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Abstract

Traditional liner shipping route networks consists of many port calls per

route. However, container ship sizes have increased substantially over the

past few years. These large container ships bene�t from economies of scale at

sea, but might su�er diseconomies of scale in ports. Therefore, we investigate

whether larger container ships will lead to fewer port calls per route. First,

we discuss the in�uence of fewer port visits on some aspects that are di�cult

to include in a mathematical analysis. Thereafter, we propose a mathematical

approach to obtain networks with fewer port calls per route. Liner shipping

route networks are generated by distinguishing between hub routes and re-

gional routes. Hub routes are used to connect a small number of hubs, while

regional routes connect all other ports with its nearest hub. An iterative ap-

proach is used to generate networks, which are evaluated using a mixed integer

program in which the joint ship allocation and cargo routing is solved. A case

study is performed with di�erent combinations of seven hub ports. In the case

study, three capacity scenarios are considered: low, base and high capacity.

Our networks generate pro�ts that are more than 25% higher compared with

the best known networks in literature.

1 Introduction

The growth in container trade has led to substantial increases in container ship

sizes. Larger ships are well known to bene�t from economies of scale at sea, but

they may su�er from diseconomies of scale in ports. Cullinane and Khanna (1999)

performed a study to investigate the (dis)economies of scale in large container ships

both in port and at sea. They considered container ships varying in capacity from

200 to 8,000 TEU. Their �ndings show that diseconomies in ports exist for ships
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larger than 1,500 TEU, but that the magnitude is quite small. Furthermore, they

show that economies of scale at sea exist at least for ships up to 8,000 TEU and

the economies of scale at sea clearly outweigh the diseconomies of scale in ports.

Although the data used by the authors is outdated, the general observations will

most probably still be valid.

The increase in container ship size also has its consequences for the network struc-

ture in liner shipping. Not all ports are capable of handling large container ships.

Furthermore, it might not be pro�table to call at relatively low-demand ports with

large-size container ships. Therefore, traditional liner networks consisting of so-

called circular, butter�y and pendulum routes may shift to more hub-and-feeder

like networks. In circular routes, ports are all visited exactly once on each rotation,

while in butter�y routes ports can be called at twice or more during a rotation.

Pendulum routes are a special type of butter�y routes in which the same ports are

called at on the east- and westbound trip, only in reversed order. Hub-and-feeder

networks consist of a small number of large hub ports, which are connected to each

other. All other (smaller) ports in the networks are called spokes or feeder ports

and are only visited on routes originating from and destined for their closest hub. In

South America, shipping routes have recently been reconstructed towards networks

similar to hub-and-spoke networks. Furthermore, non-stop services between regions

with high demand have been introduced (Sanchez and Wilmsmeier 2011).

Call sizes at terminals have increased as well, as a consequence of the total growth

in container trade. This poses problems for terminals, as they face a larger peak

load for the stack. Yet larger call sizes on bigger ships also bene�t terminal quay

crane productivity as cranes can work longer on a bay.

All in all, this raises the question whether container carriers should reduce the

number of port visits on a string in order for terminals to be more productive and

reduce unproductive port time. In this research, we will also investigate whether

a change to hub-and-feeder networks is to be anticipated. Next, we will review

literature; �rst, we will literature related to hub-and-feeder networks and thereafter

literature related to traditional liner shipping networks.

Fagerholt (2004) considers the problem of determining the optimal regional network

design. The proposed solution approach consists of two stages. First, all feasible

routes are generated and then an integer programming problem is solved to select

the optimal routes from the set of feasible routes. Our regional network design

solution approach is based on this approach.

Imai et al. (2009) examined the pro�tability of two di�erent types of service networks

under several scenarios. They compared a multi-port network with conventional

ship sizes with a hub-and-spoke network with mega-ships. The research shows that

multi-port networks are more pro�table than hub-and-spoke networks except for

European shipping companies serving the Asia-Europe trade lane. The hub-and-
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spoke model in Imai et al. (2009) only allows for direct feeder routes between the

hub and the other ports. In our networks, multiple port calls on a feeder route

are allowed, which will most probably increase the pro�tability of a hub-and-spoke

network. Further, Imai et al. (2009) use di�erent cost structures and ship types for

the multi-port and hub-and-spoke networks. In our research, we will show that even

with the same cost structures and ship types, hub-and-spoke systems can be more

pro�table than multi-port networks. Furthermore, Hsu and Hsieh (2007) consider

a ship allocation, sailing frequency and cargo routing problem on a prede�ned hub-

and-spoke network. A two-objective model is used for which Pareto optimal solution

curves are presented. The authors compare the performance of the network when

cargo is routed directly from a feeder origin port to the destination port with the

performance when the cargo is routed via a hub. For some ports direct shipping

is preferred over shipping via a hub, while for other ports routing via a hub is less

costly.

Gelareh and Pisinger (2011), Gelareh et al. (2013) and Zheng et al. (2015) use mixed

integer programming models to formulate the simultaneous hub location, feeder

port allocation, �eet deployment and network design problem. In both Gelareh and

Pisinger (2011) and Gelareh et al. (2013), networks can contain only one hub route

visiting all hubs exactly once. Furthermore, in Gelareh and Pisinger (2011) only

direct feeder services are allowed, but feeder ports can be connected to multiple

hubs. In Gelareh et al. (2013) multiple feeder ports can be visited on one feeder

route, but each feeder port is only visited exactly once in the network. Respectively,

a Benders and a Lagrangian decomposition approach are proposed in these works to

solve problems that cannot be solved using existing solvers. Zheng et al. (2015) solve

the problem using a genetic algorithm embedded with a multi-stage decomposition

approach. The latter three papers do not give any indication of whether hub-and-

feeder systems are better than multi-port networks.

In the previous works, the determination of which ports are used as hubs and the

allocation of the other ports to the hubs are both incorporated in the mixed integer

programming model. In Mulder and Dekker (2014) on the contrary, hub selection

and port allocation are solved as separate problems before considering the network

design and �eet deployment problems. Thereafter, the network design and �eet

deployment problem is solved using a genetic algorithm approach. This work is

comparable to the work in Mulder and Dekker (2014) as it uses the same idea:

we �rst cluster ports before considering the network design problem. However, this

research uses an improved formulation of the cargo routing problem, leading to better

solutions in less computational time. Furthermore, in this work, we use an iterative

MIP-based algorithm that guarantees that the network improves in each iteration

instead of a genetic algorithm based approach. The iterative solution algorithm is

easier to understand and needs less computational time. Finally, in this work, we
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analyze the e�ect of adding a large non-hub port to the main network, but we do not

include it in the solution algorithm, because the cost reductions are only marginal,

while Mulder and Dekker (2014) include di�erent methods to add smaller ports to

the main route network to their solution approach in order to improve the network

pro�t.

Xia et al. (2015) study the joint �eet deployment, speed optimization and cargo

routing problem. The authors incorporate a new fuel consumption function based

on both speed and load of the ships. The problem is solved by clustering ports into

a few large regions and construct routes between the regions. The authors do not

consider the routes to the individual ports within each region.

A lot of research has been performed on network design in traditional liner shipping

networks (for reviews on these works, see e.g. Ronen 1983, 1993, Christiansen et al.

2004, Meng et al. 2014). Brouer et al. (2014a) provide a benchmark model and data

set based on real data from Maersk Line, which makes it possible to compare net-

works. The current best results for this benchmark data for Europe-Asia instances

are found using the method of Brouer et al. (2014b). In this paper, we will use the

Europe-Asia data from this benchmark paper and compare our results to the results

of Brouer et al. (2014b) of which some corrections are reported in Brouer (2015).

In this paper we will investigate the pro�tability of making fewer port calls in two

ways. First we will describe the considered problem in Section 2. In this section, we

will also discuss the in�uence of making fewer port calls per route on di�erent aspects

that cannot always easily be captured in a mathematical model. Next, Section 3

describes the methods used to design a hub-and-feeder network. In Section 4, we

conduct a case study for the Asia-Europe trade lane by applying the optimization

methods of Section 3 on top of a pre-speci�ed hub-and-feeder system, using demand

data published by Brouer et al. (2014a). Next, Section 5 provides a improvement

heuristic that adds an additional port to a route, whereafter conclusions are drawn

in Section 6.

2 Problem description

In this paper we will focus on designing networks with a special structure. Our

networks will be similar to so-called hub-and-feeder networks in which �rst a route

network is constructed between a few large hub ports. Thereafter, all other ports are

allocated to one of the hub port and for each hub port a regional network (also called

feeder network) is constructed calling at the allocated hub ports. The hub-and-feeder

structure of the considered networks is inspired by the big container ships that are

used these days. These big ships are expected to be most pro�table when large call

sizes are realised during port calls, because port visits are expensive and calls with

large call sizes will probably be more e�cient than small calls. Ideally, big ships will
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be as full as possible during the complete route and provide (approximately) direct

connections between multiple ports. A hub route network with a limited number of

hubs are likely to satisfy these conditions, because the total regional demand will

be transported between the di�erent hubs.

The problem studied in this paper can now be described as follows. Consider a given

set of demands between origin and destination ports (also referred to as OD-pairs)

and a set of available ships. The goal is to design a liner shipping network that

can be used to transport the demand from the origin to the destination ports. The

network will consist of a set of routes that will be sailed. Each route speci�es which

ports will be called at the route and in which order. A ship type has to be allocated

to each route in such a way that each port on the route is visited an integer number

of times each week. Clearly, only available ships can be used to allocate to routes.

Furthermore, the sailing speed for each ship needs to be decided upon and should

be in between the minimum and maximum allowed sailing speed of the allocated

ship. Finally, the exact routing of cargo over the routes in the network needs to be

determined. transshipments might be used in order to satisfy a demand against a

given cost. The liner company receives a revenue for each container transported,

but also incurs loading and unloading cost of the container. The company is allowed

to reject containers against a given cost, denoting the loss of goodwill.

2.1 Analysis of in�uence of fewer port calls

A hub-and-feeder network will di�er from traditional liner shipping networks in

multiple aspects. An important di�erence is that traditional networks have more

port calls per route than the networks that we will generate in this research. In this

section, we will describe the in�uence of fewer port visits on the demand structure,

transit time, (dis)economies of scale, uncertainty in port time, CO2 emission, cost

allocation and �exibility and competition.

2.1.1 Demand structure

Reducing the number of port calls per route will result in large fast container �ows

between the hubs. In this paper we assume that all demand has to be transported

from its given origin to the given destination port. However, when for example

Rotterdam will become a hub port with non-stop connections to Asia, it is inevitable

that the demand at ports close to Rotterdam, like Antwerp and Hamburg, will

(partly) shift towards Rotterdam. Containers can be transported by truck, train or

barge from Rotterdam to Antwerp and Hamburg or directly to the real destination

of the container. In general, a demand shift towards the hub ports is to be expected,

because hub ports o�er fast and frequent connections to other hub ports. Hinterland

connections will be used to deliver containers at the hub ports, increasing the demand
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at hubs. This results in less transshipments in the networks, which is bene�cial for

the hub networks. Hence, the hub networks might perform better than indicated by

the results in this paper, where we did not consider the demand change.

2.1.2 Transit time

The in�uence of introducing a hub-and-feeder network on transit time is considered

by distinguishing between two di�erent types of demand pairs: pairs of which both

ports are hub ports in their region and pairs of which at least one port is a regional

port.

Hub services provide more e�cient transport between hub ports than traditional

liner network, because fewer port stops per route are made. This will probably

decrease the transit time for cargo demand between two hub ports. However, the

second category is more di�cult to evaluate. In the hub-and-feeder network, many

of these demand pairs will need at least one transshipment, because at least one of

the ports is not a hub. Assuming weekly port calls in liner shipping networks, the

containers may have to wait up to one week for the connecting ship. In traditional

liner shipping networks, the ports might be called at the same route, in which case no

transshipment is needed. However, also in traditional networks, transshipments are

likely, especially for small ports that are usually only visited at a few routes in the

network. Furthermore, a connection between two ports on the same route is probably

more e�cient in hub-and-feeder networks than in traditional networks because of

the reduction in port calls. With fewer port calls, the total distance of a route

will probably decrease because ships need to sail less additional distance in order to

make port calls. Furthermore, the route time decreases, because fewer port visits

also means less port time. Hub networks consist of only a few ports, so the same port

combination might be visited on multiple routes, increasing the frequency between

hubs. Therefore, the additional time required for additional port calls on traditional

routes and consequently the additional distance to be sailed can easily become larger

than the transshipment time needed in a hub-and-feeder service. A disadvantage

of hub-and-feeder networks is that regional origin (respectively destination) ports

might be located closer to the destination (respectively origin) port than the hub

port where the cargo has to be transshipped, so some backtracking has to occur.

In this case, the distance between the origin (respectively destination) port and

the hub has to be sailed twice. This disadvantage can partly be accounted for in

the clustering algorithm, where this additional distance can be incorporated in the

decision to allocate the regional port to a hub port.

In conclusion, the e�ect of a hub-and-feeder network on the transit time is not

necessarily negative, but more research has to be done to draw exact conclusions.

Transit time can be incorporated in the network design problem, but will increase

the complexity of the problem even more, since trade-o�s need to be made between
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costs and transit time. Therefore, we decided not to include the transit time as

decision variables in our problem.

2.1.3 Economies of scale

Third, (dis)economies of scale in�uences the pro�tability of networks. Larger ships

are well-known to be more e�cient at sea, but they might be less e�cient in ports (see

for example Cullinane and Khanna 1999). However, in this research we investigate

the reduction in port calls per route using the same ship types as are currently used

by liner companies. The advantage of making fewer port stops compared to services

calling at multiple ports is that more containers on the ship have to be unloaded

during a port call. This reduces the complicated problem of container placement on

ships and decreases the probability that containers are blocking other containers.

However, the disadvantage of having fewer port calls is that more containers have

to be loaded and unloaded during a port call, which might in�uence the port time.

In the case study, we do not incorporate this aspect; all port calls take the same

amount of time consistent with the approach in Brouer et al. (2014a). Furthermore,

high container volumes are transported over a hub service. The high volumes justify

the use of even larger container ships on hub services. In this way, shipping lines

can bene�t even more from economies of scale.

2.1.4 Uncertainty in port time

The next aspect we will consider is the uncertainty in port time. Port time un-

certainties can arise from many di�erent factors such as port/terminal congestion,

unexpected waiting times before berthing or before starting loading/discharging and

port/terminal productivity below expectation (Notteboom 2006). The probability

of obtaining one of these delays increases when ships arrive delayed in a port, thereby

missing their allocated time slots. Delay management is a very important issue in

liner shipping. Shipping lines face high operational costs per day, so delays can

be very costly (Vernimmen et al. 2007). Furthermore, shippers are faced with the

possibility of losing customers. Therefore, shipping lines will try to maximize their

schedule reliability. Ships sailing on services with fewer port calls will spend rela-

tively more time at sea. Fewer port calls will clearly lead to a lower probability of

incurring delays in ports. Furthermore, average sailing distances per sea leg increase

when fewer ports are called per route, which gives rise to the possibility of recovering

earlier obtained delays by increasing the sailing speed. Clearly, delays can always

be recovered (at least partially) by increasing the sailing speed, but larger sailing

distances imply smaller speed increases to capture the same amount of delay. Since

daily bunker costs are usually assumed to be proportional to the third power of the

sailing speed (Stopford 2009), larger increases in sailing speed can have disastrous
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consequences on the bunker costs. Hence, services with fewer port calls are likely to

recover from incurred delays in a less costly manner compared to other liner services,

resulting in more timely port arrivals and thus lower probabilities of incurring port

delays. Another factor in�uencing the port time uncertainty is the variation in call

size. A hub service will typically be used to transport the cargo demand from one

region to another region. Individual port demand is thus aggregated to port re-

gion demand, which will in general also increase the call size uncertainty. However,

this e�ect is compensated by the decrease in number of port calls on the service.

Which of these two e�ects will dominate the other depends on multiple factors, like

correlation between call sizes.

Concluding, in general hub services might be able to decrease the port time uncer-

tainty, because on-time arrivals can better be managed. However, uncertainty in

call size can endanger the port time reliability.

2.1.5 CO2 emissions

Next, we will consider the di�erence in CO2 emissions between transport using hub

services and transport using traditional liner services. Again, the total e�ect is

di�cult to estimate beforehand and depends on the exact network structure. On

one hand, more transshipment movements are needed to transport the cargo from

the origin to the destination port using hub-and-feeder networks, adding more CO2

emissions to the process. On the other hand, hub services are more e�cient at sea,

decreasing the total CO2 emissions. Therefore, no exact conclusions can be drawn

with respect to the in�uence of hub-and-feeder networks on the CO2 emissions.

The amount of CO2 emissions for a given route will be proportional to the bunker

consumption at the route. Hence, after obtaining di�erent networks, the amount

of CO2 emissions can easily be compared to each other. However, it is much more

di�cult to incorporate the amount of emissions in the optimization model, since

trade-o�s between total network costs and emissions have to be made.

2.1.6 Cost allocation

Liner companies are using shipping networks to provide connections between ports

to deliver demand. The total network performance can easily be determined by de-

termining the total costs and revenues of the network. In practice liner companies

are often also interested in the cost or bene�t of a single OD-pair. However, these

costs are much more di�cult to estimate, because multiple OD-pairs share connec-

tions and it is not obvious which part of the costs should be allocated to which

OD-pair. This problem is referred to as the cost allocation problem. In traditional

networks, this is a very di�cult problem, because OD-pairs can usually be serviced

using multiple di�erent connections, which makes it unclear which OD-pairs should
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contribute to the costs of an individual route. Cost allocation will become more

straightforward when using hub-and-feeder networks, because there will be fewer

connections between OD-pairs. The extreme case in which the hub route consists of

a non-stop connection between two ports, will clearly reveal the exact route of an

OD-cargo.

2.1.7 Flexibility and competition

Finally, we compare the �exibility and competition potentials between hub-and-

feeder and traditional liner shipping networks. Clearly, �exibility increases when

more ports are visited on a route. Since the distance between two consecutive

ports is usually smaller on routes with more port calls, ships have more opportunity

to for example swap port calls if no berth is available in one of the ports at the

expected arrival time. Furthermore, more port calls in a region might allow transport

providers to change the origin port in case they are going to miss their connection,

which also increases the potential for competition between ports. If only one port

is visited in each region, the competitive position of all other (smaller) ports will

weaken strongly. Hence, traditional networks provide both more �exibility and more

competition potentials.

3 Solution methodology

This section discusses the hub-and-feeder network design problem. The goal is to

construct a network satisfying the hub-and-feeder design. We propose an iterative

solution algorithm in which the hub and feeder routes are iteratively updated given

that the other routes are �xed. Algorithm 1 gives a description of the iterative

solution approach. We �rst need to select the potential hub ports from the data.

Then, given this set of hubs, clusters need to be designed. This is done in Step 1 of

the algorithm using Algorithm 2, which will be described in Section 3.1. Next, we

want to construct a route network consisting of hub and feeder or regional routes.

Each route is denoted by a string of ports. The order of the ports denote the order

in which they are visited on the route. Ports can be visited multiple times on a

route. We require a weekly frequency of each route in the network. The hub and

feeder subnetworks can be generated separately from each other. That is, given a

set of feeder routes, the connecting hub routes can be optimized, while the optimal

regional routes can be found given a realization of the satis�ed demand obtained

with �xed hub routes. Sections 3.2 and 3.3 describe respectively the network design

of the hub and regional route networks.

The initial hub network in Step 2 is constructed as will be described in Section 3.2.

Then, the initial regional route network can be constructed by solving the regional

route network design (RRND) problem that will be introduced in Section 3.3 with as
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initial demand the real demand between each OD-pair. That is, in the construction

of the initial regional route network, we assume that all demand should be satis�ed.

Furthermore, each cluster is allowed to use all available ships in the dataset. After

constructing the initial hub and regional route network, the ship allocation and

cargo routing (SACR) problem that will be described in Section 3.4 can be solved

with a time limit. In this problem, ships are allocated to the routes in the network

and the cargo allocation over the network is determined in order to determine the

pro�tability of the network. Next, the demand satis�ed in the network can be

used as a new input in the regional route network design problem. Now, also more

information about the availability of ships is known. For each cluster, the ships

allocated to this cluster in the solution of the SACR problem will be available to

use in the MIP formulation of the considered cluster. Furthermore, each ship that

is not used in the SACR will be initially available in the RRND problem. After

solving each MIP, these available ships will be updated: if one of the ships that

was not used in the SACR is now allocated to a regional route, it is removed from

the available ships, while ships that were initially allocated to a regional route, but

are not allocated in the new optimal solution, are added to the available ships. In

this way, a new regional route network is found and can be used to resolve the

SACR problem. This can be repeated until no improvement is found. Note that in

Algorithm 1: Iterative algorithm

1. Run Algorithm 2 from Section 3.1 to obtain hubs and clusters.

2. Design hub network as described in Section 3.2.

3. Repeat as long as an improvement is found

(a) Design regional route network as described in Section 3.3.

(b) Solve ship allocation and cargo routing problem as described in
Section 3.4 to determine new hub network and satis�ed demand
realization.

each iteration, the new regional route network will perform at least as good as the

previous regional route network, because the previous network is always a feasible

solution to the RRND problem. Hence, by using a MIP start for the SACR problem,

with the ship allocation to the hub routes as in the previous solution to the SACR

problem and the ship allocation to the regional routes as in the new optimal solution

of the RRND problem, we are guaranteed to �nd a solution with a pro�t that is at

least as high as the pro�t in the previous iteration.

The ship allocation and cargo routing problem is a well-known problem in liner

shipping. Formulations used in existing literature to solve this problem, can be dis-

tinguished in two groups: �ow-based formulations and path-based formulations. In
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general, path-based formulations outperform the �ow-based formulations for small

instances. However, the number of variables in path-based formulations will grow

exponentially in the input size, while this growth is linear for �ow-based formula-

tions. Path-based formulations are often solved using column generation techniques.

However, the number of variables in our instances are small enough to be able to

generate all variables beforehand. Since it still becomes more di�cult to �nd good

solutions for instances with more than �ve hubs, we propose a new type of formu-

lation: we combine the �ow-based and path-based formulations in order to bene�t

from the advantages of both formulations. Section 3.4 will describe both the path-

based formulation and this new formulation. In the case study, the performance of

these formulations are compared and the best formulation is used in the iterative

algorithm.

3.1 Hub selection and clustering

The clustering process is done in two parts: �rst hubs are determined with initial

clusters, which are partitioned in smaller clusters in the second part. Algorithm 2

describes the clustering process. The �rst step uses a variant of the k-centroid clus-

tering algorithm to �nd the initial clusters and corresponding hubs. These hubs

are the potential hubs in our solution algorithm. In the k-centroid clustering algo-

rithm, one starts with k initial ports that are used as hub ports. Then, each port

is allocated to the closest hub port using a distance function. After the allocation,

the distance function is used to determine the average distance of each port in a

cluster to all other ports in this cluster. The port with the smallest average distance

is chosen and used as new hub. Then the allocation and hub determination steps

are repeated until the clusters are converged. Instead of the distance between two

ports, we will use a di�erent distance function in the k-centroid clustering algorithm.

Since all cargo, except the cargo to and from a hub, has to be transshipped, it is

preferred that hub ports are ports with large demand, because this will reduce the

transshipment cost for the cluster. Furthermore, the location of the hub in the clus-

ter is important, because all other ports are visited from the hub port. Therefore,

we de�ne the following distance function ∆c
ph for p ∈ P and h ∈ H:

∆c
ph = ∆phc

nm

(∑
p′∈P

(dpp′ + dp′p) +
∑
p′∈P

(
I∆pp′≥∆hp′

dpp′ + I∆p′p≥∆p′h
dp′p

))
+
∑
od∈D

dodc
t
hI

t
odh. (1)

In (1) P , H and D are the set of ports, hubs and OD-pairs respectively, ∆ij and dij
are respectively the distance and demand between ports i and j and cnm and cti are

respectively the average cost of transporting one container per nautical mile and the

11



transshipment cost of port i. Furthermore, Ia returns 1 if statement a is true and

0 otherwise, while I todh equals 1 if OD-pair od needs a transshipment at hub h and

0 otherwise. The distance used for the clustering algorithm ∆c includes the cost of

transshipping at the hub and the sailing cost from the hub port to the regional port.

If the hub port is located further away from the destination (respectively origin) port

than the origin (respectively destination) port, the sailing distance between the hub

and the regional port is added twice in order to reduce the additional distances

travelled by containers because of transshipments at hubs. The average sailing cost

per container per nautical mile is estimated by taking an average over all ship types

assuming that they will sail at design speed. Finally, we do not allow to sail through

the Suez Canal in regional routes, since costs are associated to each passage of the

Suez Canal.

Tighter draft restrictions lead to less ship types that are able to berth in that port.

Since, larger ships usually have larger drafts, tighter draft restrictions prevent larger

ships from being able to berth. Hence, ports with high demand in which large

container ships are able to berth are most likely not visited on the same route as

ports with only little demand or with limited draft restrictions. Hence, we do not

want to allocate these ports to the same cluster. Thereto, Step 2 splits the ports

in each cluster into large, medium and small ports based on draft limit and total

port demand (sum of demand and supply in the data set). The current cluster is

replaced by three groups each containing one of these groups of ports. The sets

Ps, Pm and P l denote the sets with small, medium and large ports respectively. In

the algorithm δi denotes the draft of port i and δ, δ̄, d and d̄ are lower and upper

bounds on the draft and port demand. Figure 1 shows an example of this step of

the clustering algorithm.

Hub port Regional port

Figure 1: Example of Step 2 of Algorithm 2. The left part shows a hub port together
with the allocated regional ports. In the right part, the regional ports are divided
in small, medium and large regional ports.

A limit m on the total number of ports in a cluster is imposed. In Step 3 of the

algorithm, clusters are split into two new clusters as long as the number of ports

exceeds this limit. Splitting is based on a 2-centroid clustering algorithm. First, the
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two ports that are located most far apart from each other are used to initialize the

two cluster centers. Ports are allocated to the closest cluster and the port that is

most close to the geographical cluster center is used as new center. Then, clusters

are updated using the same procedure, until they do not change any more or a

predetermined number of updates have been performed. Figure 2 shows an example

of Step 3 of the algorithm.

Hub port Regional port Regional port used as cluster center

Figure 2: Example of Step 3 of Algorithm 2. The left part shows a hub port together
with the allocated small, medium or large regional ports. In the middle part, the
two regional ports that are located most far apart are used as cluster centers and all
other regional ports are allocated to the closest cluster center. The right part shows
the updated cluster centers and the new clusters.

Finally, some empty clusters might exist after the �rst steps of the algorithm, so

Step 4 removes these empty clusters if they exist.

3.2 Hub network

The hubs are sorted based on geographical location starting in the far East and end-

ing in Northern Europe. Then, hub routes are generated by complete enumeration

of all routes that visit the hubs in geographical order. Hence, routes can visit a hub

on the eastbound voyage, on the westbound voyage, on both the eastbound and the

westbound voyage or on neither of the two voyages.

3.3 Regional network

In this section we will discuss the regional route network design problem. The

clusters will be used in the generation of the regional route network. Only ports that

belong to the same cluster might be visited on the same route. Hence, the regional

route network design problem can be split into a separate problem for each cluster.

Furthermore, we assume that all regional ports will be visited on at most one route.

Since almost no regional demand is included in the dataset, almost the total supply

13



Algorithm 2: Clustering algorithm

1. Initialize clusters and determine hubs using a k-centroid clustering algorithm
with distance function ∆c as de�ned in (1) and using the k largest ports as
initial hubs.

2. For each hub, split the cluster into three new clusters with small, medium
and large ports respectively:

• Ps =
{
p ∈ P :

∑
p′∈P (dpp′ + dp′p) ≤ 2d

∑
od∈D dod
|P| ∨ δp ≤ δ

}
.

• Pm =
{
p ∈ P : p /∈ Ps ∧

(∑
p′∈P (dpp′ + dp′p) ≤ 2d̄

∑
od∈D dod
|P| ∨ δp ≤ δ̄

)}
.

• P l = {p ∈ P : p /∈ Ps ∪ Pm} .

3. As long as ∃i : | {p ∈ P : p ∈ Ci} | ≥ m, repeat for these clusters:

• Split the cluster in two new clusters using the 2-centroid clustering
algorithm with distance function ∆ and initial centers the two ports
that are located most far apart.

4. Remove all empty clusters if applicable.

and demand of a port, will be delivered to and from the hub respectively. Hence,

the regional network design problem is very similar to a vehicle routing problem

with simultaneous pickups and deliveries and a heterogeneous �eet. The maximum

number of ports in a cluster will be chosen in such a way that all routes starting and

ending at the hub can be generated and included in a mixed integer programming

(MIP) model. For each route, the port on the route with the smallest draft restricts

which ship types can be used for this route. Hence, the feasible ship types for each

route can be calculate beforehand and is input for the MIP model.
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We introduce the following notation in order to de�ne the RRND model.

Pc set of ports in the considered cluster (except the hub port).

R set of routes.

Rp set of routes containing port p ∈ Pc.

Sc set of available ships for the considered cluster.

Vrs set of speeds that ship s ∈ Sc can sail at route r ∈ R to obtain a weekly duration.

crrsv weekly route cost of sailing route r ∈ R per ship of type s ∈ Sc with speed v ∈ Vrs.
trsv duration of route r ∈ R if ship type s ∈ Sc is used at speed v ∈ Vrs.
c̃tr transshipment cost of route r ∈ R for satisfying demand between two ports that

are allocated to the same cluster.

ns number of available ships of type s ∈ Sc.

qprsv fraction of demand of port p ∈ Pc satis�ed when route r ∈ R is sailed once a week

with ship type s ∈ Sc and speed v ∈ Vrs.
yrsv number of weekly port calls on route r ∈ R using ship type s ∈ Sc with speed v ∈ Vrs.
zr binary variable indicating whether route r ∈ R is used or not

k constant equal to the number of available ships.

Note that trsv not only denotes the duration of a route, but also the number of ships

that need to be allocated to the route in order to obtain a weekly frequency. The

mixed integer programming formulation is given by:

min
∑
r∈R

∑
s∈Sc

∑
v∈Vrs

crrsvtrsvyrsv +
∑
r∈R

c̃trzr (2)

s.t.
∑
s∈Sc

∑
v∈Vrs

1

k
yrsv ≤ zr r ∈ R (3)∑

r∈Rp

∑
s∈Sc

∑
v∈Vrs

qprsvyrsv ≥ 1 p ∈ Pc (4)∑
r∈Rp

zr = 1 p ∈ Pc (5)∑
r∈R

∑
v∈Vrs

trsvyrsv ≤ ns s ∈ Sc (6)

yrsv ∈ Z r ∈ R s ∈ Sc v ∈ Vrs (7)

zr ∈ {0, 1} r ∈ R. (8)

The objective is to minimize the total costs associated with the selected routes.

Since all demand has to be satis�ed, (un)loading costs will be constant and do

not need to be included in the total costs. Also most transshipment costs will be

incurred in every feasible route network. For example, if the closest hub to the
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origin port of a demand pair is di�erent from the closest hub to the destination port

of this demand pair, the transshipment cost at the hubs will always be incurred.

Furthermore, if the hubs are the same, but the origin and destination port are

allocated to di�erent clusters, the demand is also always transshipped at the hub,

because the route networks are solved per cluster. So, the only transshipments that

might or might not be included in the total costs are transshipments of demand

pairs with the origin and destination both allocated to the same cluster. Therefore,

these are the only transshipment costs included in the objective. In order to include

these transshipment cost exactly once per container, the transshipment costs are

only included in c̃tr if the origin and destination port of the demand pair are both

allocated to the same cluster and the origin port is part of route r ∈ R, while the
destination port is not. Finally, the �rst part of the objective gives the total route

costs of the selected routes. In the route cost crrsv, the weekly �xed cost of ship type

s ∈ Sc, the weekly port call costs and the weekly fuel cost (both fuel cost on sea as

during port stays) of sailing route r ∈ R with ship type s ∈ Sc at speed v ∈ Vrs are
included. Hence,

crrsv = 7cfs +
ef̃s

(
v
ṽs

)3

tsrsv + ef̃p
s t

p
r +

∑
p∈Rp

cpps

trsv
,

where cfs is the daily �xed cost of ship type s ∈ Sc, e is the bunker price in USD

per ton, f̃s and f̃p
s are the fuel consumption in ton per day for ship type s ∈ Sc

when sailing at design speed and when berthing in a port respectively. Further, ṽs
is the design speed in knots of ship type s ∈ Sc and tpr and t

s
rsv are respectively the

port and sailing times in days of sailing route r ∈ R with ship type s ∈ Sc at speed

v ∈ Vrs. The cost of calling at port p ∈ Pc with ship type s ∈ Sc is denoted by cpps.

Finally, routes are generated such that

trsv =
tpr + tsrsv

7
∈ N.

Constraints (3) guarantee that zr will take value 1 if route r ∈ R is used by some

ship type. Constraints (4) ensure that all demand is satis�ed, while Constraints (5)

make sure that each port is visited on exactly one route. The limited availability

of ships is imposed by Constraints (6). Finally, Constraints (7) and (8) ensure the

integrality and binary conditions on the decision variables.

After solving the MIP model (2)-(8) for each cluster, the routes that are used in the

optimal solutions are added to the regional network.
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3.4 Ship allocation and cargo routing

The hub network and regional network form together the input network for the

ship allocation and cargo routing problem. Note that the regional network already

consists of routes visiting each regional port exactly once, such that only the ship

allocation to these routes still has to be solved (unless some ports will not be visited

at all in the network). The hub network, on the other hand, consists of all possible

routes visiting only (some of) the hub ports, so we still need to decide which routes

will be used. The ship allocation and cargo routing problem can also be modelled

using a MIP formulation. Thereto, we �rst introduce some additional notation:

L set of legs.

D set of origin-destination demand pairs (OD-pairs).

Q set of paths.

Ql set of paths containing leg l ∈ L.
Qod set of paths satisfying demand od ∈ D.
Rl set of routes containing leg l ∈ L.
clsod cost per TEU of not satisfying demand od ∈ D.
cqq cost of transporting one TEU over path q ∈ Q.
bs capacity in TEU of ship type s ∈ S.
dod demand of OD pair od ∈ D.
xq amount in TEU transported over path q ∈ Q.
Lod amount in TEU of unsatis�ed demand between od ∈ D.

Note that a path consists of a certain number of legs, so for example q1 = (l1, l2, l3)

denotes a path containing three legs. Each leg consists of two consecutive ports

visited on a route together with the route they are visited on, for example l1 =

(p1, p2, r1) denotes the leg between ports p1 and p2 visited consecutively on route r1.

The costs of a path are de�ned as the sum of the loading, unloading and possible

transshipment costs minus the revenue of satisfying the demand of the OD-pair.

Each OD-pair has one or multiple paths associated to it (the paths that start at

the origin and end at the desination port of the OD-pair). The structure of the

input network guarantees that the number of paths per OD-pair is limited: the

subpath from the origin port to the �rst hub port (only applicable if the origin port

is not a hub) is unique, because every regional port is on exactly one regional route.

Similarly, the subpath from the last hub port to the destination (if applicable) is

unique. Hence, the number of di�erent OD-paths is equal to the number of di�erent

subpaths between the two hubs, which results in a limited number of total paths.

This is important because in general the number of paths in a network can grow very
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fast. Since each path is associated with a variable in the mixed integer programming

formulation, this would most likely result in too many variables, such that more

advanced techniques, like column generation, are needed to solve the MIP. However,

the special structure of our input network guarantees that it is possible to include

all variables in the formulation without the necessity of using additional techniques.

The mixed integer programming formulation is given by:

min
∑
r∈R

∑
s∈S

∑
v∈Vrs

crrsvtrsvyrsv +
∑
od∈D

clsodLod +
∑
q∈Q

cqqxq (9)∑
q∈Qod

xq + Lod = dod od ∈ D (10)∑
q∈Ql

xq ≤
∑
r∈Rl

∑
s∈S

∑
v∈Vrs

bsyrsv l ∈ L (11)∑
r∈R

∑
v∈Vrs

trsvyrsv ≤ ns s ∈ S (12)

xq ≥ 0 q ∈ Q (13)

yrsv ∈ Z r ∈ R s ∈ S v ∈ Vrs.(14)

The objective of the model is to minimize the total cost minus the revenue. Note that

negative objective values correspond to positive pro�ts and hence, we are actually

maximizing total pro�t. The revenue is included in the costs of the paths. The total

costs consists of (un)loading and transshipment costs (included in the path costs),

penalties associated to lost sales and total route costs (�xed ship costs, port call

costs and fuel costs during sailing and berthing in ports). Constraints (10) ensure

that all demand is either satis�ed using one of the OD-paths or lost. Further,

Constraints (11) denote the capacity constraints on each of the legs in the network.

The limited availability of ships is modelled in the same way as in the regional route

network design problem by Constraints (12). Finally, Constraints (13) and (14)

ensure the nonnegativity and integrality of the path �ows and number of allocated

ships respectively.

3.4.1 Reducing the number of variables

Although the total number of paths is small enough to be included in the MIP

formulation, we can improve upon the formulation by using a modelling trick. As

already explained above, the start and end subpath of each OD-pair is unique. By

introducing an arti�cial leg between the two hub ports, we can reduce the number

of paths to one for each OD-pair. Hence, each path consists of the unique start

subpath, the arti�cial leg between the two hubs and the unique end subpath. This

reduces the number of paths and thus the number of variables even further. However,

additional constraints are needed to ensure that the �ow over the arti�cial leg is sent
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over existing legs in the network. Thereto, we introduce:

L′ set of arti�cial legs added to the network.

Q′l′ set of paths in the network that can be used to transport �ow over arti�cial leg l′ ∈ L′.

Furthermore, the set of paths in the new formulation will now consist of the unique

OD-path for each OD-pair and all possible paths between two hubs in the network.

Hence, if q is a unique OD-path, then q ∈ Q and if q is a path between two possible

hubs, then q ∈ Q′l′ with l′ denoting the two hubs that are the start and end ports of

the path. The following constraints can now be added to the formulation (9)-(14):∑
q∈Ql′

xq =
∑
q∈Q′

l′

xq l′ ∈ L′. (15)

Constraints (15) ensure that all �ow that is sent over an arti�cial leg is also allocated

to one of the existing paths between the �rst and last port of the arti�cial leg. Hence,

the constraints ensure that all �ow is allocated over the real network. The resulting

mixed integer program (9)-(15) has less variables and generates better solution in

shorter computational times. Note that transshipment on hub routes can be handled

by adding constraints of type (15) twice to the model. The �rst time, the �ow

balance between arti�cial legs in OD-paths and arti�cial legs in transshipment paths

is modelled. The second time, they model the �ow balance between the arti�cial

transshipment legs and the real hub legs.

4 Case study

In this section, the results of the optimization methods applied to a case study on

the Asia-Europe trade lane are discussed.

4.1 Data

We use the Asia-Europe data from LINERLIB (Brouer et al. 2014a), where also the

low, base and high capacity scenarios are introduced. The data contains information

on 114 ports on the Asia-Europe trade lane. Furthermore, demand for 4000 OD-pairs

is given together with the availability and characteristics of six di�erent ship types.

The data contains some unlikely values for the transshipment cost. Some ports have

transshipment cost of 0 or almost 0, which results in a large underestimation of the

costs of these ports. Therefore, we decided to use the average transshipment costs

for these ports, since this will advantage ports with large throughput to be selected

as hub ports.
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4.2 Hubs

The potential hubs are determined using the 7-centroid clustering algorithm with

distance function as given in (1) and cnm = 0.075. This results in the following seven

potential hubs with their corresponding region: Bremerhaven (Northern Europe),

Rotterdam (Northern Europe), Algeciras (Southern Europe), Jebel Ali (the Middle

East), Tanjung Pelepas (the Singapore region), Shenzhen (Southern China) and

Shanghai (the Far East). We will run several experiments including 2-7 of the above

potential hub ports as hubs in the network. When including only 2, 3 or 4 hubs, we

select respectively from the largest 4, 5 and 6 hubs (in total port demand).

4.3 E�ect of reducing variables

In this section, we compare the mixed integer formulations (9)-(14) (SACR model)

and (9)-(15) (reduced SACR model) for the SACR problem. To this purpose, we

perform one step of the iterative algorithm for the base case for both formulations

and compare the number of variables, best lower and upper bound and optimality

gap. Tables 1 and 2 show the averages of these characteristics for all instances with

3, 4, 5, 6 and 7 hubs for the two formulations. We did not include instances with 2

hubs, since the formulations are the same for these instances. The tables clearly

#Hubs #Variables LB (×106 USD) UB (×106 USD) Gap (%)

3 16,989 541 646 23.08
4 55,204 541 772 48.78
5 219,348 97 895 3,754.44
6 900,238 =1,979 96,747 4,989.76
7 3,671,793 =1,979 2,713,284 137,234.30

Table 1: Characteristics for the SACR model

#Hubs #Variables LB (×106 USD) UB (×106 USD) Gap (%)

3 8,628 566 605 7.46
4 9,436 667 709 6.70
5 13,282 761 822 8.48
6 31,269 818 936 15.77
7 114,093 831 1,047 26.06

Table 2: Characteristics for the reduced SACR model

show that formulation (9)-(15) is better suitable for our solution algorithm than the

formulation without Constraints (15): both the obtained solutions within the time

limit and the upper bounds are better using this formulation. Furthermore, the
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reduced model is able to �nd feasible solutions for all number of hubs within the

time limit, while the original model could not �nd any feasible solution for instances

with six and seven hubs.

4.4 Results

Table 3 shows the pro�ts of the route networks found using Algorithm 1 for low,

base and high capacity scenarios with di�erent potential hubs as input. The table

only shows the combinations of potential hubs that resulted in the most pro�table

networks. The �rst column of Table 3 shows which potential hubs are included while

running Algorithm 1: Bremerhaven (Br), Rotterdam (Ro), Algeciras (Al), Jebel Ali

(JA), Tanjung Pelepas (TP), Shenzhen (She) and Shanghai (Sha). The second, third

and last columns show respectively the pro�t in million USD of the network found

for the low, base and high capacity scenarios. All instances are run with 10 and 12

meters as lower and upper draft bounds respectively. The lower and upper demand

bounds are respectively given by 0.25 and 1.5. We allow for at most 6 ports and at

most 10 changes per cluster. Finally, the running time of the ship allocation and

cargo routing model is set to 180 sec.

Pro�t in million USD

Included hubs Low Base High

Al, JA, TP, She, Sha 505.183 966.284 1,187.393
Ro, Al, JA, TP, She 535.303 928.968 1,148.290
Br, Al, JA, TP, She 528.651 933.594 1,171.080
Br, Ro, Al, JA, TP 493.625 916.989 1,174.196
Ro, Al, JA, TP, She, Sha 532.965 937.362 1,188.981
Br, Al, JA, TP, She, Sha 517.896 945.572 1,194.305

Br, Ro, Al, JA, TP, She 537.073 948.088 1,179.914
Br, Ro, Al, JA, TP, She, Sha 539.501 944.504 1,125.379

Current best network 373.000 758.549 937.461

Table 3: Pro�t for the low, base and high capacity scenarios

Table 3 shows the networks obtained for di�erent con�gurations of hub ports. In

general, the pro�t increases when a potential hub port is added. The best network

with two hubs for the base instance has a pro�t of 806 million USD. This increases

to almost 829, 876 and 966 million USD for networks with three, four and �ve hubs

included. Remarkably, adding the sixth and seventh hub, decreases the pro�t of

the found network. The last row of the table shows the pro�t of the current best

network in literature for the low, base and high capacity scenarios of the Asia-Europe

LINERLIB data (Brouer et al. 2014b, Brouer 2015). Our best networks provide an

21



increase in pro�t of 44.6%, 27.4% and 27.4% respectively for the low, base and high

capacity scenario with respect to the current best networks in literature.

Table 4 shows some characteristics of the best route networks, i.e. the networks cor-

responding with the bold pro�ts in Table 3. The �rst part of the table shows cost

characteristics of the networks. Since vessels are more expensive in lower capac-

ity scenarios, the �eet cost is decreasing when the capacity scenario increases from

low to high. Furthermore, the lost sales cost also decreases, because more capacity

results in more satis�ed demand. The table also shows that the bunker costs are

decreasing while the port costs are increasing when the capacity scenario increases

from low to high. Hence, more direct routes are chosen when the vessel costs in-

creases, leading to less port visits. The second part of the table shows some other

characteristics of the networks. With less capacity, less ships are available which

results in less routes. The hub routes have in general high utilization, resulting in

high best peak and average utilization in all three capacity scenarios. Finally, the

number of transshipments is relatively high in the network, because many OD-pairs

need one or two transshipments in order to be satis�ed.

Low Base High

Revenue 3,354.258 3,471.728 3,592.852
Fleet cost 718.560 646.740 581.760
Bunker cost 687.669 487.571 459.203
Move cost 643.074 673.211 689.307
transshipment cost 221.302 238.466 228.645
Port cost 104.030 113.424 131.603
Canal fees 248.576 248.576 269.843
Lost sales cost 191.546 97.457 38.186
Pro�t 539.501 966.284 1,194.305

Fleet deployment 100.00 99.43 92.45
Nr routes used 57 64 71
Average port calls per week 2.04 1.76 1.77
Best peak utilization 100.00 100.00 100.00
Worst peak utilization 26.75 10.50 4.75
Best average utilization 97.83 97.06 99.83
Worst average utilization 14.29 8.13 4.73
Average nr transshipments 1.13 1.28 1.26
Percentage rejections 9.68 4.93 1.93

Table 4: Characteristics for the best networks with low, base and high capacity
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5 Local improvement heuristic: adding a stop to a

hub route

In this section, we propose a local improvement heuristic to improve the obtained

networks. Thereto, we investigate whether it is pro�table to add an additional port

to a hub route. In this way we get more insight into the trade-o�s. We take one

of the hub routes used in the best network of the base case found when including

Algeciras, Jebel Ali, Tanjung Pelepas, Shenzhen and Shanghai as hubs and show

with some calculations whether it is pro�table to also visit another port.

Given the route distance, the sailing time in days and speed in knots can be calcu-

lated by respectively:

tsrsv = 7trsv − tpr (16)

and

v =
∆r

24tsrsv
(17)

where ∆r is the route distance of route r ∈ R in nmi, trsv is the route time of sailing

route r ∈ R with ship type s ∈ S at speed v ∈ Vrs in weeks and tpr is the total port

time of route r ∈ R in days. Note that v should be in between a ship-dependent

minimum speed vmin and maximum speed vmax. The bunker cost cbrsv of route r ∈ R
sailed with ship type s ∈ S at speed v ∈ Vrs can be computed using the formula:

cbrsv = ef̃s

(
v

ṽs

)3

tsrsv + ef̃p
s t

p
r, (18)

where e is the bunker price in USD per ton, f̃s is the fuel consumption in ton per

day at design speed of the vessel type s ∈ S, ṽs is the design speed in nmi/hr of ship
type s ∈ S and f̃p

s is the fuel consumption of the ship s ∈ S in ton per day when

idling at a port.

Using (18) we can calculate the bunker cost for each route and hence the di�erence

in the bunker cost after adding an additional stop. Furthermore, an additional stop

results in additional port dues, which can be calculated by:

cpps = fp
p + vppbs, (19)

where fp
p is the �xed port call cost at port p ∈ P and vpp the variable port cost at port

p ∈ P per FFE capacity of the ship berthing at the port. Finally, transshipment

costs decrease by making an additional port call. The transshipment cost made to

transship the containers at the nearest hub will be saved for the containers that can

now directly be loaded or unloaded at the new port, which results in a savings on
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transshipment cost stp at hub h ∈ H of.

stp = nctp, (20)

where n denotes the number of FFE that can now directly be loaded or unloaded in

the new port instead of needing a transshipment at the nearest hub and ctp denotes

the transshipment cost per container at the nearest hub h ∈ H.
We consider the hub route Shanghai - Algeciras - Shanghai. 8 post panamax ships

with a capacity of 4, 200 FFE are allocated to this route. Each ship needs 8 weeks

to complete the route once, so that every week a port call is realized on this route.

Since only two ports are called on the route, the total port time of the route equals

two days. We will investigate whether it is pro�table to make an additional stop

in Rotterdam and Hong Kong, which are also ports with a relatively large demand.

We assume that the port rotation time remains the same and accommodate the

extra stop by changing the ship speed. Through this choice we make the comparison

insightful, though also other options exist. Yet these may require a complete network

change.

The current route distance is equal to 18, 280 nautical miles (nmi). Using (17), we

can now determine the sailing speed on the shuttle route. The sailing speed is equal

to 14.1 nmi/hr. The design speed of a super panamax vessel is 16.5 nmi/hr, the

bunker price is assumed to be 600 USD/ton, the fuel consumption at design speed

is 82.2 ton/day and the fuel consumption when idling at a port equals 7.4 ton/day.

The bunker costs can then be found using (18) and equal 1, 672, 594 USD.

The next sections describe the e�ect of additional port calls at Rotterdam and Hong

Kong. An overview of the cost di�erences for these two ports can be found in Table 5.

5.1 Additional stop in Rotterdam

The route distance increases with 15.1% to 21, 048 nmi when Rotterdam is added

to the route. Furthermore, an additional port call results in an increase in port time

from two to three days. The new speed that has to be sailed to complete the route

in nine weeks can be determined using (16) and (17) and is equal to 16.5 nmi/hr.

Using (18), we �nd that the new bunker cost are equal to 2, 649, 762 USD. Hence,

making an additional port call at Rotterdam will lead to an increase in bunker costs

of 977, 169 USD. Furthermore, additional port costs are incurred by the additional

stop in Rotterdam. The �xed port cost of Rotterdam is equal to 19, 187 USD and

the variable cost is 16 USD/FFE. The capacity of the ships is given above and is

equal to 4, 200 FFE, which results in an additional port cost of 86, 387 USD by (19).

The savings made by adding Rotterdam to the hub route depend on the number

of FFE to be directly (un)loaded at Rotterdam instead of Algeciras. Containers

originating at or destined for Rotterdam needed to be transshipped at the port of
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Algeciras in the old scenario. The transshipment cost at Algeciras is 136 USD/FFE.

In total, 2, 520 FFE, which originate from or destine for Rotterdam, can be shipped

by the considered hub service per week. The total savings can be found using (20)

and are equal to 342, 720 USD. Hence, adding Rotterdam to the hub route will result

in additional costs of 720, 836 USD and will thus not be pro�table.

5.2 Additional stop in Hong Kong

Next, we will perform the analysis for the port of Hong Kong. Adding Hong Kong

after Shanghai to the original hub route will result in a smaller detour than when

adding Rotterdam. The total route distance will increase with 0.35% to 18, 344

nmi. Using (16) and (17) we then �nd a new speed of 14.4 nmi/h. The bunker route

costs can again be calculated using (18) and increase with an amount of 86, 018

to 1, 758, 611 USD. The �xed port cost of Hong Kong is equal to 6, 809 USD and

the variable cost is 2 USD/FFE. Hence, we �nd additional port costs of 15, 209

USD using (19). In total 4, 051 FFE originating from or destined for Hong Kong are

transported on the hub route per week. The transshipment cost of Shanghai is equal

to 62 USD/FFE. Hence, by (20) a total saving in transshipment cost of 251, 162 is

found. In total, adding Hong Kong to the hub route will result in cost savings of

149, 935 USD. Hence, adding Hong Kong to the hub route will be pro�table.

Rotterdam Hong Kong

Di�erence in bunker cost 977,169 86,018
Di�erence in port call cost 86,387 15,209
Di�erence in transshipment cost =342,720 =251,162

Total cost of additional stop 720,836 =149,935

Table 5: Cost di�erences in USD for additional stops in Rotterdam and Hong Kong

5.3 Conclusion

The above proposed procedure can be used as a local improvement heuristic to

improve the networks found in Section 4. However, adding regional ports to hub

routes destroys the nice structure we are exploiting in Section 3. In this section, we

use the property that regional ports are only visited on one regional route to limit

the number of paths needed in the mixed integer program to formulate the SACR

problem. When we will start adding regional ports to hub routes, the number of

paths will increase, especially when multiple regional ports are visited on hub routes.

Hence, the complexity of the SACR model will increase, making it even harder to

�nd good solutions. We have also seen in this section that it is not evident that

adding a regional port to a hub route will result in a cost reduction. Furthermore, if
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we are able to �nd cost reductions, the improvements are only marginal. Therefore,

we decide not to include the improvement heuristic in our solution algorithm.

6 Conclusion

Container ship sizes have increased during the last few years. Bigger ships might

incur higher costs in ports; hence fewer port visits might increase the route e�ciency.

The goal of this research has been to investigate the pro�tability of a hub-and-feeder

network with only a few port calls per route.

The in�uence of a hub-and-feeder network on the demand structure, transit time,

(dis)economies of scale, port time uncertainty, delay management and �exibility

and competition is discussed. Hub ports will in general attract more demand, be-

cause they o�er fast and frequent services with other hub ports. Hence, a demand

shift towards hub ports is to be expected when introducing hub-and-feeder services.

Hence, the hub networks might even be more pro�table than already indicated by

the results in this paper. Hub-and-feeder networks will in general result in more

transshipments, which can result in longer transit times. However, in hub-and-

feeder systems, hub routes are relatively fast routes and are sailed frequently, which

will probably balance the increase in time caused by the increase in transshipments.

Furthermore, hub services bene�t more from the economies of scale at sea than

traditional liner routes, because the fraction of sailing time with respect to route

duration is higher for hub services. Moreover, hub services will most likely justify

the use of even larger container ships. The e�ect on port time uncertainty is more

di�cult to estimate, because on one hand on-time arrivals can better be managed

for hub services, which signi�cantly reduces the probability of incurring delays in

ports. On the other hand, larger uncertainty in call size endangers the port time

reliability. However, these possible delays are easier and most probably cheaper to

manage for hub services, because ships have to cover large distances at each sea leg

of a hub service. The increase in sailing speed needed to capture a certain amount

of time is then smaller compared to shorter sea legs. Although all these studies have

their limitations, they do give an indication that hub-and-feeder networks are an

interesting and e�cient concept, like they are in airlines.

An iterative solution approach is proposed to solve the problem. In the iterative ap-

proach, �rst the clusters corresponding to each hub are determined. Thereafter, all

possible hub routes are generated. The initial regional route network can be gener-

ated under the assumption that all demand will be satis�ed. Given a �xed regional

route network, the ship allocation and cargo routing problem can be formulated

and solved. However, since the problem has to be solved multiple times, we do not

necessarily solve the problem to optimality, but impose a time limit. The solution to

this problem results in a new realization of the satis�ed demand, which can be used
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to reoptimize the regional route network. The iterative solution approach repeats

these steps until no improvement is found.

A new formulation is proposed to solve the ship allocation and cargo routing prob-

lem. This formulation basically combines ideas from the existing �ow-based and

path-based formulations. We compare our new formulation with a typical path-

based formulation and conclude that the new formulation clearly outperforms the

path-based formulation: both the found solution and the best bound obtained after

a �xed time are better for the new formulation.

A case study is performed using the data benchmark set as introduced in Brouer et al.

(2014a). In the case study, the pro�tability of route networks using combinations of

seven potential hub ports (Bremerhaven, Rotterdam, Algeciras, Jebel Ali, Tanjung

Pelepas, Shenzhen and Shanghai) is investigated using the iterative algorithm. Three

scenarios with low, base and high capacity are considered. The results show that

including all seven hubs results in the best network for the low capacity case, while

for the high capacity case all hubs except for Rotterdam and in the base case all

hubs except for Rotterdam and Bremerhaven should be included to obtain the best

networks. Finally, the results show that our networks perform better than the

reference network as discussed in Brouer et al. (2014b) and Brouer (2015) with

pro�t increases of respectively 44.6%, 27.4% and 27.4% for the low, base and high

capacity scenarios.

Next, an improvement heuristic is proposed in which the pro�tability of an additional

port call at a hub service is investigated. In the example, the hub service between

Shanghai and Algeciras is considered and the costs and savings of adding Rotterdam

and Hong Kong respectively to the route are calculated. It is concluded that adding

Hong Kong to the hub service is bene�cial, while adding Rotterdam is not pro�table.

The pro�tability mainly depends on the additional distance that has to be covered,

the number of FFE for which the number of transshipments can be reduced and

the transshipment cost of the closest hub. However, the changes in pro�t are very

small. Furthermore, adding ports to hub services will destroy the structure of the

MIP models. Therefore, the improvement heuristic is not added to the solution

algorithm.
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