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Singapore, 117576 
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Abstract  

The liner ship fleet deployment problem with uncertain container demand is one of the risk 

management issues in liner shipping industry. This paper provides a methodology to deal with this 

problem, which ensures that the deployed liner ship fleet satisfy the shipping requirement of 

shippers at least with a predetermined probability. The problem is formulated as a joint chance 

constrained programming (JCCP) model to minimize the total expected cost incurred in container 

shipment. As the critical issue of the JCCP model is that the closed forms of the joint chance 

constraints are analytically intractable, the sample average approximation (SAA) method is used 

to deal with this issue and a SAA model is then proposed to approximate the JCCP model. Further, 

the SAA model is equivalently transformed into a mixed-integer linear programming (MIP) 

model which can be efficiently solved by an optimization solver CPLEX. Finally, a sensitivity 

analysis is conducted to evaluate the performance of SAA method and a numerical example of a 

real world liner shipping network provided by a liner shipping company is carried out to show the 

risk analysis based on the proposed model. 

Keywords: risk management; liner ship fleet deployment; uncertain demand; joint chance 

constraint; sample average approximation  
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1 Introduction 

Liner shipping involves picking up and delivering containerized cargoes (containers) on 

regularly scheduled shipping routes. Due to its regular and reliable service, liner shipping 

occupies a dominant proportion of the global shipping market share with 60% of cargoes by value 

(Stopford, 2009) and 70% of containers by volume in terms of TEUs (Twenty-foot Equivalent 

Units) (UNCTAD, 2011). Consequently, liner shipping is of considerable significance for 

shipping industry and attracts the attention of researchers in the recent years (see Meng and Wang, 

2011a; Wang and Meng, 2012b). As the liner shipping market is intensely competitive, a liner 

container shipping company has to provide efficient liner shipping service for shippers with the 

aim of survival and development. Therefore, the liner ship fleet deployment (LSFD) problems 

that address the assignment of types and numbers of ships to each shipping route at lowest cost in 

order to effectively utilize and manage these ships are highly concerned about by the liner 

shipping industry.  

Container demand between any two ports of call is a key input of the LSFD problems. Before 

the actual container demand is realized, decisions of types and numbers of ships assigned to 

shipping routes have to be made using the estimated container demand. However, some 

uncontrollable and unpredicted factors such as the cancellation of a shipping contract or the delay 

in arrival of containers at the port, etc, do exist in practice. As a result, it is almost impossible for 

the estimated container demand to match the realistic demand precisely. Whatever overestimate or 

underestimate of the demand, it will lead to a loss for a liner container shipping company. The 

potential of uncontrollable and unpredicted factors that would result in uncertainty of demand is 

referred to as a risk faced by liner shipping industry in this paper. Consequently, there is a need to 

take the risk of uncertain container demand into account in LSFD problems. In practice, the 

container demand often varies from season to season, and hence the liner container shipping 

company has to alter its service routes and redeploy ships season by season. Therefore, the 

research of this paper focuses on the risk management of uncertain demand in LSFD problem 

over a short-term planning horizon (3~6 months). 

1.1 Literature review  

1.1.1 Liner ship fleet deployment problems 

Perakis and Jaramillo (1991) made the first step to develop a linear programming model for a 
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LSFD problem. However, a flaw in this model is that it unrealistically assumes that the decision 

variables of number of ships allocated to a shipping route are continuous rather than integers. The 

same two authors thus built an integer based linear programming model (Jaramillo and Perakis, 

1991). By introducing generalized incidence matrices, Cho and Perakis (1996) simplified the 

expression of mathematical optimization models for LSFD problems in a matrix form. Powell and 

Perakis (1997) extended the model of Jaramillo and Perakis (1991) by adding the ship lay-up 

costs to the objective function. Building on their work, Gelareh and Meng (2010) involved ship 

speed optimization and proposed a nonlinear programming model to determine the optimal ship 

sailing speed. While this nonlinear programming model can be equivalently reformulated as a 

linear programming model, the formulation was further improved by Wang et al. (2011). Meng 

and Wang (2011b) examined a multi-period liner ship fleet planning and deployment problem 

with known demand in each period. Wang and Meng (2012a) investigated the ship fleet 

deployment problem with weekly demand and transshipment at any port, and this problem was 

extended by adding transit time constraints (Meng and Wang, 2012).  

1.1.2 Risk analysis in shipping industry 

It is found that none of the research reviewed above captures the uncertainty of demand in 

LSFD problems. Studies on network design (e.g., Fagerholt, 1999, 2004; Sambracos et al., 2004; 

Alvarez, 2009; Karlaftis et al., 2009; Brouer et al., 2011; Jepsen et al., 2011; Reinhardt and 

Pisinger, 2012) and empty container repositioning (e.g., Song and Dong, 2011; Song and Xu, 

2012) have also examined the fixed container demand in liner shipping. Bell et al. (2011), Wang 

and Meng (2012c) and Qi and Song (2012) have incorporated the uncertainty in the liner service 

schedules but not investigated the demand uncertainty. The uncertain demand deserves additional 

research effort (Ronen, 1983, 1993, Christiansen et al., 2004, 2007). To handle demand 

uncertainty, Meng and Wang (2010) proposed a chance constrained programming approach by 

which a deterministic LSFD problem was extended to account for the uncertainties. However, this 

study assumed that all ships have to be emptied at the start of each sailing voyage, which is not 

consistent with practice. Some other studies focus on risk analysis of currency fluctuation to liner 

shipping industry (Menachof, 1996), fuel price fluctuation to shipper (Menachof and Dicer, 2001) 

and default risk in charter market (Adland and Jia, 2008). 



4 
 

1.2 Objective and contribution 

The above literature review clearly indicates that the LSFD problem involving container 

demand uncertainty remains a current research issue with practical significance. The research of 

this paper focuses on this issue and proposes a joint chance constrained programming (JCCP) 

model to cope with it. As chance constraints with probability functions in the JCCP model have 

no closed form, the JCCP model is quite difficult to evaluate. The sample average approximation 

(SAA) approach is thus used to approximate the JCCP model in this study. 

The contribution of this paper is fourfold: First, it contributes to the literature by proposing a 

realistic LSFD problem with uncertain demand. Second, a JCCP model is developed for the 

proposed LSFD problem. Unlike Meng and Wang (2010) which defined the level of service for 

each liner service route, this study examines the demand uncertainty by enforcing a level of 

service at the network level. This modeling approach not only nests the model of Meng and Wang 

(2010) as a special case, but also is more practical and relevant as it provides a liner shipping 

company service information regarding the whole network. Third, an appropriate solution 

algorithm is proposed to solve the JCCP model. The model proposed by Meng and Wang (2010) 

can be transformed to a deterministic model because it defines the level of service for each liner 

service route. However, as we define the level of service at the network level, the mathematical 

model cannot be transformed to deterministic model directly and its feasible region is non-convex. 

We successfully apply a sample average approximation approach to address this problem. Fourth, 

the proposed model and solution algorithm are applied to randomly generated test instances and 

real-case examples. The results demonstrate that the model and algorithm can analyze risk in the 

liner ship fleet deployment. 

The remainder of this paper is organized as follows: Section 2 presents the LSFD problem 

with uncertain demand in details. Section 3 develops a JCCP model for the proposed LSFD 

problem. Section 4 addresses the difficulties in solving the JCCP model and proposes the SAA 

approach to handle these difficulties. Section 5 uses a numerical example to evaluate the model 

and solution algorithm proposed in this study. Finally, Section 6 concludes the study and provides 

recommendations for future work.  

2 Problem Statement 

This section firstly describes a coding scheme for a shipping route, and then addresses the 
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container shipment flow, and finally presents the proposed LSFD problem with uncertain demand 

in details. It is noted that the coding scheme for a shipping route and the concept of container 

shipment flow have been addressed by Meng and Wang (2011b), but for completeness and the 

sake of presentation in this paper, they are briefly readdressed here. 

2.1 Shipping route coding scheme 

A shipping route is an itinerary of ship sailing which shows the ports of call on the sail. It is 

determined by a liner container shipping company and released to shippers for information. 

Assume that the liner container shipping company operates a heterogeneous fleet of ships on a 

number of shipping routes, denoted by the set R , to regularly serve a group of ports denoted by 

the set
 

P . A shipping route rR  can be expressed as below according to its ports of call 

order:  

 1 2 1rm
r r r rp p p p     (1) 

where i
rp P  ( 1, , ri m  ) is the ith port of call on shipping route r  and rm  is the number of 

ports of call on this shipping route. For example, Figure 1 depicts a shipping route which 

departures from Pusan (PS) port, and sails to call Shanghai (SH) port, Yantian (YT) port, Hong 

Kong (HK) port, Singapore (SG) port, Yantian (YT) port, and finally returns back to Pusan (PS) 

port. According to Eq. (1), this shipping route can be coded as below: 

              1 2 3 4 5 6 1PS SH YT HK SG YT PSr r r r r r rp p p p p p p       (2) 

2.2 Container shipment flow 

Let   1, , , rmi
r r r rp p p  P   be the set of ports called at shipping route  rR , characterized 

by r
r

 
R

P P , and let  ,i j
r rp p   denote the port pair from port i

rp  to port j
rp . The set of port 

pairs having container demand on shipping route rR   can be expressed by  

   , , 1, 2, , ;i j i j
r r r r r rp p i j m p p  M  (3) 

As aforementioned, the container demand of a port pair   ,i j
r r rp p M on shipping route 

rR   is uncertain and denoted by a random variable  ,
ξ

i j
r rp p

. A leg i of shipping route r is 

defined as the voyage from port i
rp   to port  1i

rp 
,  1, 2, , 1ri m  , and leg rm   stands for the 
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voyage from port rm
rp   to port 1

rp . When a ship sails on leg l ( 1, 2, , rl m  ) of shipping route r, 

containers on the ship includes those newly loaded at port  l
rp  as well as those loaded at previous 

ports but still remained on ship, which is referred to as container shipment flow on leg l of 

shipping route r, denoted by ηr
l . Therefore, the container shipment flow is an accumulation of 

containers of some port pairs. Mathematically, it can be expressed as below: 

    

 

, ,

,

η ρ ξ , 1, , ;
i j i j
r r r r

i j
r r r

p p p pr
l l r

p p

l m r


    
M

R  (4) 

where  ,
ρ

i j
r rp p

l   ( 1, 2, , rl m  ) is an incidence parameter which equals 1 if leg l ( 1, 2, , rl m  ) is 

contained in a ship’s journey of transporting containers from port  i
rp   to port  j

rp   and 0 otherwise 

( rR ). Let us take the container shipment flow on leg 6 in Figure 1 to illustrate the Eq. (4). It 

involves containers of eight port pairs:         2 1 3 1 4 1 5 1, , , , , , , ,r r r r r r r rp p p p p p p p  

     3 2 4 2 5 2, , , , ,r r r r r rp p p p p p  and  5 4,r rp p . It is found that the incidence parameters of these eight 

port pairs on leg 6 equal to 1, and incidence parameters of other port pairs on leg 6 equal to 0. 

Therefore, Eq. (4) is satisfied. Let  
1, ,

η max η ,
r

r r
l

l m
r


  


R , then it denotes the maximal container 

shipment flow on shipping route r.  

2.3 Liner ship fleet deployment 

As chartering ships through brokers is common in liner shipping, it is thus taken into account 

in the proposed LSFD problem. Following the fact that the number and types of ships owned or 

chartered are finite, we assume that there are K types of ships with different size available to the 

liner container shipping company, denoted by the set  = 1 k K K , in which k denotes a 

particular ship type, and let  kV   be the capacity in terms of TEUs for a particular ship type  kK , 

MAX
kN   and  MAX

kNCI   denotes the number of available ships of type k owned and chartered by the 

liner container shipping company, respectively.  

The total costs incurred in liner shipping typically consist of four blocks (Stopford, 2009): 

operating costs, voyage costs, capital costs and periodic maintenance. Operating costs refer to the 

day-to-day ongoing expenses of running the ship, including manning cost, stores and 
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consumables, insurance and administration cost (excluding fuel, which is included in voyage 

costs), together with an allowance for day-to-day routine repairs and maintenance. In summary, 

the operating cost structure depends on the size and nationality of the crew, maintenance policy 

and the age and insured value of the ship, and the administrative efficiency of the owner. The 

voyage costs are defined as the variable costs incurred in undertaking a particular voyage. The 

main items are fuel costs, port dues, tugs and pilotage and canal charges. Capital costs mainly 

refer to the investment of purchasing or chartering ships. Here in this paper, purchasing ships is 

excluded because chartering ships is a better choice in a short-term planning horizon for the 

company from the view point of economics, if any. Periodic maintenance is a provision set aside 

to cover the cost of interim dry-docking and special surveys. The ship must be dry-docked every 

two years and every four years must have a special survey, approving its seaworthiness. Since the 

planning horizon considered in this paper is less than two years, the periodic maintenance is 

excluded. Therefore, the total costs of ships incurred in the LSFD problem contain three 

components: operating costs, voyage costs and chartering costs. 

Before proceeding to the modeling of the LSFD problem, we finally completely state it as 

follows: determine the number of ships of each type to charter in/out, the type and number of 

ships to deploy on each shipping route, and the number of voyages to be completed on each 

shipping route, to provide shipping service for shippers while minimizing the total costs. 

3 Model Development 

According to the statement of LSFD problem above, there are three types of decision 

variables involved: 

TOTAL
krn :  number of ships (the sum of owned and chartered in ships) of type k ( kK ) assigned on 

route r ( rR ) 

IN
kn :    number of chartered in ships of type k ( kK ) 

krx :   number of voyages completed by ships of type k ( kK ) on route r ( rR ) 

3.1 Costs function 

We firstly compute the operating costs. Let operate
kc  (USD/day) denote the operating costs of a 

ship of type kK , T (days) denote the length of the short-term planning horizon, then the 
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operating costs of all ships in the planning horizon can be computed by TOTAL operate
kr k

r k

n c T
 


R K

. As 

for voyage costs of all ships, it equals to voyage
kr kr

r k

c x
 


R K

, where voyage
krc  (USD/voyage) denote the 

voyage costs of a ship of type kK  on shipping route rR . Let IN
kc  (USD/day) denote the 

daily cost of chartering in a ship of type kK  for the planning horizon, then the total chartering 

costs can be computed by IN IN
k k

k

n c T



K

. For the sake of presentation, we let x be the vector of all 

decision variables, namely,  TOTAL IN, , ,kr k krn n x k r  x K R . Therefore, the cost function with 

respect to the decision vector x of the proposed LSFD problem, denoted by  TC x , equals to: 

   TOTAL IN INoperate voyage
kr k kr kr k k

r k r k k

TC n c T c x n c T
    

    x
R K R K K

 (5) 

3.2 Risk management of uncertain demand 

As aforementioned, the container shipment demand taken into account in this research is 

uncertain, and such a consideration of uncertainty makes the LSFD problem more realistic. 

However, it results in a new issue: there is almost no decision which would definitely exclude 

later constraint violation caused by unexpected random effects. In other words, once the decisions 

in LSFD problem are determined, the fleet of ships may face such a risk that it is unable to fully 

meet the pickups and deliveries requirement for its customers, even though the expected container 

shipment flow along the shipping route do not exceed the fleet capacity. Since such a case is 

hardly avoidable, the liner container shipping company intends to control its possibility at a low 

level. In order to reflect the intention, the probability theory is introduced. Let kV  denote the size 

in terms of TEUs of a ship of type k, then that the liner container shipping company can satisfy 

the customers’ shipping requirement with a probability of 1 α  can be formulated as the 

following probabilistic form, which is termed as a chance constraint:  

 Ρr η , 1 αr
kr k

k

x V r


      
 


K

R  (6) 

where the item kr k
k

x V



K

 denotes the transportation capacity of ships deployed on shipping route 

r, ηr denotes the maximal container shipment flow on shipping route r as defined before, 

 α 0,1  is called confidence parameter in a chance constrained programming model. The 
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probability 1 α  can be regarded as a level of service that the company can maintain. For those 

unmet cargoes, we regarded them lost. 

3.3 Joint chance constrained programming model 

With the consideration of demand uncertainty for LSFD problem in this paper, there is a need 

to build a mathematical model to handle the risk management of uncertain demand. Based on the 

description in Section 3.2, the proposed LSFD problem with uncertain demand aims to maintain a 

level of service on each ship route for customers while minimizing the total costs. It is formulated 

as a joint chance constrained programming model, named JCCP-1: 

   [JCCP-1]  α minz TC 
x

x  (7) 

subject to 

 TOTAL MAX IN ,kr k k
r

n N n k


   
R

K  (8) 

 IN MAX ,k kn NCI k  K  (9) 

 TOTAL , ,kr kr
kr

T
x n r k

t

 
     

 
R K  (10) 

 ,kr r
k

x N r


  
K

R  (11) 

 Ρr η , 1 αr
kr k

k

x V r


      
 


K

R  (12) 

  TOTAL IN, 0 , ,kr k krn n x k r    �  K R，  (13) 

where αz  denotes the value of the objective function in Eq. (7), krt   is the voyage time of a ship 

of type k on a particular shipping route r (in days), rN   is the minimal number of voyages 

required on shipping route r during the planning horizon in order to maintain a given liner 

shipping service frequency.  

Eq. (7) is the objective function of the JCCP-1 model. The set of constraints (8) ensure that 

the total number of ships used in the fleet, including those owned and those chartered in, does not 

exceed the number of available ships. The set of constraints (9) indicates that the number of 

chartered in ships is finite and does not exceed the number of available ships. The right-hand side 

of constraints (10) gives the maximal number of voyages that ships deployed on route r can 
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complete in the planning horizon, where a     denotes the maximum integer not greater than a. 

Therefore, the set of constraints (10) is the upper bound for the decision variables krx .  The 

constraints given by Eq. (11) require that ships deployed on shipping route r have to complete at 

least Nr voyages in order to maintain the given liner shipping frequency. For example, if a weekly 

shipping service is required on shipping route r during a planning horizon of six months, then 

26rN  . Constraint (12) is a joint chance constraint which ensures that the ships on all shipping 

routes can at least satisfy customers’ requirement with a probability of 1 α . 

Constraint (12) can be rewritten in another form. Let  ˆ ,η : ηr r r
kr k

k

G x V


 x
K

, (这里为什么

用 x尖而不用 x了？) where  ˆ ,krx k r  x K R , and let    ˆ ˆ,η : max ,ηr r

r
G G

 
x x

R
, we define 

the probability functions     ˆ ˆ: Ρr ,η 0p G x x , then constraint (12) is equivalent to the 

equation below:  

  ˆ αp x  (14) 

Therefore, we have another JCCP model with a joint chance constraint (12) replaced by (14), 

named JCCP-2: 

   [JCCP-2]  α minz TC 
x

x  (15) 

subject to (8) ~ (11), (13) and (14) 

4 Solution Algorithm 

Chance constrained programming (CCP) was first introduced and studied by Charnes et al. 

(1958) more than 50 years ago. Since then, it has been studied extensively in the stochastic 

optimization literature (Prékopa, 2003). However, this problem is still considered as challenging 

because of the two major extreme difficulties to solve it: one is that the feasible region defined by 

a probabilistic constraint in CCP is generally not convex; another is that the chance constraints 

generally have no closed forms and are typically difficult to evaluate (Miller and Wagner, 1965). 

To address these difficulties, different approaches have been proposed in the stochastic 

optimization literature and can be classified into two somewhat different directions: one is to 

employ convex approximations of chance constraints (Ben-Tal and Nemirovski, 2000; Hong et al., 

2011), another is to discretize the probability distribution and use Monte Carlo simulation to 
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approximate the obtained problem (Dentcheva et al., 2000; Pagnoncelli et al., 2009). The convex 

approximation approaches usually require that the decision variables are continuous; however, the 

decision variables involved in the proposed JCCP models (JCCP-1 and JCCP-2) are restricted to 

be integers, the convex approximation approaches are thus not applicable for our problem. 

Therefore, the approach in the second direction, specifically, the Sample Average Approximation 

(SAA) approach (Atlason et al., 2008; Luedtke and Ahmed, 2008), is then used to seek 

approximation for the proposed JCCP models. 

4.1 Sample average approximation 

The theoretical background of SAA approach is based on the Law of Large Numbers theory 

which indicates that the probability of an event occurrence can be approximated by the frequency 

of the events that occur in number of trials (say S trials). Let    , ,

1ξ ξ
i j i j
r r r rp p p p

S   be an independent 

Monte Carlo sample of S realizations of the random variable  ,
ξ

i j
r rp p

, we then obtain S realization 

of the random vector η , denoted by 1η , ,ηS , and let  0, : 1 R R1  be the indicator function 

of (0, ∞), i.e., 

    0,

1,    if 0,
:

0,    if 0.

y
y

y


  

11  (16) 

Then, the sample version of the probability function  ˆrp x
 
is defined to be 

       1
0,

1

ˆ ˆ ,η
S

S
i

i

p S G




 x x11  (17) 

That is,   ˆSp x   is equal to the proportion of times that  ˆ ,η 0iG x . The constraint (14) is 

then replaced by  

   ˆ βSp x  (18) 

where  β 0,1  is a confidence parameter and can be different from the original one α  

(Luedtke and Ahmed, 2008). Finally, the sample version of the JCCP-2 model with a joint chance 

constraint (14) is named SAA-β  model and defined as 

   [SAA-β ]  βˆ minSz TC
x

x  (19) 

subject to (8) ~ (11), (13) and (18). 
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4.2 Solving the sample average approximation problem  

Though the joint chance constraint (12) is handled by using the SAA approach, shown in 

Eq.(18), and the true problem (15) is approximated by the SAA problem (19), the problem (19) is 

still hard to solve because of the complexity of constraint (18). To solve the sample approximation 

problem (19), we rewrite it as a mixed-integer program (MIP) with one binary variable 

 1, ,i i S    for each sample point 

   [MIP]  βˆ minSz TC
x

x  (20) 

Subject to (8) ~ (11), (13), and  

 η η , 1, , ;r r
i i kr k i

k

x V i S r


      
K

R  (21) 

 
1

β
S

i
i

S


  (22) 

  0,1
S

i   (23) 

Proposition: The Problems (19) and (20) are equivalent. 

Proof: Let  1, , , S x   be feasible solution for problem (20). For each 1, ,i S  , from 

constraints (21), we can deduce that if , ηr
kr k i

k

r x V


  
K

R , then 0i   or 1i  , and we 

have     0,
ˆ ,η 0iG x11 ; if , ηr

kr k i
k

r x V


  
K

R , then 1i   and     0,
ˆ ,η 1iG x11 ; if 

, ηr
kr k i

k

r x V


  
K

R , then 1i   and     0,
ˆ ,η 1iG x11 . Therefore,     0,

ˆ ,ηi iG  x11 . 

Accordingly, from constraint (22), we have       1 1
0,

1 1

ˆ ˆβ ,η
S S

S
i i

i i

S S G p 


 

    x x11 . Thus, 

x is feasible to (19) and has the same objective value as in (20). Conversely, let x be a feasible 

solution for (19), and define     0,
ˆ ,ηi iG  x11 . For each 1, ,i S  , if  ˆ,η 0iG x , then 

0i   and η ,r
kr k i

k

x V r


  
K

R , therefore constraint (21) holds; if  ˆ,η 0iG x , then 1i   

and constraint (21) holds as well. As for constraint (22), we have     0,
1 1

ˆ ,η β
S S

i i
i i

G S 
 

   x11 . 

Therefore, we have that  1, , , S x   is feasible for problem (20) with the same objective value. 

The proposition is proved.□ 
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Since the SAA-β  model is an MIP, the optimization solver, CPLEX, can be employed to 

solve it. Let αX  and β
SX
 
denote the set of optimal solutions to the true problem (i.e. JCCP-2 

model) and the SAA problem (i.e. SAA-β  model), respectively. It has been proved that βˆ
Sz  and 

β
SX
 
converge w.p.1 to their counterparts of the true problem (i.e. αz  and αX ) exponentially fast 

as S increases under mild regularity conditions (Pagnoncelli et al., 2009).  

4.3 Lower bound 

Increasing the feasible set of an optimization problem aiming at minimizing the value of an 

objective function may result in decreasing of the optimal objective function value of the problem. 

Therefore, if we increase the value of α  in JCCP-2, then αz  may decrease. In other words, we 

can obtain a lower bound of JCCP-2 by increasing the value of α . However, solving JCCP-2 is 

extremely difficult which indicates that it is hard for us to obtain the lower bound by solving 

JCCP-2 with an enlarged α . Since the SAA-β  model is an approximation of the proposed 

JCCP-2 model, we can expect that the objective function value of the SAA-β  model in which 

β α , denoted by 
β

ˆ L

Sz , is a lower bound of αz  with some significance level. This expectation 

has been mathematically proved in Theorem 3 of Luedtke and Ahmed (2008), and accordingly, 

the sample size, S, to ensure that αβ
ˆ L

Sz z
 
with probability at least 1 δ , where  δ 0,1 , can 

be estimated by : 

 
 2

1 1
ln

δ2 β α
S    

 
 (24) 

4.4 Verification of solution feasibility 

The above section shows that solving SAA-β  model in which β αL   yields a lower bound 

of JCCP-2 model with some probability. Contrarily, solving SAA-β  model with β αU   might 

produce feasible solutions to JCCP-2 model. In other words, it yields an upper bound with some 

probability, denoted by 
β

ˆ U

Sz . For a given candidate point 
βU

S x X , namely an optimal solution to 

SAA-β   model in which β αU  , we would like to validate its quality as a solution to JCCP-2 
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model. For that we need to estimate the probability  ˆp x . We proceed the verification by 

employing again the Monte Carlo sampling techniques. Generate a sample    , ,

1ξ ξ
i j i j
r r r rp p p p

S   with 

S   realizations of the random vector η . The sample is generated independently of the random 

procedure which produced the candidate solution x . Estimate  ˆp x
 
by  ˆSp  x   because 

the estimator  ˆSp  x  is unbiased. It is noted that we can use a very large sample since there is 

no need to solve any optimization problem here. If  ˆSp   x , then x  is a feasible solution. 

Otherwise we choose another smaller βL , obtain a new solution x , and check its feasibility. 

This procedure is repeated until a feasible solution is obtained. It should be mentioned that our 

computational experiments actually demonstrate that a feasible solution is generally obtained in 

the first iteration. 

5 Computational Results 

In this section, we firstly conduct a sensitivity analysis of SAA parameters through a 

preliminary experiment with small scales, in order to choose suitable values of SAA parameters 

taking into account the trade-off between the quality of the solution obtained for the experiment 

and the computational effort needed to solve it. With these chosen parameters, we then illustrate 

the applicability of the proposed model and conduct risk management on a real-world shipping 

network. The solution algorithm is implemented in a programming language Lua (v5.1) coded in 

Microcity (http://microcity.sourceforge.net) and the SAA problems are solved by CPLEX (v12.1). 

All computations are carried out on a desktop personal computer with Intel (R) Core (TM) 2 CPU 

1.86 GHz and 2.0 GB of RAM under Microsoft Windows 7. 

5.1 Sensitivity analysis of SAA parameters 

From the above description of SAA approach, it is found that for a JCCP-2 problem with a 

given confidence parameter, α , the parameters, β , δ , S and S   need to be determined in the 

SAA approach. Therefore, the sensitivity analysis of SAA parameters focuses on β , δ  and S, 

and it is implemented like this: we firstly test a number of sets of these SAA parameters, the 

results are shown in Table 1; and then evaluate the performance of the approach with these tested 

SAA parameters in order to choose the best one.  
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We set three different values of α , shown in the first column of Table 1. For each value of α , 

five sets of parameters, β , δ , S and S  , are tested. The values of S in the fifth column satisfy 

Eq. (24). The relative gap between lower bound and upper bound is computed by 

β β

β

ˆ ˆ
100%

ˆ

U L

L

S S

S

z z

z


 , shown in Column 7. The computational time is listed in the last column of 

Table 1.  

As can be seen from Table 1, for each α , the relative gap generally increases with the interval 

between βL

 and βU . The rationale behind this trend is that when βL

 increases, the feasible set 

increases as well, which results in that the lower bound 
β

ˆ L

Sz
 

may
 
decrease. Similarly, the upper 

bound 
β

ˆ U

Sz
 

may
 
increase when βU

 decreases. Therefore, it makes the relative gap enlarge for an 

increasing interval between βL

 and βU . However, an exception in Table 1 is that the first 

relative gap in Column 8 for α 0.05  is 0.85%, larger than the second one, 0.73%. It is possible 

for this exception because the JCCP models (or SAA models) involve uncertain parameters and 

their values are generated randomly. The randomness of parameters may make such an exception 

occur. Additionally, all of the values of  ˆSp  x  in Column 8 are less than the corresponding 

value of α , which indicates that the values set for βU

 and S   are effective to yield a feasible 

solution.  

5.2 Real-world case study 

5.2.1 Dataset description 

The real-world liner shipping network provided by OOCL-a global liner container shipping 

company with headquarters in Hong Kong (http://www.oocl.com), consists of 36 ports and serves 

390 O-D port pairs, as shown in Figure 2. The ports of call and distance of each leg of each 

shipping route is shown in Table 2. It is assumed that the short-term planning horizon in this 

numerical example is six months. The relevant ship data are presented in Table 3, including ship 

size and type, daily operating cost, etc. The daily operating cost as a function of ship size is 

estimated using the following linear regression equation, established by Shintani et al. (2007):  

  daily operating cost 6.54 ship size TEU 1422.5    (25) 
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We assume that the uncertain parameters of container demand in the LSFD test experiment 

follow log-normal distributions, i.e.      2, , ,
ξ ln μ ,σ

i j i j i j
r r r r r rp p p p p p

N
 
 
 

� , to generate the demands 

because log-normal distributions were well suited for modeling economic stochastic variables 

such as demands (Kamath and Pakkala, 2002). The ratio     , ,
μ

i j i j
r r r rp p p p

   is assumed to be the 

same for all port pairs, for the sake of presentation, denoted by λ . Assuming that α 0.10 , we 

set β 0.12,β 0.075,δ 0.095, 3000L U S     and 10000S  . 

5.2.2 Risk analysis of uncertain demand 

The variance of uncertain container demand can be regarded as representing the risk of 

shipping market. In the case when  ,
σ 0

i j
r rp p

 , the shipping market can be thought of as 

non-risky, and the container demand can be predicted precisely. In the case when  ,
σ 0

i j
r rp p

 , it 

indicates that there is risk in shipping market, and when  ,
σ

i j
r rp p

 increases, it means that the risk 

increases as well. In order to study the effect of variance on the cost that the liner shipping 

company need to maintain a given level of service, namely the objective function value of the 

JCCP model, we vary the ratio, λ , from 0 to 0.5 with increments of 0.05 and show the trend in 

the cost as λ  changes in Figure 3. As can be seen from that the trend generally increases with λ  

increases. It shows that the variability of the uncertain parameters has a significant effect on the 

solutions. 

6 Conclusion 

In this study, a realistic LSFP problem with container demand uncertainty encountered by a 

liner shipping company has been considered. A concept of level of service is introduced in this 

problem to deal with the risk management of uncertain demand and a JCCP model is proposed for 

it. It is possible to adapt the methodology of model formulation of the problem to other planning 

problems that involve uncertain demand, such as supply chain system design. The challenge to 

solve the JCCP model is that the joint chance constraints generally have no closed forms and thus 

are hard to evaluate. To effectively solve the proposed JCCP model, we firstly applied sample 

average approximation approach and then proposed a SAA model to approximate the model; 

further, we equivalently transformed the SAA model into a MIP model and solved it by using 
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CPLEX solver. A sensitivity analysis of SAA parameters through a preliminary experiment was 

firstly conducted and then the proposed model and solution algorithm were tested using a real 

world liner shipping network. The gaps between the lower and upper bounds are small, which 

indicates that the solution scheme is effective. It is also found that the variability of the uncertain 

parameters has a significant effect on the solutions. We believe that the model provides a credible 

and effective methodology for the real world LSFD problem in an uncertain environment. 
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Figure 1 A shipping route 

Figure 2 A real-world liner shipping network of OOCL(这个图似乎太大，页面放不下。) 
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Figure 3 Average cost for different levels of variance 

 
 

Table 1 Sensitivity analysis of SAA parameters 

α  βL

 βU  δ  S  S   
Relative 

gap (%) 
 ˆSp  x  

CPU 

time (s) 

0.05 0.08 0.030 0.10 1800 10000 0.85 0.0155 1695.52 

0.10 0.025 0.09 500 8000 0.73 0.0260 58.91 

0.12 0.020 0.08 300 6000 0.85 0.0162 30.99 

0.15 0.015 0.07 200 4000 1.24 0.0171 14.53 

0.20 0.010 0.06 100 2000 1.36 0.0092 2.66 

0.10 0.12 0.075 0.095 3000 10000 0.37 0.0795 587.03 

0.15 0.070 0.09 500 8000 0.76 0.0521 15.57 

0.18 0.060 0.08 200 6000 0.76 0.0468 8.23 

0.20 0.055 0.07 150 4000 0.76 0.0526 3.89 

0.25 0.050 0.06 100 2000 0.88 0.0415 3.63 

0.15 0.18 0.125 0.06 1600 10000 0.39 0.0755 65.94 

0.20 0.100 0.05 600 8000 0.39 0.1293 4.19 

0.25 0.075 0.04 200 6000 0.76 0.0494 0.60 

0.28 0.050 0.03 120 4000 0.94 0.0260 0.57 

0.30 0.025 0.02 100 2000 1.18 0.0271 0.47 
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Table 2 Ports of call and distance for each leg of each shipping route  

Route Port of calling (leg distance) 

CCX Los Angeles(360)→Oakland(4978)→Pusan(523)→Dalian(209)→ 

Xingang(408)→Qingdao(390)→Ningbo(111)→Shanghai(456)→ 

Pusan(5289)→Los Angles 

CPX Shanghai(111)→Ningbo(740)→Shekou(1423)→Singapore(2881)→ 

Karachi(213)→Mundra(2474)→Penang(165)→PortKelang(198)→ 

Singapore(1422)→Hong Kong(787)→Shanghai 

GIS Singapore(198)→Port Kelang(2247)→Nhava Sheva(498)→Karachi(713) 

→Jebel Ali(152)→Bandar Abbas(152)→Jebel Ali(890)→ Mundra(915) 

→Cochin(1848)→Singapore  

IDX Colombo(153)→Tuticorin(225)→Cochin(723)→Nhava Sheva(372)→ 

Mundra(2809)→Suez(1673)→Barcelona(3741)→NewYork(273)→ 

Norfolk(402)→Charleston(4170)→Barcelona(1673)→Suez(3394)→ 

Colombo  

NCE New York(273)→Norfolk(505)→Savannah(982)→Panama(13 831)→ 

Pusan(523)→Dalian(209)→Xingang(408)→Qingdao(390)→ 

Ningbo(111)→Shanghai(13 565)→Panama(1359)→New York  

NZX Singapore(198)→Port Kelang(3880)→Brisbane(1303)→Auckland(523) 

→Napier(329)→Lyttelton(175)→Wellington(1379)→Brisbane(3685)→ 

Singapore  

SCE New York(273)→Norfolk(505)→Savannah(982)→Panama(12 949)→ 

Kaohsiung(366)→Shekou(26)→Hong Kong(12 788)→Panama(1359)→ 

New York  

UKX Southampton(315)→Hull(243)→Grangemouth(511)→Southampton  

Source: The port distances are from the website: http://www.searates.com/reference/portdistance/ 
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Table 3 Ship data  

Item 
Ship types 

1  2 3  4  5  

Ship size (TEUs) a 2808 3218 4500 5714 8063 

Design speed 

(knots)b 

21.0 22.0 24.2 24.6 25.2 

Daily cost (103 $)c 19.8 22.5 30.9 38.8 54.2 

Chartering in rate 

(million $) 

2 2.6 3.5 4.7 6.0 

MAX
kN  2 2 9 2 12 

MAX
kNCI  5 5 5 3 3 

Source: a,b From OOCL annual report, c Calculation by Eq.(25). 
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