume 38 ports and each port has some
associated ship dependent port costs. For all problem instances the fleet is the same and consists
of 7 ships of varying size and other characteristics, e.g. speed, bunker consumption etc.

For each cargo, the cargo generator randomly selects a pickup port from a probability distribu-
tion of cargo pickup ports. Once the pickup port is known, there is a specific discharge distribution
related to this pickup port from which a discharge port is randomly drawn. A cargo quantity is
randomly selected in a user defined interval. For our analysis, the quantities are randomly chosen
between 60-90% of ship sizes. Based on this quantity as well as the distance between pickup port
and discharge port and their costs, a reasonable revenue for transporting the cargo is randomly
calculated. Also based on user defined intervals, time windows for both pickup and discharge as
well as the service time for loading and unloading are randomly calculated. We have used time win-
dows with a length of minimum 72 hours and maximum 120 hours. Finally, the cargo is randomly
selected to be either a spot cargo or a contract cargo.

The bunker price generator randomly generates a price quote for each of the 38 ports for a
number of consecutive time periods determined by the user. E.g. if a period is determined to be 3
days and the user asks for 20 bunker options, 20 price quotes will be generated for each of the 38
ports and each of these prices are given a time window of 3 days. For the 38 prices of the last time
period in the planning period, an average is calculated to use for bonus bunker. To generate the
actual prices, the 38 ports are divided into regions and each port is randomly selected to belong
to one of the price classes cheap, average and expensive. For each region, reasonable bunker price
intervals corresponding to a cheap port, an average port and an expensive port at the beginning of
the planning period are given as parameters to the generator. Each port is assigned a start price,
e.g. a price for the first 3 days, by randomly picking a price in the interval that corresponds to
the specific region and price class of the port. In order to generate prices for the remaining time
periods a world trend is randomly generated that is valid for all regions and ports. This world
trend simply defines whether the price goes up or down from one time period to the next. For
each port the remaining bunker prices are now determined by using the start price of the port
and then raising or lowering the price from time period to time period following the world trend.
The actual amount it is raised or lowered with is determined randomly for each port for each time
period from an interval defined by user input. In our analysis we have used an interval of 0-5%.

6 Parameter Tuning
The number of possible purchase levels, i.e. the parameter L, must be tuned before running the

algorithm. Obviously, the more levels we allow the more of the underlying feasible bunker interval
we span, however at a cost of computation time.
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We have generated 18 problem instances for tuning using the instance generators described
in Section 5. All problem instances have the same fleet of 7 ships and use 38 ports worldwide.
Three cargo instances have been generated containing 30 cargoes with their loading time windows
distributed over a time horizon of 30 days. Note that the planning period continues after these 30
days as cargoes must of course also be discharged. Three bunker price instances have been generated
with 14 weekly bunker options for each port corresponding to a time horizon that just contains
the latest possible discharge time plus the time to discharge. Combining each cargo instance with
each of the corresponding bunker instances yields nine instances with this combination of data and
we denote them C30/PH30/B14 instances. Another three cargo instances have been generated
with 50 cargoes over a 60 days pickup planning horizon. Three bunker price instances have been
generated for these cargo sets but now with 19 bunker options for each port. Again, we get nine
instances by combining each cargo instance with each of the bunker instances. We denote these
bigger instances by C50/PH60/B19. All cargoes are defined to be spot cargoes.

On each of the problem instances we have run the algorithm with varying number of purchase
levels, namely L varying from one to ten, and report the key values in Table 1. Each entry
corresponds to the average over the nine problem instances of the specific instance type for the
stated setting of L. The key values reported are: the percentage increase in the objective function
value compared to the L = 1 case (Obj.), the total running time in CPU seconds (CPUrptal), the
CPU seconds for solving the subproblems (CPUsg,,), and, finally, the percentage of all bunker stops
that filled up the ship’s bunker tank to its maximum capacity (Filled). This number is interesting
as it shows that relatively few bunker stops use fill up to’ levels lower than tank capacity and,
hence, the actual discretization of this interval is less important.

C30/PH30/B14 C50/PH60/B19

Obj. CPUgga CPUsy, Filled | Obj. CPUpgr  CPUsy,  Filled
L=1 - 58 55 100.0 - 31.6 30.9 100.0
L=2 | 091 14.0 13.6  78.6 | 0.53 77.2 76.1 773
L=3 | 108 23.9 234 744 | 058 1165 1151 788
L=4 | 1.18 35.2 346 73.1| 0.69 1869 1852 724
L=5 | 125 485 478 752 | 0.74 276.9 2747 702
L=6 | 1.32 71.7 709 744 | 081 360.6  358.0  67.9
L=7| 134 86.7 85.7  73.1| 0.86 4955 4925  67.3
L=8 | 135 111.1 1100 725 | 0.88 540.9 5377  64.6
L=9 | 1.37 1444 1432 725 0.86 755.0 7514 64.9
L=10 | 1.40 157.2 1559  73.1 | 0.89 861.5  857.6  64.3

Table 1: Tuning results for increasing L values.

We see from Table 1 that increasing L yields an objective function value increase of only 0.53-
1.4% and that the increase is largest when going from L = 1 to L = 2. Note also that the
objective function value does in one case drop when increasing L. This demonstrates the heuristic
nature of the algorithm due to the discretization. Furthermore, the increase in computation time
is considerable as L is increased and this is almost only due to the increase in solution time for the
subproblems. Running the algorithm with high L values is therefore computationally undesirable.
Increasing L gradually during the algorithm as the optimum is approached will also be very time
consuming. Even resolving the subproblems in each iteration with an increased value of L for
each fixed cargo route found by the shortest path solver, i.e. each Pareto optimal schedule (or
the best of them), will be computationally expensive. Instead we have chosen to investigate the
effect of simply increasing L for the fixed cargo sets found for each ship in the final solution to
the master problem. We rerun the algorithm with L = 17 as this is the lowest value that yields a
refinement of 25-50 mts between purchase quantities for all ships. For our tactical approach this
level of refinement is sufficient and mimics a continuous solve.

Table 2 shows the key values for rerunning the algorithm on all 18 instances again for increasing
values of L but this time finishing the algorithm by solving the bunker optimization problem with
L = 17 for the fixed cargo sets determined by the final solution to the master problem. If the
original solution from using the low L-value is better than when rerunning the algorithm with
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L = 17 for fixed routes, we naturally use the original solution rather than the solution from
rerunning with L = 17. Note that the objective column (Obj.) again contains the percentage
increase in profit compared to the L = 1 case for the unrefined algorithm, i.e. the one used in
Table 1.

9 instances: C30/PH30/B14 | 9 instances: C50/PH60/B19

Obj. CPUrotal Filled | Obj. CPUrotal Filled
L=1| 133 14.6 76.6 | 0.70 61.5 66.0
L=2 | 146 21.3 73.8 | 0.95 108.7 65.5
L=3 | 145 31.7 73.5 | 0.94 145.8 65.2
L=4 1.44 42.8 73.6 | 0.97 218.6 64.4
L=5 | 143 56.2 74.4 | 0.93 307.3 65.7
L=6 | 1.46 79.3 72.5 | 0.97 390.2 63.5
L=7 | 146 94.0 75.0 | 0.96 526.0 64.5
L=8 | 147 118.7 73.8 | 0.97 572.8 64.3
L=9 | 147 151.9 73.3 | 0.94 785.3 63.6
L=10| 147 164.8 73.8 | 0.97 892.1 64.1

Table 2: Tuning results for algorithm that reoptimizes with L = 17 for increasing L values.

As before, we see that increasing the value of L yields almost no, if any, increase in profit and yet
the computation time increases rapidly.

In Figure 5 and Figure 6 we illustrate these findings for the C30/PH30/B14 and the C50/PH60/B19
instances, respectively. Each figure shows a plot of the percentage increase in objective function
value and the CPU seconds both as functions of L for the standard version of the algorithm and
for the refined version using a resolve on fixed cargo sets with L = 17.

Obj. === Unrefined Alg. —— Refined Alg. CPU Obj. === Unrefined Alg. —— Refined Alg. CPU
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Figure 5: Tuning for small instances Figure 6: Tuning for large instances

As can be seen from the above figures, the refined algorithm with L = 2 afterwards increased to
L = 17 yields almost the best objective function values of all settings and at almost no increase in
computation time. Increasing the initial L-value above 2 achieves at best an insignificant objective
improvement of only 0.01% and this is at great computational expense. We therefore use the
refined algorithm with an initial value of L = 2 when testing the algorithm in the next section.

7 Computational Results

In order to explore the benefits of integrating bunker planning in the routing and scheduling phase,
we compare the devised solution method with the standard sequential approach where routes and
schedules are planned with no consideration to actual bunkering. When planning routes and
schedules in this standard approach, bunker consumption is accounted at the average of all bunker
prices valid at the time of planning and no actual bunker stops are planned, meaning that no time
is scheduled for bunkering and no bunker port costs are incurred. Each optimal schedule from
this process now assigns a given cargo set to each ship and a bunker plan must be created that
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respects this cargo assignment to ships. We find the optimal bunker plan by fixing cargoes to ships
according to this cargo assignment, and then run the bunker algorithm with L = 17.

When testing the devised solution method, we consider the same fixed fleet of 7 ships as when
tuning in Section 6 and also use the same 38 ports for all test instances. We have used the instance
generators described in Section 5 to generate 25 cargo instances. With a pickup time horizon of
30 days we have five sets with 30 cargoes, five sets with 40 cargoes and five sets with 50 cargoes.
For the 60 days horizon we have five sets with 50 cargoes and five sets with 60 cargoes. Again,
all cargoes are defined to be spot cargoes. We also generated problem instances with a planning
horizon of 90 days but when testing on these instances we found that the sequential approach in
2 out of 3 cases produced a solution that was infeasible with respect to bunkering. Therefore,
we could not compare the two methods on these cases and do not report them here. It should
be noted that bunkering becomes more relevant the longer the planning horizon we consider as
ships must travel more, but at the same time the assumption of valid price forecasts becomes more
unrealistic. The bunker price generator has been used to generate six bunker instances: Three
price instances for the 30 days planning horizon with 14 weekly bunker options per port, i.e. a
total of 532 bunker options, and three price sets for the 60 days horizon with 19 bunker options
per port, i.e. 722 bunker options. These cargo and price instances can be combined to a total of
75 problem instances. Table 3 gives an overview of these problem instances of varying size and
complexity.

Ships 7 7 7 7 7

Ports 38 38 38 38 38
Cargoes 30 40 50 50 60
Pickup Time Horizon (days) | 30 30 30 60 60
Bunker options per port 14 14 14 19 19
Bunker options in total 532 532 532 722 722
Number of instances 15 15 15 15 15

Table 3: Problem instance overview.

We use the same notation as in Section 6 and denote a problem instance with e.g. 40 cargoes over
a pickup horizon of 30 days with 14 bunker options per port by C40/PH30/B14.

On each of these 75 problem instances we have run both the standard sequential approach
described above and the integrated approach defined by the refined bunker algorithm described in
Section 4 and Section 6 with L = 2 afterwards increased to L = 17. All computational experiments
were performed on a PC with 4.0 GB RAM and an Intel(R) Core(TM)2 Duo CPU P8600, 2.4 GHz
processor under a 64 bit Windows 7. Both algorithms where entirely developed in C++ using
Cplex 12.4 with default settings to solve the master problem.

Table 4 summarizes some key values for the refined bunker algorithm. Each line corresponds
to the average key values over the 15 problem instances of the corresponding problem type given
by the entry in the left most column. We do not report the objective function value but return to
that when comparing with the sequential approach. The key values reported are, respectively, the
percentage gap from the forced integer solution to the LP solution (Gap), CPU seconds for the
whole algorithm (CPUryta;), CPU seconds for reoptimizing bunker with L = 17 for fixed routes
(CPUy7), CPU seconds for solving all subproblems in the column generation phase with L = 2
(CPUgyp), the number of columns generated (Cols.) and the number of calls to the subproblems
(Subs) (i.e. number of iterations) in the column generation procedure with L = 2, the percentage
of all bunker stops that corresponded to filling up to tank capacity (Filled), and finally, some
statistics on price sensitivity (PS(Av,Max)). As each cargo instance is run with three different
price instances we can get an idea of how sensitive the method is to changes in prices. For this we
consider the differences in carried cargoes from two solutions derived from the same cargo instance
but from different price instances. If one solution carries x more cargoes than the other solution, we
define the cargo difference to be equal to z. Two solutions carrying the same number of cargoes do
not necessarily carry the same cargoes and we increase the cargo difference count by one for each
difference in carried cargoes when comparing the two solutions. As a small example, imagine that
one solution carries cargoes 1, 2 and 3 while another solution carries cargoes 1, 3, 4 and 5. Such
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a solution would correspond to one extra cargo and one different cargo and we would therefore
define the cargo difference between these two solution to be equal to two. In the price sensitivity
column (denoted PS) we report the average and the maximum cargo difference when comparing
solutions derived from the same cargo instance.

Gap CPUrsa CPUp;;  CPUg,, Cols  Subs  Filled PS(Av,Max)
C30/PH30/B14 | 0.00 17.1 6.8 9.9 205 6 70.0 (1.2, 2)
C40/PH30/B14 - 27.3 10.5 16.3 248 6 75.6 (0.9, 2)
C50/PH30/B14 | 0.22 44.8 14.0 30.1 287 7 71.8 (2.2, 5)
C50/PH60/B19 | 0.26 123.9 33.9 88.8 453 11 65.3 (3.8, 8)
CGO/PHGO/B19 0.07 167.4 37.9 128.1 513 11 64.5 (3.9, 8)

Table 4: Key values for the refined bunker algorithm.

Out of the 75 test instances, we obtained fractional solutions from only 19 instances and from
Table 4 we note that the integrality gap is relatively small for these fractional occurrences. Aside
from justifying our non optimal integer approach this also suggests that the ships are not competing
for the cargoes. This is probably because the fleet operates in a very large part of the world, and,
hence, ports are spread over vast distances. For a given cargo, chances are that only one available
ship is close enough for it to be profitable to carry the cargo. Vice versa, for a given ship, there are
only a few cargoes that are both reachable with respect to time but also profitable. From Table 4
we also see that the majority of bunker stops correspond to filling up to tank capacity. Finally,
from the price sensitivity column we see that the optimal solution is indeed affected by changes in
prices. For the larger instances, two solutions from the same cargo instance can differ by as much
as 8 cargoes making an accurate price forecast very important.

Before considering the sequential approach we first present some network statistics in Table 5
for the bunker optimization with L = 17. In the first part of the table we report statistics on
the actual network sizes: The number of nodes in the average subproblem network (Nodes), the
number of these that were bunker nodes (bNodes), the arcs in the average network (Arcs) and,
finally, the number of these that where bunker arcs (bArcs). In the second part of the table we
report the potential network sizes of, respectively, the aggregated (agNodes and agArcs) and the
extended (extNodes and extArcs) cargo-bunker networks as stated in Section 4.4.

Actual Network Size Potential Network Size

Nodes bNodes Arcs bArcs | agNodes agArcs extNodes extArcs

C30/PH30/B14 | 19,362 19,303 39,423 39,252 | 64,966 1,055,384 989,582 1,980,000
C40/PH30/B14 | 27,612 27,534 56,974 56,688 | 86,266 1,832,824 1,745,042 3,491,600
C50/PH30/B14 | 35,833 35736 77,165 76,735 | 107,566 2,823,264 2,713,302 5,429,000
C50/PH60/B14 | 49,899 49,802 150,177 149,482 | 145946 3,830,644 3,682,302 7,367,000
C60/PH60/B14 | 57,588 57,474 209,821 208,849 | 174,846 5,463,484 5,285,162 10,573,800

Table 5: Network statistics for the refined bunker algorithm.

We first note from Table 5 that bunker nodes constitute over 99.7% of the total nodes in the
networks while the corresponding number for the arcs is 99.5%. Next, we see that preprocessing
has allowed a network node reduction of 66-70% compared to the potential network size stated
in Section 4.4. Similarly, preprocessing has removed 96-97% of the arcs. When comparing with
the extended cargo-bunker network illustrated in Figure 2, we see that the potential node count
of the aggregated networks that we use, is 93-97% lower than that of the corresponding extended
networks while the arc count is 47-48% lower.

The key values for the standard sequential approach on the 75 instances are reported in Table 6.
They are almost the same as for the refined bunker algorithm but the CPU time for solving
subproblems now corresponds to the column generation phase of finding routes and schedules
without optimizing bunker simultaneously. Likewise, the number of generated columns and the
number of calls to the subproblems are derived from the pure routing and scheduling phase. Finally,
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we do not report any values on price sensitivity as the bunker prices are not considered while
constructing the routes and schedules when using the sequential approach.

Gap CPUrga CPUL;y CPUg,, Cols  Subs  Filled
C30/PH30/B14 - 7.9 7.8 0.0 88 6 69.7
C40/PH30/B14 - 10.4 10.3 0.0 94 5 76.0
C50/PH30/B14 | 0.25 13.7 13.5 0.0 121 6 69.5
C50/PH60/B19 | 0.22 30.3 30.1 0.0 196 10 65.6
C60/PH60/B19 | 0.12 44.4 441 0.0 219 9 65.2

Table 6: Key values for sequential algorithm.

For the sequential approach, 24 out of the 75 instances resulted in a fractional solution, but as
can be seen in Table 6 the integrality gap is relatively small. Furthermore, we see that bunker
optimization, i.e. rerunning with bunkering included and L = 17, is accountable for almost all the
CPU time.

Finally, in Table 7 we compare the two approaches to see the effect of integrating bunker.
Each entry in the table corresponds to the average over the 15 problem instances generated for
the given problem category. The objective function value for the sequential approach serves as
a base at which we compare the objective value from the integrated approach. Therefore, the
objective values for the sequential approach (Obj) are not reported, and the objective values
for the integrated approach (Obj%) are given as the percentage increase from the corresponding
sequential objective function values. We do not report the actual objective function values since
these are to some extent artificial due to the inclusion of bonus bunker. Both algorithms, however,
include this and therefore we can still compare their objective function values. For both algorithms
we report the CPU seconds for running the entire algorithm (CPU), the number of cargoes carried
in the final solution (Cargoes), and the number of bunker stops in the final solution (Bunker).
In the lower part of the table we report the average (Av. Cargo Difference) and maximum (Max
Cargo Difference) cargo difference when comparing the solutions found by the integrated approach
with those of the sequential approach.

PH30/B14 PH60/B19
C30 [ C40 [ C50 [ C50 | C60

Sequential Obj ) N ) . ;
CPU 79 | 104 | 13.7 | 30.3 | 44.4
Approach Cargoes | 16.8 | 184 | 20.8 | 28.8 | 30.4
Bunker | 13.2 | 14.7 | 14.7 | 21.3 | 21.5

Integrated Obj% 04 | 03 | 0.7 0.5 0.6
CPU 17.1 | 27.3 | 44.8 | 123.9 | 1674
Approach Cargoes | 16.5 | 18.3 | 20.9 | 29.0 | 30.0
Bunker | 13.3 | 14.7 | 16.1 | 21.3 | 21.6

Av. Cargo Difference | 0.8 | 0.9 | 2.7 3.7 3.7
Max Cargo Difference | 2.0 | 3.0 | 5.0 6.0 8.0

Table 7: Comparing the two planning approaches.

When comparing the two planning approaches, we see that the percentage increase in profit
is relatively small. It is however, important to remember that the fixed costs have not been
subtracted, and, hence, we are actually comparing the marginal contributions rather than the
profits. The actual profits will therefore be much lower and any difference in profits will correspond
to a larger percentage. We, however, do not have data on fixed costs and so, we use the marginal
contributions as above. We also note that the profits obtained from the sequential approach are
expected to be an optimistic estimate of the standard sequential approach where current practice
is to use manual planning in both phases. Furthermore, we note that we are dealing with an
industry where numbers are huge. This means that even small percentage increases can lead to
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huge increases in profit. Finally, we note that including more ports can help increase the bunker
effect as distances between ports will become smaller. As already mentioned, with our setup the
distances between ports, and in turn between cargoes, are often so large, that for a given ship,
only very few cargoes are actually eligible for transportation.

From Table 7 we also note that the integrated approach does not in general produce solutions
that carry more cargoes than the sequential approach. The method is not designed to increase fleet
utilization in the sense of carrying extra cargoes. Rather it is designed to increase fleet utilization
by carrying the right cargoes and we see that the cargo difference can be as high as 8 cargoes.
Aside from the reported cargo differences, we very often found that cargoes carried in both the
sequential solution and the integrated solution where carried by different ships in the two solutions.

Overall, we note that a small profit increase can be obtained at little computation time by
integrating bunkering in the routing and scheduling planning phase. It should also be noted that
such an integration will prevent the construction of bunker infeasible schedules as we saw for many
of the larger instances.

8 Concluding Remarks

In this paper we have considered the tramp ship routing and scheduling problem with simultaneous
bunker optimization. We have presented a mixed integer programming formulation that extends
the standard tramp formulation by accounting for bunkering time, variations in bunker prices
and bunker port costs. We have also extended standard formulations by using load dependent
cost, speed and bunker consumption. We have developed a solution method that utilizes column
generation with a dynamic programming algorithm to generate columns. The devised method is
heuristic and this is mainly due to the discretization of the continuous bunker purchase variables.
A natural extension of this work is, hence, to solve the continuous version of the problem and
also to embed the column generation scheme in a Branch & Bound framework. The method
has been devised for a tramp operator that sails full ship loads but the method can be extended
to multiple cargoes by changing the subproblem network constructions and the corresponding
labels and resource extension functions. In such a case, the load dependent cost, speed and
bunker consumption functions would also have to be refined as each ship can then have other
load levels than ballast and laden. Generally, the method is very flexible and can be extended
to incorporate various operator specific characteristics such as e.g. multiple product types, tank
cleaning and restrictions on product successions, by simply changing the subproblem networks and
the corresponding labels and resource extension functions.

We have compared the method with a standard sequential approach where routes and schedules
are planned without considerations for bunkering. Computational results on 75 generated test
instances show that the integrated approach can increase profits slightly. They also show that the
decision of which cargoes to carry and on which ships is affected by the bunker integration and
by changes in the bunker prices. Consequently, we recommend combining the decisions on fleet
scheduling and bunker optimization rather than separating the two planning problems as is current
practice.

We also want to mention that the work presented here assumes only one type of bunker even
though several exist in practice. It would therefore be very interesting to extent this work to
consider multiple types of bunker. Finally, we have solved the problem using a forward curve for
the bunker price at each bunker port. If in fact several price scenarios exist, it would be interesting
to apply stochastic programming to cope with this price uncertainty.
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