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ABSTRACT  

Dulebenets, Maxim A. PhD. The University of Memphis. August, 2015. Models 
and Solution Algorithms for Improving Operations in Marine Transportation. Major 
Professor: Dr. Mihalis M. Golias 

 
International seaborne trade rose significantly during the past decades. This 

created the need to improve efficiency of liner shipping services and marine container 

terminal operations to meet the growing demand. The objective of this dissertation is to 

develop simulation and mathematical models that may enhance operations of liner 

shipping services and marine container terminals, taking into account the main goals of 

liner shipping companies (e.g., reduce fuel consumption and vessel emissions, ensure on-

time arrival to each port of call, provide vessel scheduling strategies that capture sailing 

time variability, consider variable port handling times, increase profit, etc.) and terminal 

operators (e.g., decrease turnaround time of vessels, improve terminal productivity 

without significant capital investments, reduce possible vessel delays and associated 

penalties, ensure fast recovery in case of natural and man-made disasters, make the 

terminal competitive, maximize revenues, etc.).  

This dissertation proposes and models two alternatives for improving operations 

of marine container terminals: 1) a floaterm concept and 2) a new contractual agreement 

between terminal operators. The main difference between floaterm and conventional 

marine container terminals is that in the former case some of import and/or transshipment 

containers are handled by off-shore quay cranes and placed on container barges, which 

are further towed by push boats to assigned feeder vessels or floating yard. According to 

the new collaborative agreement, a dedicated marine container terminal operator can 
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divert some of its vessels for the service at a multi-user terminal during specific time 

windows.  

Another part of dissertation focuses on enhancing operations of liner shipping 

services by introducing the following: 1) a new collaborative agreement between a liner 

shipping company and terminal operators and 2) a new framework for modeling 

uncertainty in liner shipping. A new collaborative mechanism assumes that each terminal 

operator is able to offer a set of handling rates to a liner shipping company, which may 

result in a substantial total route service cost reduction. The suggested framework for 

modeling uncertainty is expected to assist liner shipping companies in designing robust 

vessel schedules. 
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1. INTRODUCTION 

Maritime transportation is crucial for the world international trade. The cargo, 

carried by vessels, comprises more than 80% of the global trade tonnage (UNCTAD, 

2014). The international seaborne trade rose by more than 120% by weight from 1980 to 

2008 mainly due to increasing standards of living, fast industrialization, population 

growth, and competitive markets (Umang, Bierlaire, & Vacca, 2011). The volume of all 

forms of cargo, carried by vessels, and ton-miles significantly increased during last 

decades. According to statistical data, provided by UNCTAD (2014), a rapid growth in 

transported amount of dry cargo (+5.3% change in tonnage from 2012 to 2013), 

containerized cargo (+6.6% in tonnage from 2012 to 2013), and major bulk cargo (+4.5% 

in tonnage from 2012 to 2013) was observed, while the future growth in the international 

seaborne trade was also projected for 2014 (see Figure 1).  

According to the World Shipping Council (2014), the Port of Shanghai (China) 

remains the busiest seaport in the world (33.62 million TEUs) with 3.35% trade volume 

growth between 2012 and 2013 (see Table 1). The second rank is given to the Port of 

Singapore (with 32.60 million TEUs). Seven out of 10 top container seaports belong to 

China. All of them demonstrated increasing seaborne trade volumes in 2013, except the 

port of Hong Kong, which lost 3.45% of business. As for European ports, the Port of 

Rotterdam (the Netherlands) was in the list of top 10 world container ports in 2011 (the 

10th rank with 11.88 million TEUs), but was advanced by the Port of Tianjin (China) in 

2012 (12.30 million TEUs vs. 11.87 million TEUs).  
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Figure 1. International Seaborne Trade Trends 

Source: UNCTAD (2014) 

 

 
Table 1  
Top 10 World Seaports 

Rank Port, country 
Volume, 106 TEUs 

diff., % 
2013 2012 

1 Shanghai, China 33.62 32.53 3.35 
2 Singapore, Singapore 32.60 31.65 3.00 
3 Shenzhen, China 23.28 22.94 1.48 
4 Hong Kong, China 22.35 23.12 -3.45 
5 Busan, South Korea 17.69 17.04 3.81 
6 Ningbo-Zhoushan, China 17.33 16.83 2.97 
7 Qingdao, China 15.52 14.50 7.03 
8 Guangzhou Harbor, China 15.31 14.74 3.87 
9 Jebel Ali, Dubai, UAE 13.64 13.30 2.56 
10 Tianjin, China 13.01 12.30 5.77 

Source: World Shipping Council (2014) 
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The Port of Los Angeles was observed as the busiest U.S. seaport with 7.87 

million TEUs in 2012 and 8.08 million TEUs in 2013 (the 19th in the world). The Port of 

Long Beach remained the second (the 21st in the world) U.S. seaport in 2013 with 6.73 

million TEUs. The third rank among U.S. seaports (and the 27th in the world) belongs to 

the Port of New York/New Jersey with 5.47 million TEUs in 2013. More statistical data 

about the top 10 container seaports is presented in Table 1. 

To meet this growing demand, facing capacity expansion limitations (e.g., lack of 

land, high cost of expansion, etc.), it is necessary to provide proper planning and 

management of liner shipping and terminal operations. The following alternatives are 

mostly used by liner shipping companies: a) deployment of larger vessels, b) slow 

steaming, and c) alliance agreements. The Journal of Commerce (2013) indicated that 

“seeking efficiency and economies of scale, the world’s container carriers are 

increasingly ordering megaships capable of handling more than 8,000 20-foot-equivalent 

container units (TEUs)”. However, deployment of larger vessels with higher capacity can 

add constraints to seaport operations (Mourão, Pato, & Paixão, 2002).  

Similarly, the port capacity can be increased by upgrading existing ports or 

constructing new facilities (McCalla, 1999). Alternative that do not involve construction 

are based on improvement of conventional equipment and productivity by introducing 

new forms of technology (Ballis, Golias, & Abakoumkin, 1997), information systems 

(Henesey, 2004), and work organization (Paixão & Marlow, 2003). 

Unlike tramp companies, liner shipping companies have specific routes with a 

predetermined sequence of ports to be visited (a.k.a., port rotation) and certain frequency 

of service (Norstad, Fagerholt, & Laporte, 2011; Wang, Alharbi, & Davy, 2014). Each 
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vessel should arrive to the port of call within a set time window (TW). However, port 

congestion may substantially disrupt schedules of liner shipping companies. According to 

the Journal of Commerce (2014), “ports in Oman, the Philippines, India, the U.S., Hong 

Kong and Netherlands are facing congestion surcharges. European shippers are urging 

container lines to reduce the surcharges and include them in a single negotiable rate when 

possible”. 

Container terminal operations can be divided into: 1) seaside operations, 2) 

storage yard operations, and 3) landside operations. Seaside operations deal with berthing 

of vessels, stowage planning, quay crane (QC) assignment, and QC scheduling for 

(un)loading containers. Note that stowage planning is the only function not solely 

controlled by the terminal operator but received significant input from the captain of the 

vessel. Storage yard operations include stacking and retrieving inbound, outbound, and 

transshipment containers from yard blocks by gantry cranes (GCs). Internal transport 

vehicles (ITVs) provide container transfer between the seaside and the storage yard. 

Landside operations consist in receiving or delivering containers by drayage trucks 

(DTs), entering the terminal through dedicated gates. There are three main seaside 

transfer processes in conventional marine container terminals (MCTs): a) vessel-to-yard 

(or import), b) yard-to-vessel (or export), c) and vessel-to-vessel (a.k.a. transshipment). 

These transfer operations are illustrated in Figures 2 and 3. 
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Figure 2. MCT Export/Import Operations 

 
 

Conventional maritime terminals operate as follows: once a vessel has entered the 

port, it is berthed at its assigned berth, and once moored, ship-to-shore QCs start 

(un)loading containers. ITVs (yard trucks, straddle carriers, automated guided vehicles, 

automated lifting vehicles, etc.) transfer containers between the seaside and pre-assigned 

blocks of the storage yard, where GCs arrange them either parallel or perpendicular to the 

berth. Import containers are delivered to the port by vessels, while export containers are 

drayed to the port by DTs through the gates (usually at least 24 hours before the vessel 

calls at the port). Once a DT enters a terminal, it travels to the assigned blocks in the 

storage area, where a GC (un)loads a container. Smaller cranes (e.g., reachstackers, 

loaded/empty container handlers, etc.) also can be used for service of DTs. 

Transshipment occurs, when cargo, delivered by one vessel (usually called as mother 
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vessel), is moved to another vessel (usually called as feeder vessel). Transshipment 

containers can be transported from vessel to vessel with or without temporary storage at 

the storage yard.  

 

 

 
Figure 3. MCT Transshipment Operations 

 
 

Realizing efficient operations at conventional MCTs remains a difficult task (most 

operations formulated as mathematical programing models belong to the NP class). 

Handling equipment and containers should be properly allocated for seaside, landside and 

storage areas. QCs should be assigned to particular berths, and their quantity is based on 

several factors (i.e., the total number of QCs available; the total number of vessels, 

assigned to each berth; the total number of containers to be handled for each vessel, etc.). 

Particular dispatching strategies of ITVs should be chosen in order to decrease or 
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eliminate idle time of QCs. Available GCs should also be properly allocated between 

yard blocks. If more than one GC serves a yard block, particular safety policies should be 

taken into account to avoid clashing. There are also traffic congestion issues for large 

MCTs due to longer travel distances by ITVs. The allocated equipment should be utilized 

in the most efficient manner (e.g., dual cycling of QCs and horizontal transportation 

units).  

The main objective of this dissertation is to develop models and solution 

algorithms that will assist liner shipping companies and marine container terminal 

operators in improving efficiency of their operations. 

Contributions 

Contributions of the conducted work can be outlined as follows: 

1) Assessing benefits of the floaterm concept 

a. Estimated equipment and vessel service makespan savings, QC productivity, 

and the total construction and maintenance cost savings 

b. Improving MCT resilience 

2) A new berth scheduling policy for dedicated MCTs with excessive demand 

a. A mixed integer non-linear mathematical program for modeling the policy 

b. Memetic Algorithm for solving the program and estimating potential benefits 

from the adopted berthing policy 

3) A new collaborative agreement between liner shipping companies and MCT 

operators 

a. A mixed integer non-linear mathematical program for modeling the agreement 

b. A novel approach for calculating the approximated bunker consumption value 
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c. Exact solution algorithm for the proposed model 

d. Quantifying the potential benefits, yielded by the suggested collaborative 

mechanism 

4) Defining a novel framework for modeling uncertainty in liner shipping 

a. Description of the new methodology 

b. Complexity and solution algorithm discussion 

Structure of the Manuscript 

The manuscript is organized as follows. The next chapter presents a literature 

review, mainly focusing on MCT seaside operations. The third chapter discusses 

application of the floaterm concept to improve productivity of MCTs under normal and 

disruptive operational conditions. The fourth chapter introduces a new berthing policy for 

dedicated MCTs with excessive demand. The fifth chapter overviews the literature, 

related to the tactical problems in liner shipping, describes the fleet deployment problem 

with variable sailing speed and port service times, and proposes the solution approach for 

that problem. The sixth chapter presents a new framework for modeling uncertainty in 

liner shipping. The last chapter provides conclusions and future research directions. 
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2. LITERATURE REVIEW 

An extensive literature search was performed through various databases, 

containing journal publications, conference proceedings, and scientific manuscripts (i.e., 

Master Theses and Doctoral Dissertations). The following key words were used during 

the search: MCTs, container, seaside operations, port, handling equipment at container 

terminals, vessel, ITVs at seaports, and QCs. The search was stopped, when the overall 

number of studies reached 300 units. Then all articles were separated by various topics: 

1) Berth allocation and scheduling, 2) Stowage planning, 3) QC assignment and 

scheduling, 4) Landside and seaside transport, 5) Storage and stacking, 6) Vulnerability 

and resiliency of seaports, and 7) Miscellaneous. This dissertation will mainly emphasize 

on seaside decision problems, as the bottleneck in MCT operations usually occurs at the 

seaside (Carlo, Vis, & Roddbergen, 2013; Golias, 2007). The total number of 

publications, dealing with seaside decision problems, comprised 159: berth allocation and 

scheduling (BSP) – 32%, QC assignment and scheduling (QCA&SP) – 26%, seaside 

transport decision problems (STDP) – 24%, and integrated seaside decision problems 

(ISDP) – 18%. The literature review, presented in this chapter, is solely focused on BSP. 

Additionally, the literature review on liner shipping operations was performed and 

findings will be outlined in chapter 5.  

The main BSP objective is to assign vessels to berthing positions at MCT to be 

served during particular time periods, taking into account geometrical berth and vessel 

characteristics (i.e., the total length of the wharf vs. the overall length of vessels to be 

served, the minimum depth along the wharf vs. the maximum draft among all vessels to 

be served, etc.). Excellent BSP literature reviews were conducted is the past: Stahlbock 
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and Vos (2008), Theofanis, Boile, and Golias (2009), Bierwirth and Meisel (2010, 2015), 

and Carlo et al. (2013). A classification scheme of BSP papers will be similar to the ones, 

adopted by Bierwirth and Meisel (2010, 2015), and Carlo et al. (2013), with minor 

modifications. Conducted in the past studies will be described based on the following 

attributes: spatial, vessel arrivals, handling times, and performance measures (or 

objectives).    

Based on the spatial attribute the reviewed BSPs will be differentiated as discrete, 

continuous, hybrid, and draft consideration (see Table 2). In the discrete BSP (DBSP), 

the wharf is subdivided in a certain number of berths (see Figure 4a-b). Only one vessel 

can be served at each berth at the time. As for the continuous BSP (CBSP), the wharf is 

limited only by its length and not partitioned in berths (see Figure 4c). In this case several 

vessels can be served as long as their overall length does not exceed the wharf’s length. 

In the hybrid BSP (HBSP), the wharf is subdivided in a certain number of berths, but 

larger vessels can occupy more than one berth, while several smaller vessels can be 

served at one berth (see Figure 4d-f). An indented berthing layout, initially implemented 

at Ceres Container Terminal (the Netherlands) and described in details by Carlo et al. 

(2013), is classified as hybrid (see Figure 4f). There are some studies, considering the 

draft of vessels as an additional BSP constraint (see Figure 4g). Larger vessels with 

drafts, exceeding the maximum allowable draft, cannot be moored at particular berthing 

positions.  

The vessel arrivals attribute separates BSPs in three types: static, dynamic, and 

controlled (see Table 2). In the static BSP (SBSP), all vessels have already arrived to the 

port, and the schedule should be developed based on particular objective(s). As for the 
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dynamic BSP (DBSP), approximate arrival times of vessels are known for a certain time 

horizon. In the last case (controlled vessel arrivals) the terminal operator negotiates 

vessel arrival times with a liner shipping company. The arrival times can be assigned as 

parameters (i.e., constant values) or as variables (i.e., set of upper and lower bounds, and 

probability distributions).   

 

 

 
Figure 4. BSP Spatial Attribute 

 
 

Similarly, the vessel handling times can be differentiated as fixed and variable 

(see Table 2). When the handling time is constant, it is assumed that the quantity of QCs, 
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assigned for the service of a vessel, does not change along with QC productivities over 

the considered time horizon. Variable handling times can be set in different ways: a) 

function of the berthing position (the preferred berthing position will result in the 

maximum QC productivity), b) function of handling volumes, c) function of assigned 

QCs to each vessel, and d) stochastic parameter. Constant arrival and handling times of 

vessels are very seldom. Assumption with variable arrival and handling times is more 

realistic and also allows capturing possible uncertainties. 

 
Table 2 
Description of the BSP Attributes  
Attribute Description 
1) Spatial 
- D discrete 
- C continuous 
- H hybrid 
- Dr vessels draft consideration  
2) Vessel arrivals 
- S static 
- D dynamic 
- P  controlled 
3) Handling times 
- C constant 
- V variable 
4) Performance measures 
Compl  completion time of all vessels service 
Wait waiting time of vessels  
Hand  handling time of vessels 
Late late departures of vessels 
Dev deviation between actual and desired berthing positions 
Fail failing to provide a service request 
Order deviation between arrived vessels order and their service order 
Fuel fuel consumption of vessels 
Other different from ones, listed above  
w weighted coefficient  
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The last classification feature is a performance measure, which represents an 

objective function to be minimized. The list of performance measures is given in Table 2. 

If a mathematical model has an objective, different from ones, mentioned in the list, it 

will be assigned to the category “Other”. When a performance measure is maximized, it 

will have a negative coefficient. The most common objective of BSPs, revealed in the 

literature, is minimization of the total turnaround time of vessels (often presented as a 

sum of waiting and handling times for all vessels).  

The reviewed papers will be classified according to the following structure: 

spatial attribute |vessel arrivals attribute |handling times attribute |performance measures 

attribute. For example, an abbreviation D&Dr|D|C|Σ(Wait+Hand)|BSP means a discrete 

dynamic BSP, taking into account the draft of vessels and assuming constant handling 

times, directed to minimize the total turnaround time of vessels. The list of notations for 

solution approaches, implemented by researches, is presented in Table 3.  

 
 
Table 3 
List of Notations for Solution Approaches 
Solution Approach  Notation 
Branch-and-Bound Algorithm B&B 
Branch-and-Cut Algorithm B&C 
Branch-and-Price Algorithm B&P 
Evolutionary Algorithm EA 
Greedy Randomized Adaptive Search 
Procedure 

GRASP 

Simulated Annealing SA 
Squeaky Wheel Optimization SWO 
Stochastic Beam Search SBS 
Tabu Search TS 
Variable Neighborhood Search VNS 
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An overview of the BSP formulations is given in Table 4. More detailed 

description of collected studies is presented in sections below. These sections will be 

differentiated only based on the spatial attribute (DBSP – 57%, CDAP – 31%, and HBSP 

– 12%), since the majority of authors considered dynamic vessel arrivals with variable 

handling times (only a few papers presented SBSP formulation, as a supplement to DBSP 

formulation). 

Discrete Berth Scheduling Problems (DBSPs) 

Brown, Cormican, Lawphongpanich, and Widdis (1997) studied a BSP for the US 

Navy nuclear submarines. The authors proposed a linear integer formulation with the 

objective, directed to maximize the total benefit from less penalties due to berth shifts 

and failing to provide requested services. CPLEX was used to solve the problem. 

Computational experiments were conducted based on the data from the Naval Submarine 

Base in San Diego. Results indicated efficiency of the suggested methodology. Imai, 

Nishimura, and Paradimitriou (2001) presented static and dynamic BSP formulations. 

The objective in both cases minimized the total waiting and handling times of vessels. A 

Lagrangian relaxation based heuristic was proposed as the solution algorithm. Imai, 

Nishimura, and Paradimitriou (2003) considered a similar problem. The authors also 

introduced a vessel priority by assigning a weighted parameter, which was represented as 

a function of the cargo handling volume. An EA heuristic was applied to solve the 

problem. It was observed that the vessel service time was highly dependent on the 

weighted parameter, assigned to each category of vessels.    

Hansen and Oguz (2003) presented mathematical formulations for static and 

dynamic BSPs. The objective of both models minimized the total vessel service time. The 
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authors reformulated the model, developed by Imai et al. (2001). CPLEX was applied to 

solve both problems. Numerical experiments, conducted based on a real-life data, 

indicated the necessity of a more efficient solution approach. Cordeau et al. (2005) 

suggested two DDBSP formulations. The first one was similar to Imai et al. (2001), while 

the second presented DDBSP as a Multi-Depot Vehicle Routing Problem with Time 

Windows (MDVRPTW). The objectives of both models minimized the total weighted 

vessel service time. Small size instances were solved optimally with CPLEX. For large 

size problems a TS heuristic was developed. Computational examples were performed 

based on the data, collected from the Port of Gioia Tauro (Italy). Results demonstrated 

the efficiency of the proposed methodology.  

Li, Tang, and Liu (2005) addressed DSBSP at raw material docks. The considered 

terminal had various berth structures. The objective of MIP aimed to minimize the total 

vessel service tardiness. The authors derived a lower bound using a Largangian relaxation 

and applied the B&B algorithm to solve the problem. Boile, Theofanis, and Golias (2006) 

investigated DDBSP with service priorities. A vessel priority was assigned by a specific 

weight. The objective minimized the total weighted vessel service time. A heuristic was 

developed to solve the problem. Numerical experiments indicated that the proposed 

solution approach was efficient for small size instances.  Zhou, Wang, Kang, and Jia 

(2006) formulated DDBSP with variable service priorities at MCT. The objective 

minimized the total vessel waiting times. An EA based heuristic was proposed as the 

solution algorithm. Computational examples showed that the presented model 

substantially reduced vessel waiting times. The developed algorithm obtained good 

solutions in a reasonable computational time.  
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Imai, Zhang, Nishimura, and Paradimitriou (2007) studied a bi-objective DDBSP. 

The first objective of the model minimized the total vessel late departures, while the 

second one aimed to minimize the total vessel service time. A Lagrangian relaxation and 

an EA based heuristics were used to solve the problem. Numerical experiments 

demonstrated that the EA heuristic obtained better quality solutions. Golias (2007) 

presented models and solutions algorithms for various BSPs in his dissertation, capturing 

the MCT technical and operational characteristics. Discrete and continuous berthing 

layouts were considered. Objectives were directed to minimize the total cost from 

delayed departures/berthing, the total handling and waiting costs, maximize the total 

premium from timely and early departures, etc. Various solution heuristics were applied 

to solve different problems (EA, SWO, VNS, etc.). Necessary conclusions and the scope 

of future research were provided. Golias,  Boile, and Theofanis (2007) formulated 

DDBSP as a linear mixed integer problem, taking into account time window service 

deadlines. The authors suggested several changes in the model, presented by Imai et al. 

(2001, 2003). The objective minimized the total penalties due to late vessel departures 

and maximized the total benefits due to timely and early vessel departures. CPLEX was 

used to solve the problem. Numerical examples were conducted for small size instances.  

Hansen, Oguz, and Mladenovic (2008) formulated DDBSP, minimizing the total 

cost, which included waiting time cost, handling time cost, and penalties due to late 

vessel departures. The authors developed a VNS heuristic. Computational experiments 

showed the efficiency of the suggested solution approach. VNS outperformed Multi-Start 

Heuristic (MS), EA, and Memetic Search Algorithm (MA). Imai, Nishimura, and 

Paradimitriou (2008) proposed static and dynamic DBSP formulations for a multi-user 
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terminal. Vessels with expected waiting times, exceeding a set limit, were assigned for 

service at the external terminal. The objective minimized the total vessel service time at 

both external and multi-user terminals. The authors presented an EA based heuristic to 

solve the problem. Numerical examples demonstrated the robustness of the algorithm and 

efficiency of a new berthing policy for a terminal operator especially during peak hours. 

 Golias, Boile, and Theofanis (2009) studied DDBSP at container terminals, 

where the vessel service was differentiated based on priority agreements. The objective 

function was directed to minimize the total vessel service time. An EA based heuristic 

was developed to solve the problem. Golias, Boile, Theofanis, and Efstathiou (2010) 

presented a new DDBSP formulation, taking into account vessels’ fuel consumption. The 

objective minimized the total vessel service time, delayed departures, fuel consumption, 

and emissions productions. The authors applied an EA to solve the problem. Golias, 

Boile, and Theofanis (2010a) introduced a lambda-optimal based heuristic for DDBSP. 

The objective minimized the total weighted service time of vessels. An EA was used to 

check the performance of the suggested heuristic for medium and large size problems. It 

was observed that the lambda-optimal based heuristic showed an adequate performance 

within acceptable computational time.  

Golias, Boile, and Theofanis (2010b) studied DDBSP, taking into account the 

major terminal operator goals. The objective minimized the total cost from vessels’ 

waiting and handling times, late departures, deviation from the agreed vessel 

productivity, and to maximize the premiums from early and timely departures. CPLEX 

was used for various problem instances. The procedure was stopped if the solution was 

not found after 2 hours. Golias and Haralambides (2010) formulated DDBSP for MCT, 
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where the terminal operator had various contractual agreements with liner shipping 

companies (i.e., different cost functions). The objective minimized the total cost of 

vessels’ waiting time and late departures, and maximized the total premiums from early 

departures. The authors applied an EA to solve the problem. Computational experiments 

were performed for various cost policies.  

Saharidis, Golias, Boile, Theofanis, and Ierapetriou (2010) considered DDBSP at 

MCT with two hierarchical levels for vessels (preferential and non-preferential). The 

objective aimed to minimize the total vessel service time. The authors presented a 

heuristic, called k-th best algorithm, to solve the problem. Numerical examples showed 

that the proposed algorithm was efficient and provided (near)optimal solutions in 

acceptable computational time. Arango, Cortes, Munuzuri, and Onieva (2011) studied 

DDBSP at a container terminal of the Port of Seville (Spain). The objective minimized 

the total vessel turnaround time. An EA and the Arena simulation software were applied 

to solve the problem. An optimization module was used to generate a vessel to berth 

assignment and send the information to the simulation module, which performed the 

vessel handling. Computational experiments confirmed that the proposed methodology 

could significantly improve the existing berth management strategy. 

Buhrkal, Zuglian, Ropke, Larsen, and Lusby (2011) reviewed several berth 

allocation models: 1) Imai et al. (2001), minimizing the total vessel waiting and handling 

times, 2) a Heterogeneous Vehicle Routing Problem with Time Windows formulation 

(HVRPTW), minimizing the total vessel weighted service time, 3) an improved 

HVRPTW problem, minimizing the total vessel weighted service time, and 4) a 

generalized set partitioning problem, minimizing the total vessel service time. CPLEX 
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was used to solve all models. It was observed that a generalized set partitioning model 

outperformed all other considered models. De Oliveira, Mauri, and Lorena (2012) 

formulated DDBSP, aiming to minimize the total weighted vessel service time. The 

authors developed a Clustering Search (CS) heuristic to solve the problem. Numerical 

experiments were conducted based the data, collected from the Port of Gioia Tauro 

(Italy). It was found that the CS outperformed other solution approaches (i.e., TS, column 

generation, and SA). Lalla-Ruiz, Melian-Batista, and Moreno-Vega (2012) studied 

DDBSP, directed to minimize the total service time of vessels. The authors presented a 

heuristic, based on the TS and the Path Relinking (TSPR). The proposed solution 

approach was compared with a Generalized Set Partitioning Problem (GSPP). 

Computational examples demonstrated that TSPR outperformed GSPP for small and 

large problem sizes.  

Sun (2012) studied the following BSPs in his dissertation: multiple BSP (MBSP), 

integrated BSP & QCA&SP (BAQCSP), and MBSP & QCA&SP (MBAQCSP). Various 

types of berthing layouts were discussed: discrete, continuous, and semi-continuous (or 

hybrid). Based on vessel arrival times BSPs were classified into static and dynamic. The 

objectives of considered problems were directed to minimize the total vessel turnaround 

time and penalties due to late vessel departures. The MBSP was solved by the B&P 

algorithm. The author developed a heuristic based on EA and TS to solve BAQCSP and 

MBAQCSP. Numerical experiments were performed based on randomly generated test 

problems. Results showed efficiency of suggested methodologies and solution 

approaches. Xu, Li, and Leung (2012) presented formulations for static and dynamic 

BSPs. The BSP was modeled as a parallel-machine scheduling problem, minimizing the 

19 
 



total weighted completion time of vessels. The authors presented heuristic algorithms to 

solve dynamic and static problems. Cubillos et al. (2013) proposed a multi-agent based 

approach for DDBSP. The system architecture included the interface layer (Ship Agent 

and Berth Agent) and the planning layer (Bert Request Agent, Dock Agent, Berth Planner 

Agent, and Central Agent). The objective maximized the vessel throughput and the berth 

utilization. The multi-agent architecture was created using the java environment. The 

insertion algorithm was employed to count for new vessels joining to an existing berth 

sequence.  

Golias, Portal, Konur, Kaisar, and Kolomvos (2013) considered DDBSP at MCT, 

where arrival and handling times of vessels were assigned with upper and lower bounds. 

The objective of a bi-level mixed integer model minimized the average total service time 

of vessels and the total range of service times.  The authors developed an EA heuristic to 

solve a non-convex problem. Numerical experiments were conducted for 48 problem 

instances. Karafa, Golias, Ivey, Saharidis, and Leonardos (2013) investigated DDBSP 

with stochastic handling times of vessels. The problem was bi-objective. The first 

objective aimed to minimize the expected total service time of vessels, while the second 

objective minimized the service start and finish time risks for all vessels. An EA based 

heuristic was applied to solve the problem. Computational experiments demonstrated that 

better solutions were obtained for the cases with stochastic vessel handling times, than for 

the cases with expected handling time values. 

Continuous Berth Scheduling Problems (CBSPs) 

Moon and Kim (2000) studied CDBSP at MCT, aiming to minimize the total 

operational cost, associated with deviations from the desired vessel berthing positions and 
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penalties due to late vessel departures. The authors developed a heuristic to solve the 

problem. Numerical experiments indicated that the algorithm obtained results close to the 

ones, provided by the optimization solver. Guan, Xiao, Cheung, and Li (2002) formulated 

a multiprocessor task scheduling problem as CSBSP, where QCs were represented as 

processors, and vessels were modeled as jobs. The objective of the problem was directed 

to minimize the total weighted vessel service time. The authors applied a heuristic to 

solve the problem. A set of lemmas and the worst-case analysis were presented as well. 

Kim and Moon (2003) proposed a mixed integer linear CDBSP, minimizing the cost, 

associated with deviations of the desired vessel berthing positions and penalties due to 

late vessel departures. The authors developed a SA based algorithm to solve the problem 

and compared results with the ones, obtained by the LINGO solver. Computational 

examples showed the robustness of the proposed methodology and the solution approach.  

Dai, Lin, Moorthy, and Teo (2004) investigated static and dynamic CBSPs. The 

first objective was directed to minimize the total delays of vessels, while the second one 

aimed to maximize the berth utilization. The authors developed a SA based heuristic to 

solve CSBSP. CDBSP with various vessel arrival scenarios was solved using simulation. 

It was observed that the most of vessels were assigned to the desired berthing positions in 

the dynamic case. More efficient algorithm would be required for the static case to reduce 

the difference with lower bound. Guan and Cheung (2005) formulated CDBSP, aiming to 

minimize the total weighted service time of vessels. The authors presented a composite 

heuristic, which combined a tree search procedure and a pair-wise exchange heuristic. 

Imai, Sun, Nishimura, and Paradimitriou (2005) suggested a mathematical model for 

CDBSP, directed to minimize the total vessel service time. The time arrivals of vessels 
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followed the exponential distribution. The handling times were dependent on the vessel 

berthing positions. The authors developed a heuristic to solve the problem. Numerical 

experiments indicated that continuous berthing layout would be more effective as 

compared to the discrete one, especially in cases when there were fewer berths at MCT.  

Wang and Lim (2007) presented a SBS heuristic for CDBSP. The objective aimed 

to minimize the total operational cost, associated with possible unallocation, and 

penalties due to deviations from the desirable vessel berthing positions and late 

departures. Computational examples were presented using real-life data, provided by the 

Port of Singapore. Results demonstrated that SBS outperformed SA, developed by Dai et 

al. (2004). Lee and Chen (2009) formulated CDBSP, directed to maximize the berth 

utility index, presented as a function of vessel waiting time, priority, shifting status, and 

preferred berthing position. The authors applied a VNS to solve the problem. Numerical 

experiments were performed based on the data, collected from the Port of Kaohsiung 

(Taiwan). Results showed the robustness of the suggested algorithm for large instance 

problems. Du, Chen, Quan, Long, and Fung (2011) studied CDBSP, minimizing the total 

vessel fuel consumption and late departures. A heuristic was developed to solve the 

problem. Computational examples indicated that the strategy of introducing variable 

vessel arrivals led to lower emissions, comparing to the constant vessel arrival case.  

Javanshir and Ganji (2010) investigated CDBSP at MCT, minimizing the total 

vessel service time. Vessel handling times varied depending on the berthing positions. 

The authors used the LINGO package to solve the problem. Numerical experiments 

indicated that adequate locations of container storage areas and automation of handling 

processes could significantly improve the terminal productivity. Lee, Chen, and Cao 
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(2010) developed GRASP to solve CDBSP. The objective minimized the total weighted 

vessel turnaround time. It was observed that the proposed heuristic obtained high quality 

solutions within acceptable computational time. Silva, Novaes, and Coelho (2011) 

applied an EA based heuristic to solve CDBSP. The objective was directed to minimize 

the total berth allocation cost, including waiting and handling times of vessels, and the 

berth utilization. Computational experiments were conducted based on the data, collected 

from the Itajai Port (Brazil). Results showed the efficiency of the suggested methodology 

and the solution approach. Xu, Chen, and Quan (2011) formulated CDBSP, capturing 

uncertainties in vessel arrivals and handling times. The objective minimized the total late 

vessel departures and maximized the length of buffer time. The buffer time after the 

vessel service completion time provided an additional room in cases of uncertain delays. 

The authors developed the Robust Berth Scheduling Algorithm (RBSA), which was 

based on SA and B&B. Computational experiments indicated that the value of weighting 

parameter in the objective significantly affected performance of the suggested heuristic. 

Emde and Boysen (2012) studied CDBSP at MCT, aiming to minimize the total 

vessel waiting time and the number of delayed containers. The authors presented a SA 

based heuristic to solve the problem. Numerical examples demonstrated that the proposed 

solution approach was able to obtain (near)optimal solutions in a reasonable 

computational time. Zhen and Chang (2012) formulated CDBSP, taking into account 

uncertainties of vessel arrivals and handling times. The first objective minimized the total 

operational cost, while the second one maximized the robustness of schedule. The authors 

presented a heuristic to solve the problem. The suggested methodology and the solution 

algorithm were found to be efficient for large size problems. Sheikholeslami, Itatim, and 
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Kobari (2013) investigated CDBSP, considering tidal constraints in the access channel. 

The objective minimized the total waiting and handling times for vessels. The weighted 

coefficients were assigned to each vessel based on its size and voyage type. An EA based 

heuristic was developed to solve the problem. Computational experiments were 

performed based on the operational data, collected from the Sharid Rajaee Port Complex 

in Iran. Results indicated robustness of the algorithm for small size problems. 

Hybrid Berth Scheduling Problems (HBSPs) 

Nishimura, Imai, and Paradimitriou (2001) studied HDBSP at MCT, aiming to 

minimize the total vessel service time. Two heuristics, based on the Lagrangian 

relaxation and EA, were presented to solve the problem. Numerical experiments were 

performed based on the data, provided by the Port of Kobe (Japan). The EA heuristic was 

found to be more efficient. Moorthy and Teo (2006) formulated a bi-objective HDBSP. 

The first objective minimized the total vessel delays, while the second one aimed to 

minimize the connectivity cost (which was dependent on the vessel berthing position). 

Delays were assumed to follow the normal distribution. The authors used simulation and 

the greedy neighborhood search to solve the problem. Computational examples 

demonstrated robustness of the suggested methodology and the solution approach. 

Imai, Sun, Nishimura, and Paradimitriou (2007) considered HDBSP at a multi-

user container terminal with indented berths for a fast handling of mega-containerships. 

The objective minimized the total vessel service time. An EA based heuristic was 

developed to solve the problem. It was found that the handling time for mega-

containerships was shorter at the indented berth terminal, but the total service time didn’t 

vary as compared to the conventional berth terminal. Cheong, Tan, Liu, and Lin (2008) 
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studied a multi-objective HDBSP, aiming to minimize the makespan, waiting time of 

vessels, and degree of deviation from a predetermined priority schedule. The authors used 

the Pareto optimality concept and the Multi-Objective EA (MOEA) to solve the problem. 

Numerical experiments indicated that particular features of the algorithm (i.e., local 

search, solution decoding schemes, and the optimal berth insertion) affected significantly 

its performance. Cheong and Tan (2008) considered a similar problem, minimizing the 

total vessel service time and total delays due to late vessel departures. A Multi-Objective 

Multi-Colony Ant Algorithm (MOMCAA) was suggested as a solution approach. The 

algorithm was found to be efficient to find the (near)optimal solutions within reasonable 

computational time. 

Imai, Nishimura, and Paradimitriou (2013) investigated HDBSP at MCT, serving 

mega-containerships. Three terminal layouts were presented: conventional (containers are 

handled from one side of a vessel at the assigned berth), channel (containers are handled 

from two sides of a vessel along the channel), and indented (a vessel is served at an 

indented berth). Various vessels sizes were considered. The objective minimized the total 

vessel service time. The authors applied an EA based heuristic to solve the problem. It 

was found that channel terminals were more efficient than conventional berth terminals 

and indented berth terminals, since the total service time of vessels including mega-

containerships was the shortest in the majority of cases. 
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Table 4 
Overview of BSP Formulations 

Authors (year)\Attribute Spatial Vessel 
arrivals 

Handling 
times Objective(s) 

Brown et al. (1997) D D C Σ(Fail + Dev) 
Moon & Kim (2000) C D C Σ[w1(Dev) + w2(Late)] 
Imai, Nishimura, & 
Paradimitriou (2001)  D S&D V Σ(Wait + Hand) 

Nishimura, Imai, & 
Paradimitriou (2001) H&Dr D V Σ(Wait + Hand) 

Guan et al. (2002) C S C max[w(Compl)] 
Hansen & Oguz (2003) D S&D V Σ(Wait + Hand) 
Imai, Nishimura, & 
Paradimitriou (2003)  D D V Σw(Wait + Hand) 

Kim & Moon (2003) C D C Σ[w1(Dev) + w2(Late)] 
Dai et al. (2004) C S&D C Σ(Dev) & Σ(Late) 
Cordeau et al. (2005) D D V Σw(Wait + Hand) 
Guan & Cheung (2005) C D C Σw(Wait + Hand) 
Imai et al. (2005) C D V Σ(Wait + Hand) 
Li, Tang, & Liu (2005) D&Dr S V Σ(Late) 
Boile, Theofanis, & Golias 
(2006) D D V Σw(Wait + Hand) 

Moorthy & Teo (2006) H D V Σ(Dev + Late) 
Zhou et al. (2006) D&Dr D V Σw(Wait) 

Imai et al. (2007a) D D V Σw(Late) & Σ(Wait + 
Hand) 

Imai et al. (2007b) H D V Σ(Wait + Hand) 
Golias (2007) D&C D V Σ[w1(Wait) + w2(Hand) + 

w3(Late)] + w4(Other)] 
Golias, Boile, & Theofanis 
(2007) D D V Σ[w1(Late) + w2(Other)] 

Wang & Lim (2007) C D C Σ[w1(Fail) + w2(Dev) + 
w3(Late)] 

Cheong et al. (2008) H&Dr D V max(Compl) & Σ(Wait) & 
Σ(Order) 

Cheong & Tan (2008) H&Dr D V Σ(Wait + Hand) & Σ(Late) 
Hansen, Oguz, & Mladenovic 
(2008) D D V Σ[w1(Wait) + w2(Hand) + 

w3(Late)] 
Imai, Nishimura, & 
Paradimitriou (2008) D S&D V Σ(Wait + Hand) 

Golias, Boile, & Theofanis 
(2009) D D V Σ(Wait + Hand) 

Lee & Chen (2009) C D V Other 

Golias et al. (2010) D D V Σ(Wait + Hand + Late + 
Fuel) 

Golias, Boile, & Theofanis 
(2010a) D D V Σw(Wait + Hand) 

Golias, Boile, & Theofanis 
(2010b) D D V Σ[w1(Wait) + w2 (Hand) + 

w3(Late) + w4(Other)] 
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Table 4 
Overview of BSP Formulations (continued) 
Authors (year)\Attribute Spatial Vessel 

arrivals 
Handling 
times 

Objective(s) 

Golias & Haralambides (2010) D D V Σ[w1(Wait) + w2(Late) + 
w3(Other)] 

Javanshir & Ganji (2010) C D V Σ(Wait + Hand) 
Lee, Chen, & Cao (2010) D D V Σw(Wait + Hand) 
Saharidis et al. (2010) D D V Σ(Wait + Hand) 
Arango et al. (2011) D D V Σ(Wait + Hand) 
Buhrkal et al. (2011) D D V Σ(Wait + Hand) 
Du et al. (2011) C S&D C Σ(Late + Fuel) 
Silva, Novaes, & Coelho 
(2011) C&Dr D V Σ[w1(Wait) + w2(Hand) + 

w3(Other)] 
Xu, Chen, & Quan (2011) C D V Σw(Late) + Other 
De Oliveira, Mauri, & Lorena 
(2012) D D V Σw(Wait + Hand) 

Emde & Boysen (2012) C D V Σw(Wait) + Σ(Late) 
Lalla-Ruiz, Melian-Batista, & 
Moreno-Vega (2012) D D V Σ(Wait + Hand) 

Sun (2012) D&Dr S&D V Σ(Wait + Hand + Late) 
Xu, Li, & Leung (2012) D&Dr S&D V Σw(Wait + Hand) 

Zhen & Chang (2012) D D V Σ[w1(Late) + w2(Dev)] + 
Other 

Cubillos et al. (2013) D D V Other 
Golias et al. (2013) D D V Σ(Wait + Hand) + Other 
Imai, Nishimura, & 
Paradimitriou (2013) H D V Σ(Wait + Hand) 

Karafa et al. (2013) D D V Σ(Wait + Hand) + Other 
Sheikholeslami, Itatim, &  
Kobari (2013) C&Dr D V Σw(Wait + Hand) 

 

 

Literature Review Summary 

As a result of conducted literature review the following gaps in the state of the art 

and current practices along with future research directions can be outlined: 

a) The majority of authors investigated DBSPs (around 57% of all BSP papers). 

However, a continuous berthing layout is more efficient and allows higher berth 

utilization (Carlo et al., 2013). Despite the fact that CBSPs are more difficult to solve 
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than DBSPs, researches must focus on development of new mathematical models and 

heuristic algorithms for MCTs with a continuous berthing layout; 

b) Only a few studies covered HBSPs (around 12% of all BSP papers).  Imai et al. 

(2007b) indicated that vessel handling times at MCTs with an indented berthing layout 

(see Figure 4) are shorter than at terminals with a conventional berthing layout. Another 

research, conducted by Imai et al. (2013), indicated that the channel berthing layout 

(when vessels are handled from both sides along the channel, see Figure 5) provided 

faster service of mega-containerships as compared to traditional and indented berthing 

layouts. Since the hybrid berthing layout is more efficient, it should be investigated more 

in depth. 

 
 

 
Figure 5. Channel Berthing Layout 

 
 

c) New container handling systems should be paid more attention. Kim, Phan, and 

Woo (2012) presented various contemporary handling equipment types: linear motor 

conveyance system (LMCS), automated storage and retrieval system (AR/RS), overhead 

grid rail (GRAIL), speedport, SuperDock, AUTOCON, etc. The authors indicated that 

28 
 



those handling systems could improve operations at both seaside and landside. However, 

the installation of such handling equipment required a significant construction cost and 

could be economically infeasible. 

d) Only few studies were dedicated to modeling various types of agreements 

between liner shipping companies and/or terminal operators. A collaborative agreement 

between liner shipping companies called “alliance”. The first liner shipping alliance 

appeared in 1990. By 1995 there were four major liner shipping alliances: Global 

Alliance, Grand Alliance, Maersk/Sea-Land, and Tricon (Cariou, 2002).  Price rates for 

moving a particular cargo at the given route are established at Conferences. An alliance 

agreement may allow one liner shipping company moving cargo via another liner 

shipping company, which is a part of the alliance and provides more frequent service at 

the given route (Ararwal, 2007). Contractual agreements between terminal operators and 

liner shipping companies were evaluated by Golias (2007) and Golias and Haralambides 

(2010). Various forms of agreements have to be studied more in depth, as they may 

increase the terminal productivity without substantial investments. 

e) An increasing size of vessels and the terminal congestion enforce a terminal 

operator to start thinking about new ways of container handling. Nam and Lee (2012) and 

Shin and Lee (2012) discussed a mobile harbor system, represented as a floating platform 

with on-board QC. The mobile harbor allows handling vessels in the sea. Liftech, Inc. 

and Ashar introduced a floaterm concept for improving seaside operations at MCTs 

(Ashar, 2013; Lifterch, Inc., 2007). The main difference between a conventional MCT 

and the one, which applies the floaterm concept, is that in the latter case floating QCs, 

located on the crane barge, are employed to handle containers that are either stored in the 
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floating storage yard or moved to the feeder vessels. Founders of the floaterm concept 

indicated that it would decrease the size of marshaling yard, mitigate or even eliminate 

terminal congestion issues, reduce the amount of required equipment, and decrease the 

turnaround time of vessels. Nevertheless, there are no mathematical/simulation models, 

quantifying potential benefits of this concept.  

f) Bierwirth and Meisel (2015) underlined that the majority of researchers used 

stochastic search algorithms (e.g., Evolutionary Algorithms) for solving BSPs. The future 

research may focus on the development of additional local search heuristics, directed to 

improve objective function values and convergence patterns of the solution algorithms. 

g) Only a few papers considered uncertainty in vessel arrivals, when solving BSP 

(Bierwirth & Meisel, 2015). Taking into account increasing number of vessels, arriving 

“off-schedule”, it is necessary to provide a robust berth scheduling, which will allow 

MCT operators mitigate effects of possible uncertainties. 
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3. EVALUATION OF THE FLOATERM CONCEPT AT MARINE CONTAINER 

TERMINALS VIA SIMULATION 

Introduction 

As it was mentioned earlier, the amount of cargo, transported by vessels, 

substantially increased over the last 30 years. To meet the growing demand terminals 

operators have to increase productivity of their MCTs. To improve performance of MCTs 

by increasing quayside capacity with minimal capital investment a new concept (named 

floaterm) was proposed in early 2000 (Ashar, 2013; Lifterch, Inc., 2007). The floaterm 

concept includes two-sided operations (when a vessel is moored between the terminal 

berth and the crane barge as shown in Figure 6A) and midstream operations (when a 

vessel is moored to the crane barge in the sea as shown in Figure 6B). The floaterm 

concept was originally applied at the Ceres Terminal (Amsterdam, the Netherlands) in 

2002 with throughput increasing by 24.6% from 2000 to 2005 (Pielage, Rijsenbrij, Van 

den Bosch, Ligteringen, & Van Beemen, 2008). No information was made available as to 

the role that the floaterm concept played in this increase. According to Liftech, Inc. 

(2007) and Ashar (2013) though the floaterm concept could significantly improve 

performance of seaports, decrease the size of the storage yard, reduce the number of 

handling equipment, reduce congestion, etc. An extensive literature search indicated that 

no computational study exists (to date), describing and modeling the impact of the 

floaterm concept on MCT operations. In this dissertation simulation will be used to 

compare operations (under normal and disruptive conditions) of a conventional MCT to a 

terminal with the floaterm concept and quantify (any) productivity gains, that may be 

realized by the latter. 
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Figure 6. Two-Sided and Midstream Applications of the Floaterm Concept 
 

 
Model Description 

As revealed by the literature review, simulation is widely used for what-if 

scenario analysis and comparison of various resource assignment policies at MCTs. The 

scope of the past research, related to the floaterm concept, included theoretical 

discussions of its advantages (Ashar, 2013; Liftech, Inc., 2007), technical feasibility of 

the floating QCs application (Pielage et al., 2008), analysis of changes in the stowage 

planning (Pielage et al., 2008), economical and operational feasibility of the floaterm 
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concept (Pielage et al., 2008). The main objective of this study is to conduct a detailed 

comparative analysis of the conventional and floaterm terminal types using simulation 

modeling under normal and disruptive conditions. In this section two developed 

simulation models will be presented: one for a conventional and one for a floaterm MCT 

(from now on referred to as CMT and FMT respectively), using the FlexSim simulation 

software package (FlexSim, 2014), and estimate potential benefits of the latter terminal 

configuration. This section will describe in details the modeling assumptions of the 

quayside, yard, and landside operations for both terminals, including terminal layout, 

container types, handling equipment assignment, and characteristics of disruptive events. 

Terminal and vessel characteristics. Both CMT and FMT are assumed to have 3 

berths. The length of each berth is equal to 380m, which allows mooring of Neo-

Panamax vessels. The width of the apron area, connecting the quayside and the storage 

yard, covers 90m. The main geometric characteristics of CMT and FMT are presented in 

Figure 7A and 7B respectively. Note that the terminal layout and dimensions for both 

CMT and FMT were based on information found in the available literature (Petering, 

2009; Petering & Murty, 2008; Petering, Wu, Li, Goh, & Souza, 2009, etc.). Container 

flow is illustrated in Figure 8. At CMT three QCs are located on the quayside at each 

berth and handle all containers from each vessel.  

At FMT two QCs are located on the quayside at each berth and only handle 

export and import containers, while one QC (at each berth), located on the crane barge, 

handles transshipment containers from/to the feeder barges (Dulebenets, Golias, & 

Heaslet, 2013). During disruptive events QCs on crane barges are also allowed to handle 

part of the import container demand. The capacity of each barge was assumed to be 200 
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TEUs. Once the barge is fully loaded, it is towed to the assigned feeder vessel by push 

boats. Setup time at the quayside is assumed to be 10 min (5 min for mooring 5 min for 

detaching). Setup time for the feeder barge (mooring to the crane barge and detaching 

from the crane barge) was assumed to be 10 min and can be modified in the model as 

needed. 

 

 

 
Figure 7. Terminal Layouts: A-CMT, B-FMT 
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Figure 8. Container Flows at Terminals 

 
 
On-shore and off-shore QC productivity (QCP) was assumed to follow a 

triangular distribution [triangular (1.0, 1.5, 3.0) minutes per container move], which 

translates to a mean (nominal) value of 40 moves/hour/QC (Liftech, Inc., 2007). The 

triangular distribution, its bounds and mode were chosen based on the literature review 

(Petering, 2009; Petering & Murty, 2008; Petering et al., 2009). Workload between QCs 

for each vessel is equally distributed in both simulation models, as this policy increases 

productivity by minimizing vessel handling time (Song, Cherrett, & Guan, 2012). It was 

further assumed that the stowage plan for each vessel satisfies stability conditions (e.g., 
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stack weight limit, moment equilibrium between bow and stern and between the left and 

right side of the vessel). 

ITV characteristics. Two types of ITVs (yard trucks or YTs and automated 

lifting vehicles or ALVs) are assumed to carry containers between the quayside and the 

storage yard (see Figure 7). Each terminal configuration can use only one type of vehicles 

(either YT or ALV). Usually the speeds of empty and laden YTs are 40 and 25 km/h 

respectively (Petering, 2009; Petering & Murty, 2008; Petering et al., 2009). In this study 

YTs speed was set constant and equal to 30 km/h. It is assumed that ALVs have the same 

speed = 30 km/h (Yang, Choi, & Ha, 2004). ITVs are assumed to carry one 20 foot (ft.) 

container but other container types can be introduced in both models (e.g., 20 ft., 40 ft., 

45 ft., etc.) as well.  

Vessels are served by three gangs of ITVs (either YTs or ALVs), each dedicated 

to serving the QCs of a particular berth. Several studies confirm that this multi-crane 

oriented (a.k.a. pooling) strategy, when ITVs are shared between QCs serving the same 

vessel, is more efficient (Park, Dragovic, & Kim, 2009; Petering, 2010; Zeng, Yang, & 

Lai, 2009). Productivity of QCs with a multi-crane oriented strategy is approximately 

20% to 25% higher than the strategy, when ITVs are not shared, most likely due to the 

increase of QC and ITV dual cycling. 
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ITV deployment. The ITV deployment strategy, used in this study, is depicted in 

Figure 9 for both YTs and ALVs. The main differences between the two deployment 

strategies are: a) QCs do not have to wait for an ALV to become available to unload a 

container, and b) ALVs do not have to wait for a QC to pick up the container, they are 

delivering to the quayside. Once a QC picks up a container from a vessel (Figure 9A and 

9B), it searches for the first available ITV to load the container. If more than one ITVs 

are available, the model will assign the container to the ITV closest to the QC at the given 

simulation time. If idling ITVs are not available, the QC will either wait for the first 

available YT or, for the ALV case, unload the container to the buffer area. If there is only 

one idling ITV, it will be assigned to the first available job (i.e., minimization of waiting 

time for QCs). A similar deployment strategy is applied for export/transshipment 

containers moved from the storage yard to the quayside (see Figure 9C and 9D). The 

model computes distances between QCs, ITVs, and GCs based on a road network in the 

terminal. If a road network does not exist, the model estimates distances based on 

centroids.  

When a loaded ITV enters a yard block, it travels along the handling lane to the 

assigned GC (see Figure 10). An empty ITV shuffles to the bypass lane. While YTs need 

to wait for a GC to pick up/place the container from/to their chassis, ALVs are capable of 

(un)loading the container from/to the handling lane without waiting for a GC service 

(which increases productivity). 
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Figure 9. ITV Deployment Strategy 

 

 

 
Figure 10. ITVs in the Yard Block  
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Quayside and storage yard buffer areas. Quayside and storage yard buffer 

areas of MCT serve three functions: a) an area for cranes to operate on, b) an area for 

ITV circulation, and c) an area for drop-off/pick-up of containers (by QCs, GCs, and 

ITVs). Based on preliminary simulation experiments the optimal size of both buffer areas 

was determined and findings were similar to Vis and Harika (2004). Specifically, the 

buffer area size at quayside significantly affected QCP, but the buffer area size at the 

storage yard didn’t result in any substantial difference. The buffer area capacity at the 

quayside and storage yard was set equal to three containers per QC and two containers 

per storage block, respectively. 

Storage yard configuration. The storage yard consisted of 30 and 15 yard blocks 

(10 and 5 blocks per berth) for CMT and FMT respectively. The storage yard size at 

FMT was set smaller as transshipment containers are stored on barges. Each storage area 

at CMT has separate yard blocks dedicated to import, export, and transshipment 

containers. The capacity of each block was assumed to be 600 TEUs (6 rows x 5 tiers x 

20 bays). Length of each bay was assumed equal to 24 ft. (including 4 ft. of clearance 

space). GCs (un)load containers from ITVs from/to the assigned yard block based on the 

type of container (export, import, and transshipment). This particular terminal layout was 

chosen as it reduces the total distance traveled by ITVs and thus task completion time of 

ITVs, QCs, and GCs (Mohseni, 2011). Import containers were allocated to the blocks, 

situated closer to the gates. Transshipment containers were placed to the blocks, located 

closer to the quayside.  

Export containers were allocated on the side blocks of each storage area. Exports 

are transported by DTs, passing through the terminal gates. DTs deliver export containers 
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to assigned yard blocks, once the space is available (queuing occurred when the space 

was not available). Then GCs unload containers from DTs to the assigned yard blocks. 

Storage yard handling equipment. A group of rubber-tyred GCs is assigned to 

each storage area. Container stacking and retrieval times are assumed to follow a 

triangular distribution (Petering, 2009; Petering & Murty, 2008; Petering et al., 2009) 

with a nominal value of 20 moves/hour [triangular (2.5, 3.3, 3.0)], including reshuffling 

time required by a GC to retrieve a container.  

Optimal QCP determination. The size of each ITV gang and GC group, 

required to obtain the optimal QCP for the two terminal types (CMT and FMT) under 

normal operating conditions, was determined based on simulation runs, where the 

number of ITVs was changed from 1 to 40 and the number of GCs from 1 to 30, both 

with an increment of one. Note that optimal and nominal QCP values differ as the latter is 

estimated based on the assumption that QCs will handle containers continuously. The 

optimal QCP will be less than or equal to the nominal productivity, as it depends on the 

volume of containers and resources (ITVs and GCs) allocated to serve QCs (i.e., a QC 

may have to wait for an YT to become available to pick up a container). 

Disruptive event assumptions. Taking into account the growing international 

seaborne trade, it is important for port operations to exhibit resilience to potential man-

made and natural disrupting events (Barker, Pant, Baround, & Landers, 2011; Gajjar, 

Wakeman, & Saloum, 2008; Rose & Wei, 2010). The scope of this research included 

comparison of the two terminal configurations not only under normal (as discussed 

previously), but also under disruptive operating conditions.  
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In this study two disruptive events were assumed for each type of container 

terminal:  

• Disruption A: 33.3% of on-shore QCs and GCs are not available for 12 hours 

• Disruption B: 50.0% of on-shore QCs and GCs are not available for 24 hours 

Note that damaged QCs and GCs will be available to handle containers at full 

capacity immediately after the end of the each disruption. For each disruptive event the 

following assumptions were made as to their effect on the terminal operations: 

• Disruptions occur at the simulation time of zero (the beginning of each 

simulation run); 

• A disruptive event is assumed to affect the gate area, i.e., export containers will 

not be delivered to the terminal and import containers will not be picked up by DTs 

during the event; 

• ITVs are not damaged by the disruptive event. Even in the case where ITVs are 

potentially affected, they can be replaced (which may be difficult in the cases of damaged 

GCs or QCs) as terminal operators usually have more ITVs than required for daily 

operations (to account for downtime/maintenance); 

• In the cases of disruptive events, floating QCs will handle a portion of the 

import containers to compensate for the lost productivity at the quayside; 

• When import containers are handled by floating QCs, they will be placed on 

barges, and stored at the floating yard. Once the vessels depart the port these import 

containers can be unloaded by QCs or mobile harbor cranes; 

• The number of container barges is sufficient to handle the import and 

transshipment containers; 
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• Disruptive events were assumed to affect only landside operations. Disruptions, 

causing breakdowns of seaside operations (e.g., tsunami), will result in a complete 

terminal (both CMT and FMT) shutdown. Storage yard operations will be still possible, 

however, vessels cannot be moored and served; 

• Disruptive events have deterministic features (i.e., fixed duration and start time, 

the quantity of damaged equipment is known). Analysis of stochastic disruptive events 

can be conducted using developed simulation models as well, and is left for the future 

research. 

Computational Experiments 

The goal of the computational experiments was to evaluate productivity 

(makespan of vessel service and QC moves per hour) of the two terminal configurations 

under normal and disruptive operating conditions. Twenty-four scenarios (shown in 

Table 5) were developed to model both CMT and FMT under normal operating 

conditions considering different: a) container composition, b) number of on-shore QCs, 

and c) number of floating QCs at FMT. Sixteen additional scenarios (shown in Table 6) 

were developed to analyze performance of both terminal types under disruptive 

conditions with different: a) container composition, b) number of floating QCs at FMT, 

and c) quantity of damaged equipment. Completion time of all vessel handling (i.e., 

makespan) was selected as the simulation stopping criterion which may result in final 

states of the simulation models under disruptions that differ from the normal operating 

conditions (i.e., import containers may be stored at the floating yard, when vessel service 

is completed). However, under disruptive events vessel completion time is the critical 

component of terminal operations, and as such, the selected stopping criterion does not 
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limit the validity of the research and results, presented in this study. In most cases, the 

terminal operator will utilize available resources to move import containers, from the 

floating to the storage yard blocks, during low demand periods and once operations are 

back (or close) to normal.  

Ten replications for each scenario were used to estimate average values of the 

various performance measures (presented next). The number of replications was found to 

be sufficient, as the average standard deviation over all scenarios was less than 0.5% of 

the mean (Pritsker & Pegden, 1979). Simulation speeds averaged 170 min/sec. 

Depending on the models’ complexity, the simulation software package used in this study 

(i.e., FlexSim) allows for speeds up to 200,000 time units/sec. The fact that the model 

speeds are low indicates high complexity. 

Numerical data 

Normal operating conditions. Data for each one of the 24 scenarios used under 

normal operating conditions are shown in Table 5, where columns one through nine 

show: 1) scenario number, 2) terminal type, 3) ITV type, 4) percentage of transshipment 

containers, 5) total number of QCs, 6) number of on-shore QCs at each berth, 7) number 

of floating QCs at each berth, 8) number of ITVs for each gang, and 9) number of GCs at 

the storage area. For example, in the second scenario (S_2) 4 QCs (all located on-shore), 

10 YTs, and 15 GCs are assigned to serve each vessel at each berth of CMT. The total 

demand for each vessel is 12,000 TEUs with an equal split between import and export 

containers. The quantity of transshipment containers varies by scenario (Table 5, column 

4). 
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For instance, in the first scenario (S_1) 4,000 import and 2,000 transshipment 

containers are unloaded from each vessel, and 4,000 export and 2,000 transshipment 

containers are loaded to each vessel. In the second scenario (S_2) 3,000 import and 3,000 

transshipment containers are unloaded from each vessel, and 3,000 export and 3,000 

transshipment containers are loaded to each vessel. 

Table 5  
Scenario Analysis under Normal Operational Conditions 

Scenario 
(1) 

Terminal 
Type  
(2) 

ITV 
Type 

(3) 

Transshipment 
(% of total 

volume) 
(4) 

#QCs 
(5) 

#On-shore 
QCs 
(6) 

#Off-shore 
QCs 
(7) 

# ITV 
(8) 

# GCs 
(9) 

S_1 

CMT 

YT 

33.3 3 3 0 8 13 

S_2 50.0 4 4 0 10 15 

S_3 40.0 5 5 0 13 19 

S_4 33.3 
6 

6 0 15 21 

S_5 50.0 6 0 16 23 

S_6 

ALV 

33.3 3 3 0 7 11 

S_7 50.0 4 4 0 8 14 

S_8 40.0 5 5 0 10 17 

S_9 33.3 
6 

6 0 12 19 

S_10 50.0 6 0 13 20 

S_11 

FMT 

YT 

33.3 3 2 1 5 6 

S_12 25.0 
4 

3 1 6 12 

S_13 50.0 2 2 4 6 

S_14 40.0 
5 

3 2 6 12 

S_15 60.0 2 3 4 6 

S_16 33.3 
6 

4 2 8 14 

S_17 50.0 3 3 6 12 

S_18 

ALV 

33.3 3 2 1 3 4 

S_19 25.0 
4 

3 1 5 11 

S_20 50.0 2 2 3 4 

S_21 40.0 
5 

3 2 5 11 

S_22 60.0 2 3 3 4 

S_23 33.3 
6 

4 2 7 12 

S_24 50.0 3 3 5 11 

 

 

44 
 



Note that sizes of ITV gangs and GC groups, required to obtain the optimal QCP, 

were determined based on simulation runs. An example of the procedure for estimating 

the necessary numbers of ITVs and GCs is presented in Figure 11 for the case of 3 QCs at 

both CMT and FMT. Each graph provides the following information: a) number of GCs 

(x-axis), b) number of ITVs (y-axis), c) obtained QCP (z-axis), d) scenario number (top 

right edge), e) optimal ITV and GC combination (depicted in the top left edge and labeled 

by ).  

 
 

  
Figure 11. Procedure for Estimating Quantity of Required ITVs and GCs 

 

 
For instance, in the first scenario 8 YTs and 13 GCs provided the optimal       

QCP = 32.66 moves per hour at CMT with 3 on-shore QCs (see S_1). Similar analysis 

was conducted for each scenario (see Table 5). It was found that on average CMT 

required 2.61 YTs per QC, 2.11 ALVs per QC, 3.89 GCs per QC for models with YT 

deployment, and 3.44 GCs per QC for models with ALV deployment. As for FMT, 2.05 
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YTs per QC, 1.63 ALVs per QC, 3.58 GCs per QC for models with YT deployment, and 

3.00 GCs per QC for models with ALV deployment were required to obtain the optimal 

QCP. Thus, on average under normal operating conditions FMT required 21.4% less 

YTs, 22.7% less ALVs, 8.0% less GCs for models with YT deployment, and 12.9% less 

GCs for models with ALV deployment (savings are presented per QC). 

Disruptive operating conditions. Scenarios, used for analysis of CMT and FMT 

productivity under disruptive scenarios, are presented in Table 6, where columns one 

through nine show: 1) scenario number, 2) terminal type, 3) ITV type, 4) disruption, 5) 

percentage of transshipment containers, 6) number of operational on-shore QCs at each 

berth, 7) number of operational off-shore QCs at each berth, 8) number of ITVs for each 

gang, and 9) number of GCs at the storage area. Scenarios labeled as “No Disruption” 

(e.g., S_1*, S_2*, S_7*, etc.) are identical to the ones used for modeling normal 

operating conditions (see Table 5, scenarios S_4, S_5, and S_9, respectively). Note that 

Table 6 presents the quantity of equipment, operational without breakdowns. For 

example, in the third scenario (S_3*) 4 on-shore QCs (2 QCs are damaged and become 

available after 12 hrs), zero off-shore QCs, 15 YTs, and 14 GCs (7 GCs are damaged and 

become available after 12 hrs) are assigned to serve a vessel at each berth. The total 

demand for each vessel is 12,000 TEUs with an equal split between import and export 

containers as with normal conditions. The quantity of transshipment containers varies by 

scenario (Table 6, column 5).  
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For instance, in the first scenario (S_1*) 4,000 import and 2,000 transshipment 

containers are unloaded from each vessel, and 4,000 export and 2,000 transshipment 

containers are loaded to each vessel. In the second scenario (S_2*) 3,000 import and 

3,000 transshipment containers are unloaded from each vessel, and 3,000 export and 

3,000 transshipment containers are loaded to each vessel. Next the analysis of simulation 

results is presented. 

 

Table 6 
Scenario Analysis under Disruptive Operational Conditions 

Scenario 
(1) 

Terminal 
Type 

(2) 

ITV 
Type 

(3) 

Disruption 
(4) 

Transshipment 
(% of total 

volume) 
(5) 

#On-shore 
QCs 
(6) 

#Off-shore 
QCs 
(7) 

# 
ITV 
(8) 

# 
GCs 
(9) 

S_1* 

CMT 

YT 

No Disruption 33.3 6 0 15 21 

S_2* No Disruption 50.0 6 0 16 23 

S_3* A 33.3 4 0 15 14 

S_4* A 50.0 4 0 16 15 

S_5* B 33.3 3 0 15 10 

S_6* B 50 3 0 16 11 

S_7* 

ALV 

No Disruption 33.3 6 0 12 19 

S_8* No Disruption 50 6 0 13 20 

S_9* A 33.3 4 0 12 12 

S_10* A 50 4 0 13 13 

S_11* B 33.3 3 0 12 9 

S_12* B 50 3 0 13 10 

S_13* 

FMT 

YT 

No Disruption 33.3 4 2 8 14 

S_14* No Disruption 50 3 3 6 12 

S_15* A 33.3 2 2 8 10 

S_16* A 50 1 3 6 8 

S_17* B 33.3 1 2 8 7 

S_18* B 50 0 3 6 6 

S_19* 

ALV 

No Disruption 33.3 4 2 7 12 

S_20* No Disruption 50 3 3 5 11 

S_21* A 33.3 2 2 7 8 

S_22* A 50 1 3 5 7 

S_23* B 33.3 1 2 7 6 

S_24* B 50 0 3 5 5 
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Makespan analysis. The vessel service time makespan was chosen as the first 

performance measure to compare CMT and FMT operations under normal and disruptive 

conditions. 

Normal operating conditions. Figure 12 presents the vessel service time 

makespan under normal operating conditions for all 24 scenarios. The x-axis label has 

three components: a) scenario, b) number of on-shore and off-shore QCs, and c) 

percentage of transshipment containers. For example, in the upper left graph of Figure 12 

the first bar shows the makespan (122.5 hrs.) at CMT with YT deployment, where 3 on-

shore and zero off-shore QCs serve each vessel, where transshipment containers are equal 

to 33.3% of the total demand (scenario S_1).  

 
 

 

 
Figure 12. Makespan under Normal Operational Conditions by Terminal Type, ITV 

Configuration, and Transshipment Volumes 
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FMT provided faster vessel service for all scenarios and on average, FMT 

makespan savings comprised 7.6 hrs. (or 9.5%) for YT deployment models and 0.5 hrs. 

(or 0.6%) for ALV deployment models. ALV deployment models outperformed YT 

deployment models in terms of makespan. However, FMT makespan savings were not 

substantial for cases when ALVs were employed as ITVs. The latter can be explained by 

the fact that ALVs are more productive than YTs, and were able to provide more efficient 

container handling at both CMT and FMT under normal operating conditions. FMT 

configuration also provided faster vessel service (than CMT) with less equipment for 

scenarios with higher transshipment volumes (see S_13, S_15, S_20, and S_22). 

Disruptive operating conditions. Several researchers quantified resilience of 

MCTs based on the difference in terminal productivity (e.g., vessel service time 

makespan) before and after disruptive events (Barker et al., 2011; Gajjar et al., 2008; 

Rose & Wei, 2010). In this study vessel service completion makespan was selected as the 

key performance measure to assess effects of the disruptive events. Figure 13 presents the 

vessel service time makespan for all 24 scenarios. The x-axis label has two components: 

a) ITV type, and b) percentage of transshipments. For example, YT-33.3% refers to the 

simulation model with YT deployment and 33.3% of all TEUs handled being 

transshipment containers.  

ALV deployment models outperformed YT deployment models in terms of 

makespan. For all scenarios CMT was affected more by the disruptive events (i.e., higher 

makespan). CMT YT deployment models were the most vulnerable to disruptive events 

with a makespan increase, as compared to normal operating conditions, averaging 10.6 

hrs. (or 17.3%) and 19.1 hrs. (or 31.2%) for disruptions A and B respectively. CMT ALV 
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deployment models were less affected by the disruptions with a makespan increase, as 

compared to normal operating conditions, averaging 7.1 hrs. (or 13.4%) and 13.7 hrs. (or 

26.0%) for disruptions A and B respectively. FMT YT and ALV deployment models 

resulted in similar makespan increase (as compared to normal operating conditions), 

averaging 5.8 hrs. (or 10.8%) and 12.5 hrs. (or 23.4%) for disruptions A and B 

respectively. The latter results may be explained by the fewer number of ITVs and GCs 

used at the FMT model in scenarios with ALV deployment. For both disruptions (A and 

B) the FMT with YT deployment model provided substantially higher makespan savings 

when compared to ALV deployment, while scenarios with lower transshipment 

percentages showed smaller improvements. 

 

 

 
Figure 13. Makespan under Normal & Disruptive Operational Conditions by Terminal 

Type, ITV Configuration, and Transshipment Volumes 
 
 
QCP analysis. QCP (on- and off-shore combined) was selected as the second 

performance measure of CMT and FMT operations under normal and disruptive 

conditions. QCP is important to terminal operators as their agreements with liner 

shipping companies usually contain a clause on container handling rates. 
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Normal operating conditions. Figure 14 shows QCP (moves per hour by QC) for 

all 24 scenarios, under normal operating conditions at both terminals. Labels on the x-

axis show: a) scenario, b) number of on- and off-shore QC available at each berth, and c) 

percentage of transshipment containers assigned to each vessel. For instance, in the upper 

left graph of Figure 14 the first bar presents QCP (32.7 moves/hour) at CMT with YT 

deployment, where 3 on-shore and zero off-shore QCs serve each vessel with 33.3% of 

transshipment containers (scenario S_1). On average, CMT provided QCP of 32.6 

moves/hour for YT deployment models and 37.9 moves/hour for ALV deployment 

models. As for FMT, the average QCP was 35.9 moves/hour and 38.2 moves/hour for YT 

and ALV deployment models respectively. 

 
 

 

 
Figure 14. QCP under Normal Operational Conditions by Terminal Type, ITV 

Configuration, and Transshipment Volumes 
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Disruptive operating conditions. Figure 15 presents QCP (moves per hour by 

QC) for all 24 scenarios, under disruptive operating conditions at both terminals. Labels 

on the x-axis show: a) scenario, b) number of on- and off-shore QC available at each 

berth, and c) percentage of transshipment containers assigned to each vessel. For 

example, in the upper left graph of Figure 15 the first bar denotes QCP (32.6 moves/hour) 

at CMT with YT deployment, where 6 on-shore and zero off-shore QCs serve each vessel 

with 33.3% of transshipment containers (scenario S_1*).  

 

 

 

 
Figure 15. QCP under Normal & Disruptive Operational Conditions by Terminal Type, 

ITV Configuration, and Transshipment Volumes 
 

 

FMT exhibits significantly higher QCP for the cases, where YTs are employed. 

The same trend does not apply to ALV deployment models, when similar QCPs were 
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obtained at CMT and FMT. This can be explained by the fact that ALVs are more 

productive than YTs, and were able to provide more efficient container handling at both 

CMT and FMT under normal and disruptive conditions. 

Storage of import containers at the floating yard. Another performance 

measure, quantified by this study, was the volume of import containers unloaded to 

feeder barges and stored at the floating yard during the disruptive event. The amount of 

imports, stored on barges at the floating yard, was recorded at each simulation run and 

average values are presented in Figure 16. Labels on the x-axis show: a) scenario, b) ITV 

type, and c) percentage of transshipments. On average 49.0% more import containers 

were placed on barges under disruption B as compared to A. This can be expected as on-

shore QCs are out of service for a longer time period during the former disruptive event, 

utilization of floating QCs for handling imports increases. Approximately 12% less 

import containers were stored at the floating yard for ALV deployment models as 

compared to YT deployment models, since more containers could be processed by QCs 

and GCs (ALVs do not have to wait for the container to be (un)loaded). Note that the 

strategy of storing imports at the floating yard was crucial for improving FMT 

productivity, as otherwise idling time of floating QCs along with makespan would 

substantially increase. 
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Figure 16. Import Containers Stored on Barges during Disruptions 

 

Economic analysis. A 20-year cost analysis for CMT and FMT was based on the 

estimation of initial investments and operational costs for both systems. Investment costs 

included site development costs (e.g., clean and grub, civil site works, wharf 

construction, site electrical, yard lightening, gate site work, gate facility, maintenance and 

administration buildings, etc.) and equipment costs (i.e., on-shore QCs, off-shore QCs, 

ITVs, GCs, crane barges, and container barges). Site development costs for two terminal 

configurations were computed using guidelines, provided by Wilbur Smith Associates 

(2001). Equipment costs were calculated using brochures, released by manufacturers 

(Shanghai Zhenhua Heavy Industry Co., CNBM International Engineering Co., Kalmar 

Industries, etc.). Operational costs covered maintenance, insurance, QC gangs, ITV 

gangs, GC gangs, and push boat operators (Pielage et al., 2008). Note that investment and 

operational costs vary from terminal to terminal.  

The amount of necessary equipment, estimated by simulation models, was used as 

input for calculating associated costs (see Table 5). Results of the economic analysis are 

presented for 24 considered scenarios (only normal operating conditions) in Figure 17. 

The total costs were estimated per berth of CMT or FMT for a given quantity of QCs. For 
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instance, the blue line with abbreviation CMT_YT(33.3) at the top left graph of Figure 17 

indicates that the total expenses (including investment and operational costs) for CMT 

with YT deployment and 33.3% of transshipment comprise $454.3 million at the end of 

the considered time horizon (i.e., at year 20). 

Results of the economic analysis indicate that ALV deployment models have a 

higher capital investment but lower operational costs than YT deployment models. Pay 

back periods for ALV deployment models didn’t exceed 2 years, assuming 80% QC 

utilization (7008 operational hours/year) for both FMT and CMT. CMT with YT 

deployment was found to be the most expensive alternative for all scenarios. FMT site 

development costs were lower than CMT site development costs (mainly due to larger 

size of the storage yard), but higher equipment investment costs (mainly due to the cost 

of a crane barge at FMT, which could comprises 10-12 million USD). FMT average 

savings over 20-year horizon comprised $66.7 million for YT deployment models and 

$15.0 million for ALV deployment models. FMT operational costs were lower than CMT 

operational costs for cases with high percentage of transshipment containers. Advantages 

of FMT over CMT substantially decreased with the demand reduction for transshipment 

containers. 
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Figure 17. Economic Analysis 

 

 

Conclusions and Future Research Avenues 

As a part of this dissertation, the floaterm concept was evaluated as means to 

increase productivity of MCT operations and improve their resilience. Two simulation 
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models were developed to compare performance of a conventional marine container 

terminal to one that has adopted the floaterm concept under normal and disrupted 

operating conditions. From the analysis significant savings in the makespan of vessel 

completion time were observed under both operating conditions for FMT as compared to 

CMT. Benefits of the floaterm concept increased with transshipment volumes. The latter 

observation should be expected as the main purpose of the floaterm concept is to relieve 

landside operations from handling of transshipments containers, while at the same time 

act as a buffer storage area for import containers, when disruptive events limit the 

(un)loading capacity of on-shore QCs. Research outcomes indicated that FMT 

demonstrated substantial cost and vessel service makespan savings for scenarios with YT 

deployment. Although FMT with ALV deployment did not significantly outperform 

CMT in terms of vessel service makespan, for the majority of cases it yielded significant 

cost savings. 

Even though simulation, as a modeling tool, offers a number of advantages, the 

models developed herein inherit a number of limitations common amongst marine 

container terminal simulation models found in the literature. These limitations include: a) 

capturing ITV interference (Petering et al., 2009); b) implementing optimal ITV 

deployment strategies, c) accounting for terminal congestion, and d) modeling different 

storage yard strategies and areas for hazmat, overweight, oversized, and refrigerator 

containers. These drawbacks can be addressed as part of future research, and do not 

reduce the validity of the research outcomes, presented herein. Addressing these 

limitations will most likely increase the estimated benefits of the floaterm concept under 

normal and disruptive operating conditions. 
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4. BERTH ALLOCATION AND SCHEDULING AT DEDICATED MARINE 

CONTAINER TERMINALS WITH EXCESSIVE DEMAND 

Introduction 

This chapter proposes and evaluates a new contractual agreement between 

dedicated and multi-user terminal operators for improving productivity of the former 

marine terminal, which does not have enough capacity for service of its vessels. The 

contractual agreement allows a dedicated (or private) container terminal (DCT) to divert 

vessels to a multi-user (or public) container terminal (MUT). The problem is formulated 

as a non-linear mixed integer program, and a Memetic Algorithm is proposed as the 

solution algorithm. The objective of the suggested model is to determine vessel 

assignment (calling at DCT) at both DCT and MUT, while minimizing handling and 

delayed departure vessel costs for the DCT operator. 

Problem Description 

The problem, addressed in this study, is an extension of the model, proposed by 

Imai et al. (2008), where vessels with excessive waiting times were diverted from a 

multi-user terminal to an external terminal. Unlike the study by Imai et al. (2008), where 

decision on vessel diversion was based on the vessel waiting time, the berth scheduling 

policy proposed herein diverts vessels based on a more generalized cost function (that 

can include the vessel waiting time). Furthermore, the proposed berth scheduling policy 

imposes a service time window (TW) constraint for each diverted vessel. These TW 

constraints are adopted to better portray real world operations, where it is highly unlikely, 

that a terminal operator will accept a vessel from another terminal at any time, as it may 
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result in service disruption of its customers. Thus, it is more likely that the two terminals 

will enter an agreement similar to the one described next. 

Contractual agreement description. This study considers a marine port with 

two container terminals: DCT and MUT. The former serves vessels from a particular 

liner shipping company, while the latter from various liner shipping companies1. The 

DCT operator has a contractual agreement and can divert vessels to MUT. Since MUT 

also provides service to vessels of other companies, diverted vessels (from DCT) can 

only be handled during particular TWs (see Figure 18A). For each TW, the MUT 

operator can offer various handling rates. Vessel handling charges at MUT are 

proportional to the handling rate (i.e., higher price for higher productivity; the latter is 

usually measured in TEUs/hr. (un)loaded from/to the vessel). The DCT operator is able 

to request one of the available handling rates. The latter option allows the DCT operator 

to weigh different alternatives of delayed departure costs, if a vessel is served at its 

facility vs. handling costs (and reduced or no delayed departure costs) if a vessel is served 

at MUT. Note that the MUT operator will not alter its berth schedule to better 

accommodate the diverted demand (i.e., delay start of service of other vessels or divert 

resources from other vessels/berths to increase handling rates during a TW). It is assumed 

that both terminals have discrete berth layouts, and that one vessel can be served at each 

berth at any given time.  

Note that vessel handling time at DCT varies by its berth assignment (see 

Beirwirth & Meisel, 2010, 2015; Theofanis et al., 2009 for an excellent description of the 

“preferred berth”, vessel service time, location of containers at the storage yard and QC 

1 These assumptions do not limit the generality of the proposed model and can be relaxed as 
needed (e.g., DCT serves vessels from multiple liner shipping companies) 
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allocation/scheduling). Next the concept of vessel service at MUT during TWs is 

described in more detail. 

 

 

 
Note 𝑠𝑡𝑡 and 𝑓𝑡𝑡 – start and end of TW, 𝑅𝑅𝐷𝑣 – requested departure time of vessel 𝑣 

Figure 18. Suggested Berthing Policy 
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Service at MUT.  If a diverted vessel can be served within a TW at MUT there 

are two possible scenarios for service completion (see Figure 18B cases 1 and 2 

respectively):  

1. Vessel service is completed before the requested departure time, and the total 

service cost is equal to the handling cost and premium (negative cost)2 due to early vessel 

departure, and 

2. Vessel service is completed after the requested departure time, and the total 

service cost is equal to the handling cost plus a penalty3 due to late vessel departure.  

If vessel service is completed on time, no penalties/premiums are imposed. It is 

assumed that a vessel cannot be diverted for service (see case 3 in Figure 18B), if service 

cannot be completed by the end of the TW under the highest available handling rate. Note 

that the same waiting and delayed/early departure costs are applied to vessels served at 

DCT. 

Mathematical Formulation 

The berth scheduling policy, described in previous section, is formulated as a non-

linear mixed integer mathematical model (from now on referred to as BSDM). Next the 

basic notations, used throughout this chapter, are presented, followed by the 

mathematical formulation of BSDM. Additional notations will be defined throughout this 

chapter as needed. 

 

 

2 These assumptions do not limit the generality of the proposed model and can be relaxed as 
needed (e.g., DCT serves vessels from multiple liner shipping companies) 
 

3 Premiums and penalties refer to the DCT operator costs 
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Nomenclature 
Sets 
𝑉 Set of vessels requesting service at DCT 
𝐵 Set of berths 
𝑇 Set of available TWs at MUT 
𝑅𝑅𝑡, 𝑡 ∈ 𝑇 Set of available handling rates of TW 𝑡 ∈ 𝑇 at MUT 
 
Decision variables 

𝑥𝑣𝑏 , 𝑣 ∈ 𝑉, 𝑏 ∈ 𝐵 =1 if vessel v is served at berth b and zero otherwise (at 
DCT) 

𝑑𝑣𝑡, 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 =1 if vessel v is diverted for service at MUT during TW t 
and zero otherwise 

𝑦𝑦𝑝𝑠,𝑝, 𝑠 ∈ 𝑉,𝑝 ≠ 𝑠 =1 if vessel s is served at the same berth as vessel p as its 
immediate successor and zero otherwise (at DCT) 

𝑓𝑣, 𝑣 ∈ 𝑉 =1 if vessel v is served as the first vessel at the assigned 
berth and zero otherwise (at DCT) 

𝑙𝑣, 𝑣 ∈ 𝑉 =1 if vessel v is served as the last vessel at the assigned 
berth and zero otherwise (at DCT) 

 
Auxiliary variables 
𝑡𝑣, 𝑣 ∈ 𝑉 start time of service for vessel v (at either terminal) 
𝐿𝐷𝑣, 𝑣 ∈ 𝑉 hours of late departure for vessel v 
𝐸𝐷𝑣 , 𝑣 ∈ 𝑉 hours of early departure for vessel v 
 
Parameters 
𝐴𝑣, 𝑣 ∈ 𝑉 arrival time of vessel v (hrs.) 
𝑁𝐶𝑣, 𝑣 ∈ 𝑉 number of containers (un)loaded from/to vessel v (TEUs) 
𝐷𝑣𝑏 , 𝑣 ∈ 𝑉, 𝑏 ∈ 𝐵 handling rate of vessel v at berth b at DCT (TEUs/hr.) 

𝑆𝑣𝑏 =
𝑁𝐶𝑣
𝐷𝑣𝑏

 , 𝑣 ∈ 𝑉, 𝑏 ∈ 𝐵 handling time of vessel v at berth b at DCT (hrs.) 

𝐻𝑣𝑡𝑟 , 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅𝑅𝑡 
handling time of vessel v during a TW t under handling rate 
𝑟 at MUT (hours) 

𝑅𝑅𝐷𝑣, 𝑣 ∈ 𝑉 requested departure time of vessel v (hrs.) 
ℎ𝑐𝑣, 𝑣 ∈ 𝑉 handling cost of vessel v at DCT (USD/hr.) 

ℎ𝑐𝑡𝑟 , 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅𝑅𝑡 
handling cost at MUT during a TW t under handling rate 𝑟 
(USD/TEU) 

𝑑𝑐𝑣, 𝑣 ∈ 𝑉 late departure penalty for vessel v (USD/hr.) 
𝑒𝑝𝑣, 𝑣 ∈ 𝑉 early departure premium for vessel v (USD/hr.) 
[𝑠𝑡𝑡; 𝑓𝑡𝑡] , 𝑡 ∈ 𝑇 start and end of a TW t 
𝑀 large positive number 
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BSDM: 

𝑚𝑖𝑛 [��(𝑁𝐶𝑣𝑑𝑣𝑡ℎ𝑐𝑡𝑟 )
𝑡∈𝑇𝑣∈𝑉

+ ��(𝑆𝑣𝑏𝑥𝑣𝑏ℎ𝑐𝑣)
𝑏∈𝐵𝑣∈𝑉

+ �(𝑑𝑐𝑣𝐿𝐷𝑣)
𝑣∈𝑉

−�(𝑒𝑝𝑣𝐸𝐷𝑣)
𝑣∈𝑉

] 
(1) 

 
Subject to:   
�𝑥𝑣𝑏 +  �𝑑𝑣𝑡 

𝑡∈𝑇𝑏∈𝐵

= 1 ∀𝑣 ∈ 𝑉 (2) 

𝑓𝑠 + � 𝑦𝑦𝑝𝑠
𝑝∈𝑉≠𝑠

+  �𝑑𝑠𝑡  
𝑡∈𝑇

= 1 ∀𝑠 ∈ 𝑉 (3) 

𝑙𝑝 + � 𝑦𝑦𝑝𝑠
𝑠∈𝑉≠𝑝

+  �𝑑𝑝𝑡 
𝑡∈𝑇

= 1 ∀𝑝 ∈ 𝑉 (4) 

𝑓𝑝 + 𝑓𝑠 + 𝑑𝑝𝑡 + 𝑑𝑠𝑡 ≤ 3 − 𝑥𝑝𝑏 − 𝑥𝑠𝑏 ∀𝑝, 𝑠 ∈ 𝑉, 𝑝 ≠ 𝑠, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (5) 
𝑙𝑝 + 𝑙𝑠 + 𝑑𝑝𝑡 + 𝑑𝑠𝑡 ≤ 3 − 𝑥𝑝𝑏 − 𝑥𝑠𝑏 ∀𝑝, 𝑠 ∈ 𝑉,𝑝 ≠ 𝑠, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (6) 
𝑦𝑦𝑝𝑠 − 1 ≤ 𝑥𝑝𝑏 + 𝑑𝑝𝑡 − 𝑥𝑠𝑏 − 𝑑𝑠𝑡 ≤ 1 − 𝑦𝑦𝑝𝑠 ∀𝑝, 𝑠 ∈ 𝑉,𝑝 ≠ 𝑠, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (7) 
𝑡𝑣 ≥ 𝐴𝑣  ∀𝑣 ∈ 𝑉 (8) 
𝑡𝑣 ≥�(𝑠𝑡𝑡𝑑𝑣𝑡)

𝑡∈𝑇

 ∀𝑣 ∈ 𝑉 (9) 

𝑓𝑡𝑡𝑑𝑣𝑡 ≤ 𝑡𝑣 + 𝐻𝑣𝑡𝑟  ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (10) 
𝑡𝑠 ≥ 𝑡𝑝 + ��𝑆𝑝𝑏𝑥𝑝𝑏�

𝑏∈𝐵

− 𝑀�1 − 𝑦𝑦𝑝𝑠� ∀𝑝, 𝑠 ∈ 𝑉,𝑝 ≠ 𝑠 (11) 

𝐿𝐷𝑣 ≥ 𝑡𝑣 + �(𝑆𝑣𝑏𝑥𝑣𝑏)
𝑏∈𝐵

− 𝑅𝑅𝐷𝑣 −𝑀(1 −�𝑥𝑣𝑏) 
𝑏∈𝐵

∀𝑣 ∈ 𝑉 (12) 

𝐿𝐷𝑣 ≥ 𝑡𝑣 + �(𝐻𝑣𝑡𝑟  𝑑𝑣𝑡)
𝑡∈𝑇

− 𝑅𝑅𝐷𝑣 −𝑀(1 −�𝑑𝑣𝑡) 
𝑡∈𝑇

∀𝑣 ∈ 𝑉 (13) 

𝐿𝐷𝑣 ≥ 0 ∀𝑣 ∈ 𝑉 (14) 
𝐸𝐷𝑣 = 𝑚𝑎𝑥 (0;  𝑅𝑅𝐷𝑣 − [𝑡𝑣 + �(𝑆𝑣𝑏𝑥𝑣𝑏)

𝑏∈𝐵

] −𝑀(1 −�𝑥𝑣𝑏) 
𝑏∈𝐵

) ∀𝑣 ∈ 𝑉 (15) 

𝐸𝐷𝑣 = 𝑚𝑎𝑥 (0;  𝑅𝑅𝐷𝑣 − [𝑡𝑣 + �(𝐻𝑣𝑡𝑟  𝑑𝑣𝑡)
𝑡∈𝑇

] −𝑀(1 −�𝑑𝑣𝑡) 
𝑡∈𝑇

) ∀𝑣 ∈ 𝑉 (16) 

𝑑𝑣𝑡 ≤ 𝑃𝑆𝑣𝑡 ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (17) 
𝑥𝑣𝑏 ∈ {0,1} 𝑣 ∈ 𝑉, 𝑏 ∈ 𝐵 (18) 
𝑑𝑣𝑡 ∈ {0,1} 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (19) 
𝑃𝑆𝑣𝑡 ∈ {0,1} 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (20) 
𝑦𝑦𝑝𝑠 ∈ {0,1} 𝑝, 𝑠 ∈ 𝑉 (21) 
𝑓𝑣, 𝑙𝑣 ∈ {0,1} 𝑣 ∈ 𝑉 (22) 
𝐿𝐷𝑣 , 𝑡𝑣,𝐸𝐷𝑣 ,𝑁𝐶𝑣,𝐴𝑣,𝐷𝑣𝑏 , 𝑆𝑣𝑏 ,𝐻𝑣𝑡𝑟 ,𝑅𝑅𝐷𝑣, ℎ𝑐𝑣,ℎ𝑐𝑡𝑟 ,𝑑𝑐𝑣, 𝑒𝑝𝑣, 𝑠𝑡𝑡,𝑓𝑡𝑡 ∈ 𝑅𝑅+∀𝑣

∈ 𝑉, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅𝑅𝑡 
(23) 
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The objective function (1) minimizes the total handling cost of vessels calling at 

DCT. The first component of the objective function estimates the handling costs for 

vessels calling at DCT and served at DCT. The second component of the objective 

function estimates the handling costs for vessels calling at DCT and served at MUT. The 

third and fourth components estimate penalties/premiums due to late/early departures of 

vessels calling at DCT. Constraints set (2) ensure that a vessel is served once either at 

DCT or MUT. Constraints set (3) indicate that a vessel can either be served first or after 

another vessel at DCT, or it can be diverted for service at MUT. Constraints set (4) 

ensure that a vessel can either be served last or before another vessel at DCT, or it can be 

diverted for service at MUT. Constraints set (5) indicate that only one vessel can be 

served first at each berth at DCT. Constraints set (6) ensure that only one vessel can be 

served last at each berth at DCT. Constraints set (7) indicate that a vessel can be served 

after another, if they are both assigned to the same berth at DCT. Constraints set (8) 

ensure that handling of a vessel starts only after its arrival. Constraints set (9) indicate 

that handling of a diverted vessel cannot start before the beginning of a TW. Constraints 

set (10) ensure that service of a diverted vessel, assigned during a TW under selected 

handling rate, should be completed before the end of the TW. Constraints set (11) 

compute service times of vessels at DCT. Constraints sets (12) through (14) estimate late 

departures, while constraints sets (15) and (16) estimate early departures. Constraints set 

(17) ensure that a vessel will not be diverted to a TW at MUT, if it cannot be served there 

during that TW length. Constraints sets (18) through (23) define the decision variables 

and parameters. Next a heuristic used to select handling rates for each available TW at 

MUT for a diverted vessel is presented. 
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Data preprocessing. The optimal handling time of each vessel 𝒗 ∈ 𝑉 calling at 

DCT at each available TW at MUT can be estimated by preprocessing based on finish 

times and service costs under each available service rate 𝑟 ∈ 𝑅𝑅𝑡 and TW 𝑡 ∈ 𝑇. Let 

𝑉𝐹𝑇𝑣𝑡𝑟  and 𝑂𝐶𝐷𝑉𝑣𝑡𝑟  denote the finish time and service cost (handling and delayed/early 

departure) of vessel 𝑣 ∈ 𝑉, served at MUT during time window 𝑡 ∈ 𝑇 under handling rate 

𝑟 ∈ 𝑅𝑅𝑡. The optimal handling rate for each vessel at each available TW (𝑆𝑅𝑅𝑣𝑡) will be the 

one with the minimum service cost (𝑂𝐶𝐷𝑉𝑣𝑡𝑟 ). During preprocessing the parameter 𝑃𝑆𝑣𝑡 

is calculated. The pseudocode of the vessel handling rate estimation (VHRE) is presented 

next. 

VHRE Pseudocode 
Set 𝑉𝐹𝑇𝑣𝑡𝑟 = 0;𝑂𝐶𝐷𝑉𝑣𝑡𝑟 = 0; 𝑆𝑅𝑅𝑣𝑡𝑟 = 0;𝑃𝑆(𝑣, 𝑡) = 0; ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇,  𝑟 ∈ 𝑅𝑅𝑡 
for ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇,  𝑟 ∈ 𝑅𝑅𝑡 set 

𝑉𝐹𝑇𝑣𝑡𝑟 = 𝑚𝑎𝑥(𝑠𝑡𝑡;𝐴𝑣) + �
𝑁𝐶𝑣
𝑟
� 

𝑂𝐶𝐷𝑉𝑣𝑡𝑟 = (𝑁𝐶𝑣 × ℎ𝑐𝑡𝑟) + 𝑚𝑎𝑥(𝑉𝐹𝑇𝑣𝑡𝑟 − 𝑅𝑅𝐷𝑣; 0) × 𝑑𝑐𝑣 − 𝑚𝑎𝑥(𝑅𝑅𝐷𝑣 − 𝑉𝐹𝑇𝑣𝑡𝑟 ; 0) × 𝑒𝑝𝑣  
𝑆𝑅𝑅𝑣𝑡𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑟
(𝑂𝐶𝐷𝑉𝑣𝑡𝑟 )  

if  𝑉𝐹𝑇𝑣𝑡𝑟 ≤ 𝑓𝑡𝑡 
  𝑃𝑆(𝑣, 𝑡) = 1 

else 
𝑃𝑆(𝑣, 𝑡) = 0 

 end 
end  
end  

Solution Approach 

Even simple discrete berth scheduling problem formulations are difficult to solve 

(Carlo et al., 2013) as they belong to the NP problems class (formulations can usually be 

reduced to the machine scheduling problem). In this study a Memetic Algorithm (MA) 

was developed to obtain good quality solutions within acceptable computational time. 

MAs belong to the group of Evolutionary Algorithms (EAs), and are widely used for 

solving complex problems in different fields (Dasgupta & Michalewicz, 1997; Eiben & 
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Smith, 2003; Golias et al., 2010; Sivanandam & Deepa, 2008, etc.). While EAs construct 

individuals using stochastic operators, MAs also employ local search heuristics and 

(usually) provide higher quality solutions and faster convergence (Eiben & Smith, 2003; 

Golias, 2007). The main steps of the proposed MA are summarized in Figure 19 and 

explained in detail throughout this section.  

In the first two steps, the chromosome and population are initialized. Then, the 

algorithm enters the main loop. In step 3, function SelectParents(Pop(gen)) identifies 

parents in the population (i.e., variable Parents(gen)), while in step 4, function 

MAoperation(Parents(gen)) applies stochastic operators and local search heuristics 

(LSHs) to produce the new offspring (i.e., variable (Offsping(gen)). The first group of 

LSHs is directed to improve the DCT vessel schedule (will be referred to as 𝑉𝐷𝐶𝑇) after 

applying the stochastic operator. The second group of LSHs is directed to improve the 

MUT vessel schedule (will be referred to as 𝑉𝑀𝑈𝑇) after applying the stochastic operator. 

In step 5, function Evaluate(Offsping(gen)) calculates fitness values (i.e., variable 

Fitness(gen)) for the offspring, and in step 6, function Select(Fitness(gen)) selects 

individuals, based on their fitness, to become parents in the next generation (step 7). MA 

exits the loop, when a termination criterion is satisfied. The algorithm was coded in 

MATLAB 7.11.0 (R2010b)4. Next the components of the developed MA are described in 

more detail. 

 

4 http://www.mathworks.com/  
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Figure 19. Solution Approach 
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Chromosome representation. An integer chromosome representation was 

adopted to represent a solution (i.e., individual or vessel assignment at both DCT and 

MUT). Note that terms of solution, individual, and vessel assignment will be used 

interchangeably throughout this chapter as they have the same meaning. Each 

chromosome is composed of genes (Eiben & Smith, 2003). Genes are represented by 

vessels, assigned for service at DCT and MUT. Position of a gene along the chromosome 

will be referred to as locus (Eiben & Smith, 2003). The value of each gene (i.e., vessel 

number or ID) will be referred to as allele (Eiben & Smith, 2003). An example of a 

chromosome for a small problem instance is shown in Figure 20, where six vessels 

request service at DCT, which has two berths. In this example MUT has six available 

TWs dedicated to serve the diverted vessels. It can be noticed that vessel “6” is diverted 

for service at MUT during the third TW. As for DCT, vessels “2”, “4”, and “5” are 

served (in that order) at berth “1”, while vessels “1” and “3” are served (in that order) at 

berth “2”.  

 

 

 
Figure 20. Chromosome Representation Example 
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Population initialization. During initialization all vessels are assigned for service 

at DCT based on a First Come First Served with Earliest Finish Time Policy 

(FCFS_EFTP). If denote 𝐵𝐴𝑏 as the time when berth 𝑏 ∈ 𝐵 becomes available; 𝐵𝑃𝑏 as 

the berthing position at berth 𝑏 ∈ 𝐵; 𝑆𝑇𝑣 and 𝐹𝑇𝑣 as the start and finish service times of 

vessel 𝑣 ∈ 𝑉, FCFS_EFTP can be described with the following pseudocode. 

FCFS_EFTP Pseudocode 
Set 𝐵𝐴𝑏 = 0,𝐵𝑃𝑏 =⊘∀𝑏 ∈ 𝐵, 𝑆𝑇𝑣 = 0,𝐹𝑇𝑣 = 0 ∀𝑣 ∈ 𝑉 
Sort vessels by their arrival times such that 𝐴𝑣−1 ≤ 𝐴𝑣 ∀𝑣 ∈ 𝑉 
for ∀𝑣 ∈ 𝑉  

𝑏 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑏

(𝐵𝐴𝑏) 

𝐵𝑃𝑏 ≔ 𝐵𝑃𝑏 ∪ {𝑣} 
𝑆𝑇𝑣 = 𝑚𝑎𝑥(𝐴𝑣 ,𝐵𝐴𝑏) 
𝐹𝑇𝑣 = 𝑆𝑇𝑣 + 𝑆𝑣𝑏 
𝐵𝐴𝑏 = 𝐹𝑇𝑣 
𝑥𝑣𝑏 = 1 

end  

Other heuristics or exact methods can be applied to initialize the chromosomes 

but are left as future research. Note that randomly initialized populations are not 

advisable, as they will contain a significant number of infeasible and low-quality 

individuals (Eiben & Smith, 2003; Sivanandam & Deepa, 2008). In this study various 

sizes of the initial population (PopSize) have been evaluated and details are presented in 

the numerical experiments section. The population size remains constant and equal to the 

initial population size throughout the MA operations. 
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Parent selection. Parent selection determines individuals from the current 

population that will be allowed to produce offspring via the MA operations at a given 

generation. The proposed MA applies a deterministic parent selection scheme (i.e., all 

survived offspring become parents) as this strategy is widely used in Evolutionary 

Programming and Genetic Algorithms (Eiben & Smith, 2003).  

MA operations. Crossover and mutation are common EA/MA operators. 

However, for the chromosome structure, proposed in this study, typical crossover 

operators (e.g., one-point crossover, two-point crossover) will result in complex 

infeasibility, as each offspring may inherit combinations of parent genes, representing the 

same vessels. Such individuals may be also repaired. However, computational efforts will 

be much more significant as compared to repairing infeasibility, caused by mutation (as 

described in the next subsection). Several types of mutation operations have been 

presented in the literature (Eiben & Smith, 2003), and in this study swap mutation was 

applied due to its efficiency (Golias, 2007; Golias et al., 2010). Note that other mutation 

operators (e.g., insert, invert, scramble, etc.) were replaced by more efficient LSHs 

(described later in this section). The Swap Mutation Operator (SMO) randomly swaps 

genes along the chromosome, representing both groups of vessels served at DCT and 

MUT respectively (an example of swap mutation is shown in Figure 21 where vessels 5 

and 6 swap terminals). The number of genes, swapped in each chromosome, is defined by 

the mutation rate (MutRate). Various MutRate values were tested during the MA 

evaluation and are presented in the numerical experiments section5.  

Before any further MA operations are performed, the Elitist strategy is employed 

to store the best individual and use as a parent in the next generation.  

5 Note that in this study MutRate is defined as the number of genes swapped in each chromosome. 
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Figure 21. Swap Mutation Operation Example 

 

 
Feasibility during the EA evolution. A crucial feature of the MA design is to 

ensure feasibility of individuals at each generation. In the problem studied herein an 

individual may become infeasible, if service of a vessel, diverted to MUT, cannot be 

completed even under the highest available handling rate (at the assigned TW). In the 

proposed MA VHRE identifies vessels that cannot be diverted and passes this 

information to SMO (i.e., genes identified by VHRE will not be selected as swapping 

candidates). Another common strategy used to remedy infeasibility is penalty assignment 

(Eiben & Smith, 2003). However, low penalties may increase the probability of infeasible 

individuals’ survival, and high penalties can negatively affect computational time, when 

probabilistic offspring selection schemes are applied (similar to the offspring selection 

scheme used in the proposed MA, described in later in this section). The strategy of 

penalizing infeasible individuals was used only throughout refinement of the MUT vessel 

schedule to ensure that a vessel, assigned to a TW with sufficient duration to finish 

service will not be shifted to another smaller TW.  
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Figure 22 presents an example of another type of infeasible individuals that may 

be generated by SMO, where zero alleles between non-zero alleles are obtained. This 

type of infeasibility will cause bias, when estimating fitness function values of such 

individuals (loci colored in yellow). To address this issue the proposed MA includes an 

operator that repairs disrupted individuals (see Figure 22) by shifting zeros at each berth 

of the DCT and removes positional bias (see loci colored in green). 

 

 

 
Figure 22. Infeasible Individual Repairing Example 

 

 
Local search heuristics (LSHs). In this section three LSHs, developed to 

improve vessel assignment during MA operations, are described. Additionally, an 

optimization model is presented that is used to schedule vessels at MUT after SWO has 

been performed. Performance of the heuristics and the optimization model, in terms of 

computational time and solution quality, are evaluated in the numerical experiments 

section. As previously discussed, the heuristics and optimization model substitute genetic 

operations and are applied after the swap mutation operations (see Figure 23). 
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Dedicated container terminal local search heuristics. 

Single Berth Dispatch Heuristic. The first DCT heuristic (from now referred as a 

Single Berth Dispatch Heuristic or SBDH) belongs to the family of dispatch heuristics 

for the unrelated machine scheduling problem (Pinedo, 2008). Once jobs are assigned to 

each machine, dispatch heuristics are applied to refine the initial schedule based on 

attributes of each job (e.g., assigning jobs of the same family in a batch requires a 

machine set up only for the first job, which will reduce the total set up costs). SBDH 

estimates the vessel service order at each berth (without considering vessels at the other 

berths) and is based on two parameters: arrival (𝐴𝑣 ∀𝑣 ∈ 𝑉𝐷𝐶𝑇) and handling times 

(𝑆𝑣𝑏 = 𝑁𝐶𝑣
𝐷𝑏

 ∀𝑣 ∈ 𝑉𝐷𝐶𝑇, 𝑏 ∈ 𝐵). Depending on the average arrival and handling times, 

SBDH sorts DCT vessels either based on their arrival or handling time, or based on the 

sum of their arrival and handling times.  

 

 

 
Figure 23. Local Search Heuristics 
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In case of a static berth allocation problem, where all vessels are already at the 

port in the beginning of the planning horizon, vessels are sorted only based on their 

handling times. Note that hours of early and late departures (i.e., components of the 

objective function) are dependent on the departure time request of each vessel: 𝐿𝐷𝑣 =

𝑓(𝑅𝑅𝐷𝑣),𝐸𝐷𝑣 = 𝑓(𝑅𝑅𝐷𝑣). In this study the requested departure time of each vessel was 

assigned based on the vessels’ arrival and handling times (i.e., 𝑅𝑅𝐷𝑣 = 𝑓(𝐴𝑣, 𝑆𝑣𝑏) ∀𝑣 ∈

𝑉𝐷𝐶𝑇, 𝑏 ∈ 𝐵). Hence, both SBDH attributes directly account for the problem objective. 

The steps of SBDH can be described by the following pseudocode. 

SBDH Pseudocode 
for ∀𝑏 ∈ 𝐵 refine the vessel service order 

if 𝑇𝐼𝑏 < 𝑚𝑖𝑛 (𝐴𝑣) & [𝑚𝑒𝑎𝑛 (𝐴𝑣) −𝑚𝑖𝑛 (𝐴𝑣)] > 𝑚𝑒𝑎𝑛 (𝑆𝑣𝑏) + 𝑇𝐻  
Sort vessels based on 𝐴𝑣 
elseif  𝑇𝐼𝑏 < 𝑚𝑖𝑛 (𝐴𝑣) & [𝑚𝑒𝑎𝑛 (𝐴𝑣) −𝑚𝑖𝑛 (𝐴𝑣)] + 𝑇𝐻 < 𝑚𝑒𝑎𝑛 (𝑆𝑣𝑏)  
Sort vessels based on 𝑆𝑣𝑏 
elseif 𝑇𝐼𝑏 < 𝑚𝑖𝑛 (𝐴𝑣) & |[𝑚𝑒𝑎𝑛 (𝐴𝑣) −𝑚𝑖𝑛(𝐴𝑣)] −𝑚𝑒𝑎𝑛 (𝑆𝑣𝑏)| ≤ 𝑇𝐻  
Sort vessels based on 𝐴𝑣 + 𝑆𝑣𝑏 
elseif  𝑇𝐼𝑏 ≥ 𝑚𝑎𝑥 (𝐴𝑣)  
Sort vessels based on 𝑆𝑣𝑏 
end  

end  
Note 𝑇𝐼𝑏 – time when the berth 𝑏 ∈ 𝐵 becomes idle at the first time in the planning 
horizon (in this study 𝑇𝐼𝑏 = 0 ∀𝑏 ∈ 𝐵); 
𝑇𝐻 – pre-specified threshold value. 

A sensitivity analysis for the threshold value 𝑇𝐻 was conducted and presented in 

the numerical experiments section. 

First Come First Served Heuristic. FCFS_EFTP, presented earlier in this 

section, is also used to improve vessel assignment at DCT. The only difference is that it is 

applied only to the vessels assigned for service at DCT (𝑣 ∈ 𝑉𝐷𝐶𝑇). To differentiate it 

will be referred to as FCFS. 
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Epochal EA. The third heuristic (referred to as Epochal EA or EEA) employs an 

EA at each DCT berth (from now on referred to as Single Berth EA or SBEA) to improve 

vessel assignment. Chromosome representation for SBEA is depicted in Figure 24A, 

where six vessels “2”, “5”, “4”, “7”, “9”, and “8” (in that order) request service at berth 

𝑏 ∈ 𝐵 of DCT. SBEA has features similar to MA: a) deterministic parent selection, b) 

swap mutation for the EA operations (see Figure 24B), and c) offspring selection 

(discussed later in this section).  

 

 

 
Figure 24. SBEA Features 

 

 
The main drawback of using an additional EA within MA is an increase in time 

complexity. To address this issue SBEA is applied periodically and only after a pre-

specified number of generations (a.k.a. epoch6), and only on a group of individuals 

within the population, not the whole population.  

6 The notion of “epoch” is widely used in Island EA models (Eiben & Smith, 2003). 
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Multi-user terminal vessel assignment. A mathematical model was developed to 

assign diverted vessels to the available TWs at MUT during each generation. The model 

formulation (which is a relaxation of BSDM and referred to as P1) is as follows.  

P1: 𝑚𝑖𝑛 [∑ ∑ (𝑁𝐶𝑣𝑑𝑣𝑡ℎ𝑐𝑡𝑟 )𝑡∈𝑇𝑣∈𝑉𝑀𝑈𝑇 + ∑ (𝑑𝑐𝑣𝐿𝐷𝑣)𝑣∈𝑉𝑀𝑈𝑇 − ∑ (𝑒𝑝𝑣𝐸𝐷𝑣)𝑣∈𝑉𝑀𝑈𝑇 ] (24) 

Subject to:   

(8), (9), (10), (13), (14), (16), (17), (19), (20), (23)  

�𝑑𝑣𝑡 
𝑡∈𝑇

= 1 ∀𝑣 ∈ 𝑉𝑀𝑈𝑇 (25) 

� 𝑑𝑣𝑡 
𝑣∈𝑉𝑀𝑈𝑇

≤ 1 ∀𝑡 ∈ 𝑇 (26) 

The objective function (24) minimizes the overall service cost of diverted vessels, 

i.e., handling costs, penalties due to late vessel departures, and premiums due to early 

vessel departures. Constraints set (25) ensure that each diverted vessel is served only 

once. Constraints set (26) indicate that no more than one diverted vessel can be served at 

each TW. P1 includes one decision variable (𝑑𝑣𝑡 ∀𝑣 ∈ 𝑉𝑀𝑈𝑇 , 𝑡 ∈ 𝑇), several auxiliary 

variables (i.e., 𝑡𝑣, 𝐿𝐷𝑣,𝐸𝐷𝑣  ∀𝑣 ∈ 𝑉𝑀𝑈𝑇) and non-linear constraints set (16). Note that the 

total service costs of all potentially diverted vessels during each TW under the optimal 

handling rate are estimated by VHRE. Hence, P1 can be reduced to a less complex 

problem, where service costs at MUT for a given set of diverted vessels are already 

known. Thus, P1 can be reformulated as follows. 

P2: min ∑ ∑ 𝑐𝑣𝑡𝑑𝑣𝑡𝑡∈𝑇𝑣∈𝑉𝑀𝑈𝑇  (27) 

Subject to:   

(19), (25), (26) 

where 𝑐𝑣𝑡  is the total cost of vessel service during a TW at MUT, estimated by VHRE. 
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Even though P2 is unimodular (Rader, 2010) the solution time complexity 

depends on the software used. In this study three solution approaches were evaluated to 

solve P2: a) A binary formulation using MATLAB’s optimization solver (this solution 

approach will be referred to as OVABP7), b) A linear relaxation of P2 (i.e., relax 

integrality constraints) using GAMS8 optimization solver (this solution approach will be 

referred to as OVALP), and c) A heuristic solution algorithm (this solution approach will 

be referred to as IVA9). GAMS was used as a solver for the second approach due to the 

inability of MATLAB linear optimization solver to produce an integer solution. Next 

IVA is described in more detail. 

IVA heuristic. Let 𝑉𝑀𝑈𝑇 = {1,2, … , 𝑣} and 𝑇 = {1,2, … , 𝑡} be the set of vessels, 

diverted for service at MUT, and available TWs respectively. Also let tv be a TW, to 

which vessel v is assigned for service. For each diverted vessel at MUT the total cost 

(𝑐𝑣𝑡) is calculated for each TW, associated with service of a given vessel. If a vessel 

cannot finish service at TW, then that cost is set equal to a large positive number M. Let 

𝐶𝑣𝑡 = 𝑚𝑖𝑛𝑡∈𝑇(𝑐𝑣𝑡) ∀𝑣 ∈ 𝑉𝑀𝑈𝑇 be the minimum service cost of vessel v during TW t. 

Priority of a vessel to occupy a TW is defined as the sum of additional costs, endured by 

the vessel, if it is not served at the TW with the minimum cost: 𝑝𝑣 = ∑ (𝑐𝑣𝑡 −𝑡∈𝑇

𝐶𝑣𝑡) ∀𝑣 ∈ 𝑉𝑀𝑈𝑇.  

Once these inputs are calculated, IVA selects the vessel with the highest priority 

and assigns it to the TW with the minimum cost. That vessel and the TW, it occupies, are 

7 Abbreviation OVA denotes “optimal vessel assignment”, BP and LP stand for binary and linear 
programming respectively 

 
8 http://www.gams.com/ 
 
9 Abbreviation IVA denotes “improved vessel assignment” 
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removed from the list of vessels (VMUT) and available TWs (T) respectively, and priorities 

for the remainder of the vessels are recalculated. The procedure continues until each 

vessel has been assigned to a TW. The IVA pseudocode is presented next. 

IVA Pseudocode 
while  𝑉𝑀𝑈𝑇 ≠⊘ 

𝐶𝑣𝑡 = 𝑚𝑖𝑛
𝑡∈𝑇

(𝑐𝑣𝑡) ∀𝑣 ∈ 𝑉𝑀𝑈𝑇 

𝑝𝑣 = �(𝑐𝑣𝑡 − 𝐶𝑣𝑡) ∀𝑣 ∈ 𝑉𝑀𝑈𝑇
𝑡∈𝑇

 

𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣

(𝑝𝑣) 

𝑡𝑣 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑡

(𝑐𝑣𝑡) 

𝑉𝑀𝑈𝑇 ≔ 𝑉𝑀𝑈𝑇 − {𝑣} 
𝑇 ≔ 𝑇 − {𝑡} 

end 

The time complexity of the three proposed solution approaches for the P2 and 

optimality gap analysis for IVA will be performed during numerical experiments. 

Fitness function. For EAs/MAs the fitness function is usually associated with the 

objective function (Sivanandam & Deepa, 2008). In the proposed MA the fitness function 

value was set equal to the objective function value without applying any scaling 

mechanisms. 

Offspring selection. Offspring selection at a given generation of a MA is an 

important part of its design. It allows choosing the strongest individuals that will be able 

to adapt to the environment and reproduce competent parents, while at the same time 

allowing for a small number of weak individuals to move on (Sivanandam & Deepa, 

2008). In this study a selection procedure similar to the Roulette Wheel Selection or RWS 

(Goldberg, 1989) was developed.  
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Probabilistic selection mechanisms (like RWS) do not necessarily keep the best 

individuals and do not necessarily exclude the worst individuals, resulting in a genetic 

drift (Eiben & Smith, 2003). To address the first issue (i.e., keep the best individuals) the 

Elitist Strategy is applied. To address the second issue (i.e., excluding the worst 

individuals and avoiding genetic drift) a Modified RWS (MRWS) is designed and 

outlined next.  

MRWS Pseudocode 
Step 1: Calculate normalized fitness values for each individual 
Step 2: Sort mutated individuals by normalized fitness values in the ascending order 
Step 3: Estimate cumulative fitness values 
Step 4: Flip the coin and get the value between 0 and SelectPar (“rotate the wheel”) 
Step 5: Identify the individual with cumulative fitness value, close to the one obtained 
from Step 4. Select this individual for the next generation 
Step 6: Repeat Steps 4 and 5 until the desired population size is reached 

The main difference between RWS and MRWS is that mutated individuals are 

sorted by normalized fitness values in the ascending order, and an additional parameter 

SelectPar (with values between 0 and 1) is introduced to define the “wheel’s rotation”. 

Depending on the search objectives SelectPar values may vary (high for exploration and 

low for exploitation). Based on preliminary MA runs SelectPar =0.20 was found to be 

efficient (i.e., demonstrated faster convergence and lower objective function values). 

Lower values of SelectPar are not recommended, as they may potentially result in 

premature convergence. MRWS was validated against the Tournament Selection 

mechanism, and provided better solution quality and faster convergence. 
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Stopping criterion. If the optimal objective function value or a lower bound is 

known a priori, the algorithm can be stopped once a specified optimality gap is reached. 

BSDM is NP-hard, and the optimal solution (or a strict lower bound) is not known in 

advance. In this study the algorithm was terminated, if no change in the objective 

function value occurred after a pre-specified number of generations (MaxNumGen of 

3000 generations) or the maximum number of generations is reached (LimitGen of 10000 

generations). 

Numerical Experiments 

This section presents numerical experiments that were performed to evaluate the 

proposed MA and to assess benefits from the suggested berthing policy. Numerical data 

used (shown in Table 7) were generated based on the available port operations literature 

(Ballis, Dimitriou & Paravantis, 2010; Carlo et al., 2013; Golias, 2007, etc.). Three vessel 

interarrival time (IAT) patterns of 2, 3, and 4 hours were considered to evaluate the 

proposed berth scheduling policy under high, medium, and low demand respectively.  

Vessel interarrival times were assumed to follow the exponential distribution. 

Based on the available literature (Trade Fact of the Week, 2014; TRP, 2014) and 

assuming a mix of vessel operations that include mooring, loading and discharge of 

containers, type of container (empty, loaded, size, reefer), re-stowing (on-board the vessel 

or via quay), the DCT handling cost was set equal to $650 per container. 
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Table 7  
Numerical Data 
Planning horizon 1 week 
Vessel interarrival patterns (exponential) 2, 3, and 4 hrs. 
Requested vessel departure [𝑅𝑅𝐷𝑣  ∀𝑣 ∈ 𝑉] Arrival time + Handling Time × 

[U(1.0-1.2)10, U(1.2-1.4), U(1.4-
1.6), U(1.6-1.8)] 

Containers assigned to each vessel [𝑁𝐶𝑣 ∀𝑣 ∈ 𝑉] U(750-3000) TEUs 
Handling rate at DCT preferred berth [𝐷𝑣𝑏 ∀𝑣 ∈
𝑉, 𝑏 ∈ 𝐵] 

125 TEUs/hr. 

DCT number of berths  4, 6, 8 
MUT number of available TWs 0, 5, 10, 15, 20 
TW duration 10÷20 hrs. 
MUT available handling rates [𝑟 ∈ 𝑅𝑅𝑡] [75; 125; 150; 250] TEUs/hr. 
Charge at MUT [ℎ𝑐𝑡𝑟𝑡 ∀𝑡 ∈ 𝑇, 𝑡 ∈ 𝑅𝑅𝑡] [750; 1000; 1200; 2000] USD/TEU 
Late departure penalty [𝑑𝑐𝑣 ∀𝑣 ∈ 𝑉] 7000 USD/hr.  
Early departure premium [𝑒𝑝𝑣 ∀𝑣 ∈ 𝑉] 5000 USD/hr. (70% of the penalty) 

 

The DCT handling rate at the “preferred berth” was set equal to 125 TEUs/hr. 

(e.g., five QCs with average productivity of 25 TEUs/hrs. are assigned to each berth). 

The “preferred berth” was identified for each vessel based on FCFS_EFTP (assuming at 

this stage that all berths are preferred berths). The handling time of vessels at the other 

berths was generated in relation to the berth with the minimum handling time. Handling 

charges at MUT, as previously discussed, were dependent on the handling rate requested, 

and were assumed to be higher than the handling charges at DCT (Ballis et al., 2010). 

The range of MUT handling rates was selected based on the data, published in the Journal 

of Commerce for 2012-13 (Journal of Commerce, 2014). It was assumed that the MUT 

operator can provide 4 different handling rates for each TW. The number of available 

TWs varied from zero (the DCT operator cannot divert any vessels to MUT) to 20. 

Hourly late/early departure penalties/premiums were also based on the available literature 

10 U(a,b) refers to uniformly distributed pseudorandom numbers between a and b 
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(Zampelli et al., 2013). Various vessel departure requests were considered and were 

dependent on the vessels’ arrival time.  

Using the data presented in Table 7 two subsets of datasets were developed. The 

first subset of datasets was used for the evaluation of the berth scheduling policy and 

consisted of 180 instances of all possible combinations of vessel arrivals, vessel departure 

requests, DCT berth configurations, and TW availability shown in Table 7 (i.e., [3 vessel 

arrivals] × [4 vessel departure requests] × [3 DCT berth configurations] × [5 TW 

availabilities at MUT]). The second subset of datasets was used for the evaluation of MA 

and LSHs and sensitivity analysis of their parameters. Each instance of the second subset 

will be described in the latter sections. The rational of using two different groups of 

datasets is to avoid bias in the evaluation of the berth scheduling policy (i.e., evaluate the 

berthing policy with datasets that were used to select the MA parameters and LSHs). All 

numerical experiments were conducted on a Dell T1500 Intel(T) Core i5 Processor with 

1.96 GB of RAM. 

MA parameter tuning. Population size (PopSize) and mutation rate (MutRate) 

were selected based on preliminary MA runs. Four instances were used during this 

analysis. Each instance had the following common characteristics: a) 4 DCT berths, b) 

high demand (IAT = 2 hrs.), and c) 20 TWs. Instances differed by the requested vessel 

departure times: a) Instance 1: 𝑅𝑅𝐷𝑣 = 𝐴𝑣 + S𝑣𝑏 × 𝑈(1.0 − 1.2) – referred to as RD1, b) 

Instance 2: 𝑅𝑅𝐷𝑣 = 𝐴𝑣 + S𝑣𝑏 × 𝑈(1.2 − 1.4) – referred to as RD2, c) Instance 3: 𝑅𝑅𝐷𝑣 =

𝐴𝑣 + S𝑣𝑏 × 𝑈(1.4 − 1.6) – referred to as RD3, and d) Instance 4: 𝑅𝑅𝐷𝑣 = 𝐴𝑣 + S𝑣𝑏 ×

𝑈(1.6 − 1.8) – referred to as RD4.  
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Three different MutRate values (MutRate = {2, 4, 6}) were evaluated using MA 

with PopSize = 40, MaxNumGen = 3000, LimitGen = 10000, and SelectPar = 0.20. 

Similarly, five PopSize values were evaluated (PopSize = {20, 30, 40, 50, 60}) using MA 

with MutRate = 2, MaxNumGen = 3000, LimitGen = 10000, and SelectPar = 0.20. LSHs 

were not used during the MA parameter selection, as they will be implemented as 

auxiliary means of improving solution quality after applying SWO.  

Ten MA replications were performed for each instance, and the average objective 

function and computational time values are presented in Figures 25 and 26. These results 

indicate that PopSize of 30 and MutRate of 2 demonstrated the best trade-off between the 

solution quality and the computational time. 

 

 

 
Figure 25. Mutation Rate Sensitivity Analysis 
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Figure 26. Population Size Sensitivity Analysis 

 

Evaluation of LSHs at DCT 

SBDH sensitivity analysis. The main objective of SBDH sensitivity analysis was 

to determine the 𝑇𝐻 value. A total of seven 𝑇𝐻 values were evaluated: 𝑇𝐻 =

{0, 5, 10, 15, 20, 30, 40}. For each 𝑇𝐻 value 33 instances were developed with each 

instance having a different vessel IAT (2, 3, and 4 hours) and number of vessels served 

(ranging from 10 to 30 with an increment of two). For each instance 500 cases were 

generated with vessel demand varying uniformly between 750 and 3000 TEUs, and RD1 

as the requested departure time for each vessel. Since SBDH is a heuristic, five 

replications of SBDH for each case were performed, and the average objective function 

value (i.e., DCT vessel service costs) for each instance over 500 cases and five 

replications are reported in Table 8.  

It can be observed that increasing 𝑇𝐻 values (e.g., 𝑇𝐻 = 40) reduces the service 

cost for instances with frequent vessel arrivals (e.g., IAT = 2) and higher number of 

vessels. However, cost savings do not exceed ≈3% for instances with high demand, while 

no substantial difference in the objective function values was observed for instances with 

low demand. Thus, SBDH threshold value 𝑇𝐻 = 40 will be used in this study. As a 
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result of this analysis, it was found that TH value did not affect the computational time of 

MA-SBDH (i.e., MA that applies SBDH as LSH at DCT). 

 
 

Table 8  
SBDH Threshold Sensitivity Analysis 

  DCT Vessel Service Cost (million USD) 

  Vessels 

IAT TH 10 12 14 16 18 20 22 24 26 28 30 

2 

0 16.04 20.05 24.96 30.07 35.45 41.47 47.66 54.23 61.15 68.67 75.88 

5 15.93 19.85 24.66 29.73 34.98 41.00 47.12 53.64 60.76 68.40 75.71 

10 15.85 19.79 24.60 29.68 34.83 40.67 46.66 53.12 60.17 67.80 75.13 

15 15.84 19.79 24.60 29.66 34.79 40.59 46.52 52.83 59.74 67.21 74.44 

20 15.84 19.79 24.59 29.66 34.79 40.57 46.47 52.73 59.55 66.91 73.98 

30 15.84 19.79 24.59 29.66 34.79 40.57 46.46 52.69 59.48 66.79 73.77 

40 15.84 19.79 24.59 29.66 34.79 40.57 46.46 52.69 59.48 66.78 73.75 

3 

0 15.97 20.15 24.73 29.25 34.80 40.47 46.09 52.63 59.11 65.90 73.62 

5 15.76 19.90 24.45 29.02 34.63 40.37 46.00 52.61 59.10 65.88 73.62 

10 15.72 19.86 24.34 28.86 34.42 40.17 45.85 52.43 59.00 65.83 73.60 

15 15.71 19.84 24.29 28.76 34.24 39.95 45.63 52.22 58.83 65.71 73.51 

20 15.71 19.84 24.28 28.72 34.16 39.82 45.40 51.96 58.57 65.45 73.31 

30 15.71 19.84 24.27 28.69 34.11 39.73 45.22 51.68 58.15 64.95 72.71 

40 15.71 19.84 24.27 28.69 34.11 39.72 45.19 51.62 58.00 64.73 72.36 

4 

0 15.72 19.64 24.13 28.79 34.09 39.12 45.04 50.61 57.21 63.47 69.81 

5 15.53 19.51 23.98 28.73 34.03 39.09 45.04 50.60 57.21 63.47 69.81 

10 15.47 19.43 23.88 28.63 33.94 39.04 45.00 50.59 57.20 63.47 69.81 

15 15.46 19.40 23.81 28.52 33.79 38.96 44.93 50.54 57.19 63.44 69.80 

20 15.45 19.38 23.79 28.44 33.69 38.83 44.80 50.46 57.14 63.41 69.80 

30 15.45 19.37 23.76 28.36 33.57 38.65 44.54 50.18 56.87 63.19 69.67 

40 15.45 19.37 23.75 28.35 33.54 38.58 44.40 50.01 56.61 62.91 69.36 
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EEA sensitivity analysis. Two sensitivity analyses were conducted to select 

Epoch value for MA that applies EEA (from now on referred to as MA-EEA) and to 

determine SBEA population size PopSizeSBEA that provides high quality individuals 

within acceptable computational time. Four instances and the MA parameters, presented 

in the MA parameter tuning section, were used during these experiments with Epoch 

values of 30, 50, 100, 150, and 200. 

 For SBEA PopSizeSBEA = 10, MutRateSBEA = 2, MaxNumGenSBEA = 100, and 

SelectParSBEA = 0.20 were used. The quantity of individuals (𝑞 ∈ 𝑄), chosen for 

improvement by EEA, was uniformly distributed between 10% and 20% of the MA 

population. The average objective function and computational time values over ten 

replications of MA-EEA are presented in Figure 27. As expected, SBEA is used more 

often for refining DCT vessel assignment in cases with low Epoch values, which 

improves the objective function value at termination, but increases the computational 

time. The best trade-off between the objective function value and the computational time 

was obtained for Epoch = 100. Decreasing Epoch substantially increased the MA time 

complexity (e.g., increase by ≈7.9 min and 17.4 min on average for EEA with Epoch = 

50 and 30 respectively, as compared to EEA with Epoch = 100) without significant 

reduction in the objective function value. 
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Figure 27. Epoch Sensitivity Analysis 

 
 

The second sensitivity analysis evaluated performance of SBEA with 

MutRateSBEA = 2, MaxNumGenSBEA = 100, and SelectParSBEA = 0.20 for different 

PopSizeSBEA of 5, 10, 15, and 20, using the same parameters for MA-EEA as for the 

first sensitivity analysis. The average objective function and computational time values 

over 10 replications of MA-EEA are depicted in Figure 28. A PopSizeSBEA of 10 

demonstrated the best trade-off between the objective function value at termination and 

the computational time. Increasing population size increased time complexity of the 

algorithm (e.g., increase by ≈2.8 min and 5.9 min on average for SBEA with 

PopSizeSBEA of 15 and 20 respectively, as compared to SBEA with PopSizeSBEA of 10) 

without significant reduction in the total cost. Hence, PopSizeSBEA of 10 will be used for 

SBEA. 
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Figure 28.  SBEA Population Size Sensitivity Analysis 

 
 

LSH evaluation at MUT. A time complexity analysis was conducted for the 

three solution approaches (OVALP, OVABP, and IVA). Twenty instances with different 

TWs, ranging from 2 to 40 with an increment of two, were developed. For each instance 

500 cases were created with different number of containers per vessel, uniformly 

distributed between 750 and 3000 TEUs. It was assumed that the number of diverted 

vessels was equal to the number of available TWs (i.e., the worst complexity for the 

MUT scheduling that may occur during the MA evolution), and IAT was equal to 2 

hours. TW duration varied uniformly between 20 and 30 hours. The requested departure 

time RD1 was assumed for each vessel. The rest of parameters were adopted from Table 

7. Five replications of each solution approach were performed for each case to estimate 

the average computational time (objective function values did not change from 

replication to replication). Results of the time complexity analysis for OVALP, OVABP, 

and IVA are presented in Figure 29 for each one of the 20 instances (average values over 

500 cases and 5 replications for each instance).  

 

88 
 



IVA substantially outperformed OVALP and OVABP in terms of computational 

time (e.g., 0.006 sec vs. 0.265 sec vs. 1.010 sec respectively for TWs = 40). OVABP was 

more efficient than OVALP for scenarios with TWs < 20. This can be explained by 

OVALP requiring additional time for exchanging data between MATLAB and the 

external optimization solver (GAMS). However, when the number of available TWs at 

MUT exceeds 20, OVALP is recommended to determine the optimal MUT vessel 

assignment.  

 
  

 
Figure 29. MUT LSH Time Complexity Analysis 

 
 
IVA optimality gap was also estimated, and Figure 30 illustrates boxplots with 

optimality gap values for 500 cases of each instance. It can be observed that the 

optimality gap 𝛥 does not exceed 7% over all cases and instances. The maximum average 

optimality gap 𝛥 = 3.73% was observed for instance with 40 TWs. Based on IVA time 

complexity and optimality gap analysis, the heuristic was found to be applicable as the 

least time consuming with acceptable optimality gaps. 
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Figure 30. IVA Optimality Gap 

 
 

MA performance. The next step in the analysis was to evaluate performance of 

the proposed solution algorithm that replaces common mutation operations with LSHs. 

Three different combinations were compared following the naming convention: MA-

LSH-IVA (i.e., MA that applies LSH at DCT and IVA at MUT). The first combination 

(MA-SBDH-IVA) applied SBDH, the second FCFS and the third EEA to improve vessel 

scheduling at DCT after SWO. All three combinations used IVA to improve vessel 

scheduling at MUT after SWO (i.e., as the solution approach for P2). Note that OVABP 

is still applied after convergence to the best individual to ensure optimality of the final 

MUT vessel assignment. Four instances, used for the MA parameter tuning, were adopted 

during these experiments. Convergence patterns of the three MAs and the objective 

function values at termination (for the replications with the minimum total cost) are 

presented in Figure 31.  

MA-EEA-IVA outperforms the other two combinations in terms of the solution 

quality. Introduction of OVABP for the best individuals was crucial, as it provided cost 

reduction after termination for the majority of cases (a cost reduction is denoted by the 
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red circle at the last generation). The objective function value, obtained by MA-EEA-

IVA, was on average 2.8% and 8.2% lower as compared to MA-SBDH-IVA and MA-

FCFS-IVA respectively. However, MA-EEA-IVA computational time (16.3 minutes) 

was on average 31% and 51% higher as compared to MA-SBDH-IVA and MA-FCFS-

IVA respectively (Figure 32). Nevertheless, MA-EEA-IVA was selected as the solution 

algorithm for the evaluation of the berthing policy as it provided the lowest objective 

function value for all instances within acceptable computational time. 

 

 

 
Figure 31. Convergence Patterns of MA with Various DCT and MUT LSHs 
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Figure 32. Computational Time of MA with Various LSHs 

 
 

Berthing policy evaluation. Three performance measures were chosen to 

quantify benefits from the suggested berth scheduling policy: i) cost savings per TEU, ii) 

total savings over the planning horizon (i.e., 1 week), and iii) TW utilization (i.e., how 

many vessels were diverted to MUT). All 180 instances described in the beginning of this 

section were used as input data. Next findings for each one of the three performance 

measures are presented.   

Cost per TEU. Costs per TEU are presented in Figure 33, where the x-axis of 

each graph has two components: a) the number of available TWs at MUT, and b) arrival 

pattern of vessels. The upper right corner of each chart denotes the number of berths 

available at DCT.  For example, the utmost left group of bars at the top chart (see Figure 

33) indicates that if there are no available TWs at MUT (TWs = 0) during high demand 

period (IAT = 2 hrs.), and DCT has 4 berths, the DCT operator has to charge (in order to 

be profitable) the liner shipping company at least $856, $844, $832, and $821 for service 

of vessels, for requested departure times RD1, RD2, RD3, and RD4 respectively.  
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The latter finding was expected as the total service costs should decrease with less 

strict vessel departure requests. Cost per TEU reduced with increasing number of TWs 

for instances with frequent vessel arrivals (i.e., high demand period) and lower DCT 

capacity (e.g., DCT configuration with 4 berths). No substantial changes were observed 

during low demand periods (e.g., IAT = 4 hrs.) and high berth capacity at the DCT (e.g., 

8 berths). In certain instances costs per TEU were lower that the DCT handling cost of 

$650 (e.g., $622 for DCT with 6 berths IAT = 4 hrs., TWs=0÷20, and RD4). This can be 

explained by the fact that MA-EEA-IVA provided an efficient vessel assignment, when 

additional savings incurred due to early vessel departures. 

Total savings. Total savings were estimated as the difference in the objective 

function value for the case when all vessels were handled at DCT (i.e., TWs = 0), and the 

cases when a subset of vessels were diverted for service at MUT (i.e., TWs > 0). Results 

of the analysis are presented in Figure 34, where the x-axis of each graph has two 

components: a) the number of available TWs at MUT, and b) arrival pattern of vessels. 

The upper right corner of each chart denotes the number of berths available at DCT.  For 

example, the second from the left group of bars at the top chart (see Figure 34) indicates 

that for the case of five available TWs at MUT (TWs = 5), high demand period (IAT = 2 

hrs.), and 4 DCT berths, monetary benefits (for the DCT operator) from diverting vessels 

to MUT range from $1.25 to $1.57 million. Note that no significant savings were 

observed for low demand periods (e.g., IAT = 4 hrs.) and high DCT berth capacity (e.g., 

8 berths). 
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Figure 33. Cost per TEU by Number of TWs and IAT 
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Figure 34. Total Savings by Number of TWs and IAT 
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TW utilization at MUT. Another important step during evaluation of the berthing 

policy was comparing the amount of diverted vessels to the number of available TWs. 

Results of this analysis are presented in Figure 35, where the x-axis of each graph has 

two components: a) the number of available TWs at MUT, and b) arrival pattern of 

vessels. The upper right corner of each chart denotes the number of available berths at 

DCT. For example, the second from the left group of bars at the top chart (see Figure 35) 

indicates that for the case of 5 TWs, high demand period (IAT = 2 hrs.), and 4 DCT 

berths, all TWs (TW utilization = 5) will be utilized by DCT vessels.  

It can be noticed that TW utilization increases with more frequesnt vessel arrivals 

(i.e., high demand period) and lower DCT capacity (e.g., DCT configuration with 4 

berths). The number of diverted vessels decreases (as expected) during low demand 

periods (e.g., IAT = 4 hrs.) and high DCT berth capacity (e.g., 8 berths). In this study 

TWs were relatively tight (with duration varying between 10 hrs. and 20 hrs. only), since 

MUT was assumed to have frequent arrivals of its vessels. From the study results it can 

be anticipated that the number of diverted vessels should increase with TW duration, as 

the number of candidates for service at MUT will increase, and the diverted vessels will 

be able to request lower handling rates and still complete service within the allocated 

TW. Negotiating TW duration is left for the future research. 
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Figure 35. TW Utilization by Number of TWs and IAT 

 
 

Conclusions and Future Research Avenues 

In this paper a berth scheduling policy for marine container terminals with 

excessive demand was proposed, where vessels can be diverted for service to another 

terminal. A Memetic Algorithm that utilized two groups of local search heuristics was 

developed to solve the mathematical formulation, suggested to model the berthing policy. 
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The proposed policy showed greater savings for scenarios with higher demand and lower 

capacity at DCT. Savings of the DCT operator increased with the number of available 

TWs at MUT, while no substantial savings were observed for low demand periods and 

high capacity at DCT. The developed model can also be used as a tool to assist terminal 

operators in price setting/negotiating of container handling rates during high/medium 

demand periods. Future research could focus on: a) cost functions for penalties/premiums 

based on vessel size and load; b) vessel priorities; c) multiple vessel service per time 

window, d) adaptive mutation operators to improve solution quality and convergence 

rates; and e) vessel assignment heuristics during mutation. 
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5. FLEET DEPLOYMENT PROBLEM WITH VARIABLE SAILING SPEEDS 

AND PORT HANDLING TIMES 

Introduction 

Along with MCT operators liner shipping companies also aim to enhance 

efficiency of their operations. Many of liner shipping companies are slowing down their 

vessels. Such strategy leads to significant bunker consumption cost savings, which may 

comprise up to 75% of the total vessel operational costs (Ronen, 2011). Psaraftis and 

Kontovas (2013) outline two major alternatives of decreasing vessel sailing speed: a) 

building vessels with reduced horsepower engines (i.e., reduce the maximum possible 

vessel sailing speed), and b) slow steaming (i.e., a vessel sails at lower than the designed 

speed). The latter alternative is used more often in practice by liner shipping companies. 

“COSCO’s container arm decreased fuel spending by 18 percent in the first half of the 

year (2014) through slow sailing, according to the company’s first-half earnings 

statement” (Cargo Business, 2014). Maersk, the largest liner shipping company in the 

world, was even able to reduce their freight rates due to additional cost savings, achieved 

by slow steaming (Cargo Business, 2014). However, “off-schedule ships, particularly the 

mega-ships that are slow sailing to save costs, are also a factor…causing port congestion” 

(Cargo Business, 2014). Drewry Maritime Research indicated that “Asia-Europe trade 

was the least reliable during August-October (2014) with only 58 percent of ships 

arriving on-time”, which is considered as unacceptable for many shippers (Cargo 

Business, 2014). 

This chapter proposes a new collaborative agreement between a liner shipping 

company and marine container terminal operators, which can improve operations of both 
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players. According to this agreement, a liner shipping company negotiates handling rates 

with each terminal operator. Port handling charges increase, if faster service is requested. 

The fleet deployment problem studied herein was formulated as a mixed integer non-

linear programming model. The original formulation was linearized and solved 

efficiently using CPLEX. 

Overview of the Relevant Literature 

The problem of vessel routing and scheduling in liner shipping received a lot of 

attention from researchers and practitioners, especially during the last ten years. In 

general, decisions that have to be made by a liner shipping company can be divided in 

three levels (Meng, Wang, Andersson, & Thun, 2014): a) strategic, b) tactical, and c) 

operational. At the strategic level, a liner shipping company should make long-term 

decisions (e.g., fleet size and mix, alliance strategy, network design). As for the tactical 

level, a liner shipping company makes medium-term decisions (e.g., frequency 

determination, fleet deployment, speed optimization, schedule construction). At the 

operational level, a liner shipping company makes short-term decisions (e.g., cargo 

booking, cargo routing, vessel rescheduling, potential reject of cargo). In this dissertation 

the literature review is mostly focused on studies, considering tactical level problems 

with emphasis on variability/uncertainty of vessel sailing speeds and/or port times.    

Fagerholt (2001) formulated a vessel scheduling problem as a multi-ship pick-up 

and delivery problem with soft TWs (m-PDPSTW), when TW violations were allowed 

and could be controlled. The objective minimized the total transportation and 

inconvenience costs. A set partitioning based algorithm was proposed to solve the 

problem. Numerical experiments indicated that the suggested algorithm was substantially 
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affected with increasing problem size. Chuang, Lin, Kung, and Lin (2010) developed a 

fuzzy Evolutionary Algorithm (EA) to solve the containership routing problem, taking 

into account uncertainty in sailing and port times. The objective aimed to maximize the 

total profit, estimated as difference between the total revenue and the total route 

expenses. Fuzzy logic was applied for modeling uncertainty in sailing and port times. 

Numerical experiments demonstrated efficiency of the proposed methodology and the 

solution approach. Fagerholt, Laporte, and Norstad (2010) studied the sailing speed 

optimization problem, aiming to minimize the total fuel consumption. Possible vessel 

arrival times were discretized, and then a directed acyclic graph was constructed. The 

resulting problem was solved as the shortest path problem. Computational experiments 

demonstrated that the suggested methodology provided substantial fuel consumption 

savings.  

Golias et al. (2010a) presented a new discrete dynamic berth scheduling problem 

(DDBSP), taking into account estimated arrival time to the next port of call for each 

vessel. The objective of the model minimized the total vessel service time, delayed 

departures, fuel consumption, and vessel emissions. The authors applied an EA to solve 

the problem. Gelareh and Meng (2010) developed a mixed integer non-linear 

programming model for a short-term fleet deployment problem of liner shipping 

operations. The objective of the program aimed to minimize the total transportation costs, 

taking into account TW constraints. The original problem was reformulated as a linear 

program and then solved using CPLEX. Numerical experiments were performed for 

transpacific, transatlantic, and Asia-Europe liner shipping routes. It was mentioned that 

CPLEX was not able to provide a solution for large size instances. Du et al. (2011) 
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presented a bi-objective model for a continuous DBSP (CDBSP), where the first 

objective minimized the total vessel fuel consumption, while the second one minimized 

the total vessel late departures. A second order cone programming (SOCP) technique was 

applied to the objective, minimizing the total vessel fuel consumption. A heuristic was 

developed to solve the problem. Computational examples indicated that the strategy of 

introducing variable vessel arrivals led to lower emissions, comparing to the constant 

vessel arrival case.  

Norstad et al. (2011) suggested a mixed integer non-linear formulation for the 

tramp vessel routing and scheduling problem with speed optimization. The objective of 

the model aimed to maximize the total profit from operating the vessel fleet. A set of 

heuristics were developed to solve the problem. Computational examples indicated that 

higher discretization level could improve the objective function values, but affected the 

computational time. Meng and Wang (2011) developed a model to determine service 

frequency, fleet deployment plan, and sailing speed for a long-haul liner service route. 

The objective of a non-linear mixed-integer program minimized the total daily operating 

costs. A linearized problem was solved using Branch-and-Bound (B&B) algorithm. 

Numerical experiments were conducted for SCX liner service route.  

Qi and Song (2012) considered the problem of the optimal vessel schedule design 

in the liner shipping route, taking into account the impact of port time uncertainty. The 

objective aimed to minimize the total expected fuel consumption and penalties due to 

vessel delays. Simulation-based stochastic approximation methods were employed to 

solve the problem. The port time was assumed to follow the uniform distribution. Six 

scenarios with different levels of port time uncertainty (ranging from U[0;0] to U[0;20] 
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hrs.) were considered. Computational examples indicated that increasing uncertainty in 

port times caused greater fuel consumption for a given route. Wang and Meng (2012a) 

presented a liner shipping route schedule model, capturing uncertainty in sailing and port 

times. The objective of an integer non-linear program minimized the total transportation 

cost, including weekly vessel operating cost and bunker cost. The port time uncertainty 

was modeled using predetermined probability distribution (uniform), while the sailing 

time contingency was estimated based on realization of a port time and an additional 

parameter, denoting hedge against contingency (proportional to the length of a voyage 

leg). The original program was reformulated as a linear problem and solved using 

CPLEX. A computational example was provided for Asia-Europe-Oceania shipping 

network. It was found that sailing and port time contingency could result in deployment 

of more vessels on a given route. Lower speeds were suggested for scenarios with high 

unit bunker costs. 

Wang and Meng (2012b) formulated the vessel sailing speed optimization 

problem, aiming to minimize the total transportation cost. The original problem was 

linearized using an outer-approximation method and solved using CPLEX. Numerical 

experiments, conducted for Asia-Europe-Oceania network, indicated efficiency of the 

proposed methodology and the solution algorithm. Wang and Meng (2012c) studied a 

liner shipping route scheduling problem, taking into account possible uncertainties in port 

waiting time (due to congestion) and container handling time. The objective of a mixed 

integer non-linear program minimized the total transportation cost, including three 

components: 1) weekly vessel operating cost, 2) bunker cost, and 3) late handling cost. 

Uncertainties in port waiting and handling times were modeled using the truncated 
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normal distributions. The original problem was linearized and solved using CPLEX. 

Sample average approximation (SAA) was used to address stochastic port waiting and 

service times. Numerical experiments were conducted for Asia-America-Europe liner 

shipping route. It was found that a liner shipping company could improve robustness of 

its schedule by adding more vessels. Potential errors, caused by the linear approximation 

were discussed as well. 

Yao, Ng, and Lee (2012) developed a bunker fuel management strategy for liner 

shipping companies, aiming to minimize the total bunker fuel costs and the revenue loss 

due to weight of the bunker fuel. Fuel prices and discounts varied from port to port. The 

original model was linearized using a piecewise approximation method and solved using 

CPLEX. Numerical experiments were provided for Asia-Europe-Express service and 

Atlantic-Pacific-Express service. Brouer, Dirksen, Pisinger, Plum, and Vaaben (2013) 

studied a Vessel Schedule Recovery Problem (VSRP), taking into account disruptions 

that might occur in liner shipping due to inclement weather conditions, port closures, and 

other contingencies. The problem was formulated as a mixed integer linear program. The 

following disruptive scenarios were modeled: a) vessel delays due to weather conditions, 

b) a port closure, c)  a berth prioritization, when two vessels arrive simultaneously to the 

port and are scheduled at the same berth, and d) an expected port congestion. The 

following countermeasures were suggested to mitigate effects of the uncertainty: a) port 

omitting, b) increasing vessel speed, c) swap ports of call, and d) accept vessel delays. 

Generated problem instances were solved using CPLEX. It was found that the suggested 

methodology could yield up to 58% if the total cost savings. 
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Wang, Meng, and Liu (2013a) formulated the model for containership scheduling 

with a transit-time-sensitive demand, maximizing the total profit from the given vessel 

route. The problem was solved using conic quadratic programming and B&B. 

Computational examples demonstrated that the elastic demand affected the number of 

deployed vessels, sailing speed, and computational efficiency. Wang, Alharbi, and Davy 

(2014) presented a mixed integer non-linear optimization model for the liner shipping 

route schedule, taking into account that each port had a set of TWs. The objective 

minimized the total transportation costs. The original problem was linearized and solved 

using CPLEX. Numerical experiments indicated that increasing duration of port TWs 

decreased the total cost, while increasing value of goods required higher vessel sailing 

speed. 

Problem Description 

Liner shipping route. In this study a liner shipping route with 𝐼 = {1, … ,𝑛} ports 

of call was considered (see Figure 36). Each port is assumed to be visited once11 and the 

sequence of visited ports (i.e., port rotation) is already known. The latter decision is made 

by a liner shipping company at the strategic level (Meng et al., 2014). A vessel sails 

between two subsequent ports 𝑖 and 𝑖 + 1 along leg 𝑖. The liner shipping company 

provides a weekly service at each port of call. The terminal operator at each port sets a 

specific arrival TW [𝑡𝑤𝑖
𝑒 – the earliest start at port 𝑖, 𝑡𝑤𝑖

𝑙– the latest start at port 𝑖], during 

which a vessel should arrive at the port (can be up to 1-3 days depending on the port).  

 

11 This assumption does not limit generality of the suggested methodology and can be relaxed as 
needed, i.e., some ports can be visited more than once 

105 
 

                                                 



Weekly demand (TEUs) at each port is known while the quantity of containers 

transported by alliance partners is excluded from the total weekly demand, as this 

decision is usually made by the liner shipping company at the strategic level (Meng et al., 

2014). 

 

 

 
Figure 36. Illustration of a Shipping Route 

 
 

Service policy agreement description.  Terminal operators have various 

contractual agreements with the liner shipping company, according to which each 

terminal operator offers a set of handling rates 𝑆𝑖 = {1, … , 𝑠𝑖} ∀𝑖 ∈ 𝐼 to the liner shipping 

company. If faster service is requested, the port handling time for a given vessel 

decreases, but port handling charges, imposed to the liner shipping company, increase. 

Note that reduced handling time at a port may result in bunker consumption cost savings, 

since a vessel can sail at a lower speed to the next port of call.  
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Vessel arrivals. The following scenarios of vessel arrivals will be modeled in this 

study: 

a. If a vessel arrives within a set arrival TW, no penalties will be imposed to the 

liner shipping company (see Figure 37A).  

b. In certain cases a vessel, departing from port 𝑖, may not be able to arrive at the 

next port 𝑖 + 1 before the earliest start 𝑡𝑤𝑖+1
𝑒 , even when sailing at the lowest 

possible speed 𝑣𝑚𝑖𝑛 (see Figure 37B). In such cases we assume that the vessel 

will wait at a dedicated area at port 𝑖 to ensure arrival within the allocated TW 

at port 𝑖 + 112. The port waiting time 𝑤𝑡𝑖 can be estimated as 𝑤𝑡𝑖 = 𝑡𝑤𝑖+1
𝑒 −

𝑙𝑖
𝑣𝑖
− 𝑡𝑖𝑑  (Figure 37C)13, where 𝑣𝑖 is the sailing speed on leg 𝑖, 𝑙𝑖 is length of 

leg 𝑖, 𝑡𝑖𝑑  is departure time from port 𝑖. It is assumed that additional costs are 

incurred, when a vessel waits at the given port. 

c. If a vessel arrives after the end of the latest start 𝑡𝑤𝑖+1
𝑙  (see Figure 37D), 

monetary penalties are imposed to the liner shipping company (in USD/hr.), 

but the service of vessel will still start upon its arrival14. The penalty value is 

assumed to linearly increase with late arrival hours 𝑙𝑡𝑖. 

12 Technically the vessel can also wait at port 𝑖 + 1, or split waiting times between ports 𝑖 and 
𝑖 + 1. Future research may focus on evaluation of different decisions regarding the port waiting time 

 
13 In section 5.4 we prove that 𝑣𝑖 is equal to 𝑣𝑚𝑖𝑛  
 
14 It is assumed that the liner shipping company under consideration can negotiate such an 

agreement 
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Figure 37. Vessel Arrival Cases 

 
 

Bunker consumption. It is assumed that a vessel fleet for a given route is 

homogenous, which is a common practice, as revealed in the literature (Wang & Meng, 

2012a-c; Wang et al., 2013a; Wang et al., 2014), and the relationship between the bunker 

consumption and the vessel speed is as follows: 

𝑞(𝑣) = 𝑞∗(𝑣∗) × �
𝑣
𝑣∗�

𝛼

= 𝛾 × (𝑣)𝑎 (28) 

 
where: 

𝑞(𝑣) – daily bunker consumption (tons of fuel/day); 

𝑣 – average daily sailing speed (knots); 

𝑞∗(𝑣∗) – daily bunker consumption when sailing at the designed speed (tons of fuel/day); 

𝑣∗ – design sailing speed (knots); 
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𝛼, 𝛾 – coefficients calibrated from the historical data; 

Generally, additional regression analysis should be conducted to determine the 

values of 𝛼 and 𝛾 for each vessel in the fleet (Du et al., 2011; Wang & Meng, 2012b; Yao 

et al., 2012, etc.). Due to lack of data, the most common values from the literature 

(Psaraftis & Kontovas, 2013; Wang & Meng, 2012b) are adopted in this study (i.e., 

𝑎 = 3 and 𝛾 = 0.012). Once the liner shipping company decides on a sailing speed 

between consecutive ports, it is assumed to remain constant. Factors affecting the vessel 

speed during voyage (e.g., weather conditions, wind speed, height of waves, etc.) are not 

considered. The fuel consumption by auxiliary engines was included in the weekly vessel 

operating cost. 

Note that bunker consumption per nautical mile 𝑓(𝑣𝑖) at leg 𝑖 can be estimated as 

follows: 

𝑓(𝑣𝑖) = 𝑞(𝑣𝑖) × �
𝑡𝑖
24
� ×

1
𝑙𝑖

= 𝛾 × (𝑣𝑖)𝑎 ×
𝑙𝑖

24 × 𝑣𝑖
×

1
𝑙𝑖

=
𝛾 × (𝑣𝑖)𝑎−1

24
 ∀𝑖 ∈ 𝐼 

 
(29) 

 
where: 

𝑡𝑖 – sailing time between ports 𝑖 and 𝑖 + 1 (hrs.) 

Decisions. The problem, considered in this study, can be classified as a tactical 

level problem and will be referred to as the fleet deployment problem FDP. In this 

problem the liner shipping company determines the following:  

1) Number of vessels assigned at the given route in order to provide weekly 

service at each port (decision on fleet size and mix is assumed to be made at the strategic 

level, Meng et al., 2014) 

2) Handling time (or handling rates) at each port, taking into account TW 

constraints and increasing charges for faster service at each port 
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3) Port waiting time to ensure feasibility of arrival at the next port of call 

4) Sailing speed between consecutive ports, taking into account TW constraints at 

each port and associated bunker consumption costs  

5) Vessel late arrival fees. 

A liner shipping company sets a maximum quantity of vessels that can be 

deployed at any given route (𝑞 ≤ 𝑞𝑚𝑎𝑥) and sets limits on lower and upper vessel sailing 

speed (𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑚𝑎𝑥  ∀𝑖 ∈ 𝐼). The minimum sailing speed 𝑣𝑚𝑖𝑛 is selected to reduce 

wear of the vessel’s engine (Wang et al., 2013b), while the maximum sailing speed 𝑣𝑚𝑎𝑥 

is defined by the capacity of the vessel’s engine (Psaraftis & Kontovas, 2013). Note that 

all decisions are interrelated. Selecting lower sailing speed reduces the bunker 

consumption, but may require deployment of more vessels at the given route to ensure 

that weekly service is met, which increases the total weekly operating cost (e.g., crew 

costs, maintenance, repairs, insurance, etc.). Various port handling rates further allow the 

liner shipping company to weigh different options between sailing and port handling 

times (e.g., faster handling rate reduces the service time at a given port, which may allow 

sailing at a lower speed to the next port of call). On the other hand higher handling rates 

may not always be favorable as they may lead to the vessel waiting, once service is 

completed (see vessel arrival case b in “Vessel arrivals” section). 

Mathematical Formulation 

This section presents a mixed integer non-liner mathematical model for the fleet 

deployment problem with variable vessel sailing speeds and port handling times.  
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Nomenclature 

Sets 
𝐼 = {1, … , 𝑛} set of ports to be visited 
𝑆𝑖 = {1, … , 𝑠𝑖} set of available handling rates15 at port 𝑖 ∈ 𝐼  
 
Decision variables 
𝑣𝑖  ∀𝑖 ∈ 𝐼 vessel sailing speed at leg 𝑖, connecting ports (𝑖) and (𝑖 + 1)  
𝑥𝑖𝑠 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 =1 if handling rate 𝑠 is selected at port 𝑖 (=0 otherwise) 
 
Auxiliary variables 
𝑞 number of vessels deployed at the given route 
𝑡𝑖𝑎  ∀𝑖 ∈ 𝐼 arrival time at port 𝑖 (hrs.) 
𝑡𝑖𝑑  ∀𝑖 ∈ 𝐼 departure time from port 𝑖 (hrs.) 
𝑤𝑡𝑖 ∀𝑖 ∈ 𝐼 hours of waiting time of a vessel at port 𝑖 
𝑡𝑖 ∀𝑖 ∈ 𝐼 vessel sailing time at leg 𝑖, connecting ports (𝑖) and (𝑖 + 1) 
𝑓(𝑣𝑖) ∀𝑖 ∈ 𝐼 bunker consumption at leg 𝑖 at sailing speed 𝑣𝑖 (tons of 

fuel/nmi) 
𝑙𝑡𝑖 ∀𝑖 ∈ 𝐼 hours of vessel late arrival at port 𝑖 
 
Parameters 
𝛽 unit bunker cost (USD/ton) 
𝑐𝑂𝐶 vessel weekly operating cost (USD/week) 
𝑐𝑤 hourly port waiting cost (USD) 
𝑐𝑙𝑡 hourly delayed arrival penalty (USD) 
𝑙𝑖 ∀𝑖 ∈ 𝐼 length of leg 𝑖 (nmi) 
𝑣𝑚𝑖𝑛 minimum vessel sailing speed (knots) 
𝑣𝑚𝑎𝑥 maximum vessel sailing speed (knots) 
𝑞𝑚𝑎𝑥  maximum number of deployed vessels 
𝑝𝑖𝑠 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 vessel handling time at port 𝑖 under handling rate 𝑠 (hrs.) 
𝑡𝑤𝑖

𝑒  ∀𝑖 ∈ 𝐼 the earliest start at port 𝑖 (hrs.) 
𝑡𝑤𝑖

𝑙  ∀𝑖 ∈ 𝐼 the latest start at port 𝑖 (hrs.) 
𝑠𝑐𝑖𝑠 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 handling cost at port 𝑖 under handling rate 𝑠 (USD/hrs.) 
 

The objective function (30) minimizes the total route service cost, which includes 

5 components: 1) total vessel weekly operating cost, 2) total bunker consumption cost, 3) 

total port handling cost, 4) total port waiting cost, and 5) total late arrival penalty. 

15 Set of handling rates contains indexes of available handling rates (i.e., if a terminal operator at 
port 𝑖 offers two handling rates 75 TEUs/hr. and 50 TEUs/hr., then 𝑆𝑖 = {1,2}) 
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FDP: 𝑚𝑖𝑛 [𝑐𝑂𝐶𝑞 + 𝛽∑ 𝑙𝑖𝑓(𝑣𝑖)𝑖∈𝐼 + ∑ ∑ 𝑝𝑖𝑠𝑥𝑖𝑠𝑠𝑐𝑖𝑠𝑠∈𝑆𝑖𝑖∈𝐼 + ∑ 𝑐𝑤𝑤𝑡𝑖𝑖∈𝐼 +
∑ 𝑐𝑙𝑡𝑙𝑡𝑖𝑖∈𝐼 ] 

(30) 

 
Subject to:   

Constraints set (31) indicate that only one handling rate can be selected at each port of 

call. 

�𝑥𝑖𝑠
𝑠∈𝑆𝑖

= 1 ∀𝑖 ∈ 𝐼 (31) 

 
Constraints set (32) calculate a vessel sailing time between ports 𝑖 and 𝑖 + 1. 
 

𝑡𝑖 =
𝑙𝑖
𝑣𝑖

 ∀𝑖 ∈ 𝐼 (32) 

 
Constraints set (33) ensure that a vessel cannot arrive at port 𝑖 ∈ 𝐼 before the agreed TW. 
 
𝑡𝑖𝑎 ≥ 𝑡𝑤𝑖

𝑒 ∀𝑖 ∈ 𝐼 (33) 
 
Constraints sets (34) and (35) compute waiting time at port 𝑖 ∈ 𝐼, necessary to ensure 

feasibility of arriving to the next port of call. 

𝑡𝑖𝑎 + ∑ (𝑝𝑖𝑠𝑠∈𝑆𝑖 𝑥𝑖𝑠) + 𝑤𝑡𝑖 + 𝑡𝑖 ≥ 𝑡𝑤𝑖+1
𝑒  ∀𝑖 < |𝐼|  (34) 

 
𝑡𝑖𝑎 + ∑ (𝑝𝑖𝑠𝑠∈𝑆𝑖 𝑥𝑖𝑠) + 𝑤𝑡𝑖 + 𝑡𝑖 − 168𝑞 ≥ 𝑡𝑤1𝑒 ∀𝑖 = |𝐼|  (35) 
 
Constraints set (36) calculate a vessel departure time from port 𝑖 ∈ 𝐼.  
 
𝑡𝑖𝑑 = 𝑡𝑖𝑎 + ∑ (𝑝𝑖𝑠𝑠∈𝑆𝑖 𝑥𝑖𝑠) + 𝑤𝑡𝑖 ∀𝑖 ∈ 𝐼  (36) 
 
Constraints set (37) estimate hours of late arrival at port 𝑖 ∈ 𝐼. 
 
𝑙𝑡𝑖 ≥  𝑡𝑖𝑎 −  𝑡𝑤𝑖

𝑙  ∀𝑖 ∈ 𝐼  (37) 
 
Constraints sets (38) and (39) compute a vessel arrival at the next port of call 𝑖 ∈ 𝐼. 
 
𝑡𝑖+1𝑎 = 𝑡𝑖𝑑 + 𝑡𝑖 ∀𝑖 < |𝐼|  (38) 
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𝑡1𝑎 = 𝑡𝑖𝑑 + 𝑡𝑖 − 168𝑞 ∀𝑖 = |𝐼|  (39) 
 
Constraints set (40) ensure weekly service frequency (168 denotes the total number of 

hours in a week). The right-hand-side of an equality estimates the total turnaround time 

of a vessel at the given route (where the first component is the total sailing time, the 

second component is the total port handling time, and the third component is the total 

port waiting time). 

 

168𝑞 ≥�𝑡𝑖
𝑖∈𝐼

+ ��(𝑝𝑖𝑠𝑥𝑖𝑠
𝑠∈𝑆𝑖𝑖∈𝐼

) + �𝑤𝑡𝑖
𝑖∈𝐼

 (40) 

 
Constraints set (41) ensure that the number of vessels to be deployed at the given route 

should not exceed the number of available vessels. 

𝑞 ≤ 𝑞𝑚𝑎𝑥 (41) 
 
Constraints set (42) show that a vessel sailing speed should be within specific limits. 
 
𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑚𝑎𝑥  ∀𝑖 ∈ 𝐼 (42) 
 
Constraints (16) – (18) define ranges of parameters and variables. 
 
𝑥𝑖𝑠  ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 (43) 

 
𝑞, 𝑞𝑚𝑎𝑥 ∈ 𝑁 ∀𝑖 ∈ 𝐼 (44) 
𝑣𝑖 , 𝑡𝑖𝑎 , 𝑡𝑖𝑑 ,𝑤𝑡𝑖 , 𝑡𝑖,𝑓(𝑣𝑖), 𝑙𝑡𝑖,𝛽, 𝑐𝑂𝐶 , 𝑐𝑤, 𝑐𝑙𝑡, 𝑙𝑖, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 ,𝑝𝑖𝑠, 𝑡𝑤𝑖

𝑒  , 𝑡𝑤𝑖
𝑙 , 𝑠𝑐𝑖𝑠

∈ 𝑅𝑅+ ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 
(45) 

 

Solution Approach 

Bunker consumption linear approximation. The non-linear bunker 

consumption function can be approximated using piecewise linear functions with various 

number of segments.  
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Note that different number of segments will result in different linear 

approximations with accuracy of the approximation (and computational time) increasing 

with the number of segments. In this study FDP is linearized following a similar 

methodology to Wang and Meng (2012b-c), and Wang et al. (2013a-b, 2014). In addition 

to the non-linear objective function, nonlinearities of FDP also stem from constraints set 

(32). To address the latter nonlinearity, the vessel sailing speed 𝑣𝑖  ∀𝑖 ∈ 𝐼 is replaced by 

its reciprocal 𝑦𝑦𝑖 = 1/𝑣𝑖  ∀𝑖 ∈ 𝐼. Once the sailing speed has been replaced by its 

reciprocal, let 𝐺𝐺(𝑦𝑦) be the bunker consumption function.  

Examples of different linear approximation functions (𝐺𝐺𝑚(𝑦𝑦)), each with a 

different number of 𝑚 segments, are presented in Figure 38 and Table 9 for the bunker 

function:  𝐺𝐺(𝑦𝑦) = 0.012×(𝑦)−2

24
. In this example vessel sailing speed 𝑣𝑖 was assumed to 

range between 𝑣𝑚𝑖𝑛 = 10 knots and 𝑣𝑚𝑎𝑥 = 25 knots (0.04 ≤ 𝑦𝑦𝑖 ≤ 0.10). The linear 

segments of each piecewise function 𝐺𝐺𝑚(𝑦𝑦) are denoted by solid lines in Figure 38. 

Approximation results are presented in Table 9, where column 1 shows sailing speed; 

column 2 presents sailing speed reciprocal; column 3 shows the actual bunker 

consumption (provided by the non-linear bunker consumption function); columns 4 

through 7 present bunker consumption values, estimated using piecewise approximating 

functions with different number of segments 𝑚; columns 8 through 11 show 

approximation errors for each piecewise function. 

From the results in Table 9 we observe that accuracy increases with the number of 

segments, while the error, as speed changes, does not follow any pattern (e.g., smaller 

errors for lower speeds). Note that for 𝑚 = 10 the error is very close to zero. However, 

increasing 𝑚 may negatively affect the computational time. A trade-off between the 
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bunker consumption approximating function accuracy (and in turn the accuracy of the 

optimal solution) and the computational time will be analyzed in the numerical 

experiments section.  

 

 

 

 
Figure 38. Bunker Consumption Approximating Function Examples 

 

 
Table 9  
Bunker Consumption Approximating Function Examples 

 Bunker Consumption (tons of fuel/nmi) 
% of error: 

�𝐺𝐺(𝑦𝑦) − 𝐺𝐺𝑚(𝑦𝑦)�/ 𝐺𝐺(𝑦𝑦) 
𝑣 𝑦𝑦 = 1/𝑣 𝐺𝐺(𝑦𝑦) 𝐺𝐺1(𝑦𝑦) 𝐺𝐺3(𝑦𝑦) 𝐺𝐺4(𝑦𝑦) 𝐺𝐺10(𝑦𝑦) m=1 m=3 m=4 m=10 
25 0.040 0.3125 0.2376 0.2911 0.2989 0.3100 24% 7% 4% 1% 
24 0.042 0.2880 0.2301 0.2748 0.2801 0.2847 20% 5% 3% 1% 
22 0.045 0.2420 0.2189 0.2505 0.2519 0.2467 10% -4% -4% -2% 
20 0.050 0.2000 0.2002 0.2100 0.2049 0.2005 0% -5% -2% 0% 
18 0.056 0.1620 0.1778 0.1613 0.1540 0.1598 -10% 0% 5% 1% 
16 0.063 0.1280 0.1517 0.1211 0.1271 0.1259 -19% 5% 1% 2% 
14 0.071 0.0980 0.1218 0.1002 0.0981 0.0991 -24% -2% 0% -1% 
12 0.083 0.0720 0.0770 0.0724 0.0723 0.0725 -7% -1% 0% -1% 
10 0.100 0.0500 0.0135 0.0485 0.0495 0.0499 73% 3% 1% 0% 

 

𝐺𝐺(𝑦𝑦) 

𝐺𝐺(𝑦𝑦) 
𝐺𝐺(𝑦𝑦) 

𝐺𝐺(𝑦𝑦) 

𝐺𝐺1(𝑦𝑦)  
𝐺𝐺3(𝑦𝑦) 

𝐺𝐺10(𝑦𝑦) 

𝐺𝐺4(𝑦𝑦) 
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Next the linearized formulation of FDP is presented, where vessels sailing speed 𝑣𝑖 is 

replaced by its reciprocal 𝑦𝑦𝑖, and the non-linear bunker consumption function 𝐺𝐺(𝑦𝑦) is replaced by 

its approximation 𝐺𝐺𝑚(𝑦𝑦). 

Linearized mixed integer formulation. Let 𝑲 = {1,2, … .𝑚} be the set of linear 

segments of the piecewise function 𝐺𝐺𝑚(𝑦𝑦). Denote as 𝑠𝑡𝑘, 𝑒𝑑𝑘,𝑘 ∈ 𝐾 the speed 

reciprocal values at the start and end (respectively) of linear segment 𝑘; 𝑆𝐿𝑘, 𝐼𝑁𝑘, 𝑘 ∈ 𝐾 

the slope and an intercept of linear segment 𝑘 (obtained from a piecewise linear 

regression analysis); and 𝑀1,𝑀2 as sufficiently large positive numbers. Then FDP can be 

reformulated as a linear problem as follows (equations 19 through 25): 

 FDPL: 𝑍 = 𝑚𝑖𝑛 [𝑐𝑂𝐶𝑞 + 𝛽 ∑ �𝑙𝑖 ∑ 𝐺𝐺𝑘(𝑦𝑦𝑖)𝑘∈𝐾 � 𝑖∈𝐼 + ∑ ∑ 𝑝𝑖𝑠𝑥𝑖𝑠𝑠𝑐𝑖𝑠𝑠∈𝑆𝑖𝑖∈𝐼 +
∑ 𝑐𝑤𝑤𝑡𝑖𝑖∈𝐼 + ∑ 𝑐𝑙𝑡𝑙𝑡𝑖𝑖∈𝐼 ] 

(46) 

 
Subject to:  

Constraints sets (31), (33)-(41), (43)-(45) 

� 𝑏𝑖𝑘
 𝑘∈𝐾 

= 1 ∀𝑖 ∈ 𝐼 (47) 

 
𝑠𝑡𝑘𝑏𝑖𝑘 ≤ 𝑦𝑦𝑖  ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (48) 
 
𝑒𝑑𝑘 + 𝑀1(1 − 𝑏𝑖𝑘) ≥ 𝑦𝑦𝑖 ∀𝑖 ∈ 𝐼,𝑘 ∈ 𝐾 (49) 
 
𝐺𝐺𝑘(𝑦𝑦𝑖)  ≥ 𝑆𝐿𝑘𝑦𝑦𝑖 +  𝐼𝑁𝑘 − 𝑀2(1 − 𝑏𝑖𝑘) ∀𝑖 ∈ 𝐼,𝑘 ∈ 𝐾 (50) 
 
𝑡𝑖 = 𝑙𝑖𝑦𝑦𝑖 ∀𝑖 ∈ 𝐼 (51) 
 
1/𝑣𝑚𝑎𝑥 ≤ 𝑦𝑦𝑖 ≤ 1/𝑣𝑚𝑖𝑛 ∀𝑖 ∈ 𝐼 (52) 
 

In FDPL constraints set (47) ensure that only one segment 𝑘 will be selected for 

approximation of the bunker consumption function at leg 𝑖.  Constraints sets (48) and 

(49) define range of vessel sailing speed reciprocal values, when segment 𝑘 is selected 
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for approximation of the bunker consumption function at leg 𝑖. Constraints set (50) 

estimate the approximated bunker consumption at leg 𝑖. Constraints set (51) calculate a 

vessel sailing time between ports 𝑖 and 𝑖 + 1. Constraints set (52) show that a reciprocal 

of vessel sailing speed should be within specific limits. Positive number 𝑀1 was 

introduced to ensure that each segment 𝑘 ∈ 𝐾 of 𝐺𝐺𝑘(𝑦𝑦) function approximates a non-

linear function 𝐺𝐺(𝑦𝑦) only for a specific range of 𝑦𝑦. Positive number 𝑀2 was introduced to 

estimate the approximated bunker consumption value 𝐺𝐺𝑘(𝑦𝑦)  for a given 𝑦𝑦. Strict lower 

bounds for 𝑀1 and 𝑀2 can be defined as follows: 𝑀1 = 1
𝑣𝑚𝑖𝑛 , 𝑀2 = 𝑆𝐿1 × 1

𝑣𝑚𝑎𝑥 +  𝐼𝑁1. 

Note that 𝑀1 and 𝑀2 can be replaced in constraints sets (22) and (23) by 𝑀 =

𝑚𝑎𝑥{ 1
𝑣𝑚𝑖𝑛 ; 𝑆𝐿1 × 1

𝑣𝑚𝑎𝑥 + 𝐼𝑁1}. FDPL can be solved efficiently using CPLEX even for 

large size instances (as discussed in detail in the numerical experiments section). 

Note on bunker consumption estimation method. In the available relevant 

literature (Wang & Meng 2012b-c; Wang et al., 2013b, 2014) researchers have used a 

similar method to linearize bunker consumption, but a different method to calculate the 

bunker consumption function value. In the remainder of the manuscript we will refer to 

the already published method as AP-1 and to the one proposed herein as AP-2. Under 

AP-2 bunker consumption is calculated via constraints set (50), while under AP-1 using 

the following equation:  

 
𝐺𝐺𝑘(𝑦𝑦𝑖) ≥ 𝑆𝐿𝑘𝑦𝑦𝑖 + 𝐼𝑁𝑘 ∀𝑖 ∈ 𝐼,𝑘 ∈ 𝐾 (53) 
 

The main difference in the two equations is the component −𝑀2 × (1 − 𝑏𝑖𝑘) in 

equation (50) that employs an additional decision variable (𝑏𝑖𝑘 ), which will increase the 

computational time, but as shown in this section improves accuracy in certain cases. The 
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extent of the computational time increase will be discussed in the numerical experiments 

section. AP-1 and AP-2 were compared in terms of their accuracy in estimating bunker 

consumption using various piecewise linear functions. Findings indicate that AP-1 is 

accurate if and only if segment slopes are monotonically increasing and does not 

guarantee that the correct segment will be selected. On the other hand AP-2 accuracy is 

not affected by the geometry of the piecewise linear function and always selects the 

correct segment to calculate the approximated vessel speed. Next we provide a numerical 

example to demonstrate the accuracy improvement of AP-2 as compared to AP-1. 

Consider the bunker consumption function: 𝐺𝐺(𝑦𝑦) = 0.012×(𝑦)−2

24
, and two different 

piecewise linear approximations 𝐺𝐺51(𝑦𝑦) and 𝐺𝐺52(𝑦𝑦), as shown in Figure 39. Both 𝐺𝐺51(𝑦𝑦) 

and 𝐺𝐺52(𝑦𝑦) have 5 segments (𝑚 = 5), but different shapes. Assume that at a given leg 𝑖 a 

vessel sailing speed reciprocal of 𝑦𝑦𝑖 = 0.07 is chosen by the optimization model. For 

approximation 𝐺𝐺51(𝑦𝑦) both AP-1 and AP-2 will select the same segment (𝑘 = 3) and 

return the same bunker consumption value of: 𝐺𝐺51(𝑦𝑦) = 0.1028. However, for 

approximation 𝐺𝐺52(𝑦𝑦) AP-1 selects segment 2 instead of 3, and returns a higher bunker 

consumption value (0.1227 when 𝑘 = 2 vs. 0.1097 when 𝑘 = 3). AP-2 selects segment 3, 

since 𝑠𝑡3 < 𝑦𝑦𝑖 < 𝑒𝑑3 (i.e., 0.064 < 0.07 < 0.076), and reduces the approximation error 

(see Figure 4, where the circle, representing the bunker consumption obtained by AP-2, is 

closer to 𝐺𝐺(𝑦𝑦) as compared to the triangle, representing the bunker consumption obtained 

by AP-1). 
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Figure 39. Examples of Different Piecewise Linear Functions 

Note:  - bunker consumption using AP-1;   - bunker consumption using AP-2; actual 
bunker consumption lies on the dotted 𝐺𝐺(𝑦𝑦) function 
 
 

Bunker consumption values were estimated using 𝐺𝐺52(𝑦𝑦) for different values of 

sailing speed reciprocal 𝑦𝑦, varying from 0.05 to 0.08 with an increment of 0.005, and 

results are presented in Table 10. The second and third column show the segment 

selected by each method; columns 4 through 6 show the bunker consumption from AP-1, 

AP-2 and the non-linear bunker consumption function; while the last two columns show 

the percentage difference between the actual bunker consumption and that estimated by 

AP-1 and AP-2 respectively. We observe that AP-1 constantly overestimates bunker 

consumption and returns larger approximation errors as compared to AP-2. The latter can 

be explained by the fact that AP-1 always choses the greatest bunker consumption values 

without considering the segment of the piecewise linear approximation used. In the cases 

where both methods overestimate bunker consumption, AP-2 error is smaller. 

 

 

 

 

 

119 
 



Table 10  
Comparison of AP-1 and AP-2 

 
𝑦𝑦 

Segment selected Bunker Consumption (tons of fuel/nmi) % of error: 
�𝐺𝐺(𝑦𝑦) − 𝐺𝐺𝑚(𝑦𝑦)�/ 𝐺𝐺(𝑦𝑦) 

 AP-1 AP-2 AP-1 AP-2 
Actual 

 
𝐺𝐺(𝑦𝑦) AP-1 AP-2 

𝐺𝐺 5
2 (
𝑦𝑦)

 

0.050 3 1 0.2075 0.1911 0.2000 -4% 4% 
0.055 3 2 0.1831 0.1637 0.1653 -11% 1% 
0.060 3 2 0.1586 0.1500 0.1389 -14% -8% 
0.065 2 3 0.1364 0.1342 0.1183 -15% -13% 
0.070 2 3 0.1227 0.1097 0.1020 -20% -8% 
0.075 2 3 0.1090 0.0853 0.0889 -23% 4% 
0.080 2 4 0.0954 0.0754 0.0781 -22% 3% 

 
 

Sailing speed selection when waiting at the port. As discussed previously, 

under case b a vessel departing from port 𝑖 immediately after completion of handling 

operations will arrive at the next port of call 𝑖 + 1 before the earliest start 𝑡𝑤𝑖+1
𝑒 , even 

when sailing at the lowest possible speed 𝑣𝑚𝑖𝑛 (see Figure 37B). In such cases we 

assume that the vessel will wait at a dedicated area at port 𝑖 to ensure arrival within the 

allocated TW at port 𝑖 + 1. The port waiting time 𝑤𝑡𝑖 can be computed as 𝑤𝑡𝑖 = 𝑡𝑤𝑖+1
𝑒 −

𝑙𝑖
𝑣𝑖
− 𝑡𝑖𝑑 . Next the study elaborates more on selecting vessel sailing speed 𝑣𝑖. 

Proposition 1: If 𝑆∗ = (𝑣𝑖∗, 𝑥𝑖𝑠∗ ) is an optimal solution to FDPL, where a vessel 

has to wait at port 𝑖 after completion of service, then 𝑣𝑖∗ = 𝑣𝑚𝑖𝑛. 

Proof:  

Let 𝑍(𝑆) be the objective function value of a solution 𝑆 to the problem. Assume 

that solution 𝑆∗ = (𝑣𝑖∗, 𝑥𝑖𝑠∗ ) with 𝑣𝑖∗ = 𝑣𝑚𝑖𝑛 is not optimal. Hence, there exist another 

solution �́� = (𝑣�́�, 𝑥𝑖𝑠∗ ) with 𝑣�́� ≥ 𝑣𝑚𝑖𝑛, such that 𝑍��́�� ≤ 𝑍(𝑆∗). However, 𝑣�́� ≥ 𝑣𝑚𝑖𝑛 => 

𝑤𝑡𝚤́ ≥ 𝑤𝑡𝑖∗ => 𝑍(𝑆∗) ≥ 𝑍��́��. Thus, at the optimal solution of FDPL, where a vessel has 

to wait at port i after completion of service: 𝑣𝑖∗ = 𝑣𝑚𝑖𝑛. □ 
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Numerical Experiments 

This section presents a number of numerical experiments to evaluate the proposed 

bunker consumption function estimation method and the efficiency of the proposed 

service policy agreement. 

Input data description. French Asia Line 1 route (as shown in Figure 40), served 

by CMA CGM liner shipping company, was used as input data for this study. This route 

connects North Europe, North Africa, Malta, Middle East Gulf, and Asia. The port 

rotation for French Asia Line 1 route includes 18 ports of call (distance to the next port of 

call in nautical miles is presented in parenthesis, estimated using world seaports 

catalogue16), where the Port of Kelang (Malaysia) is visited twice:  

1. Southampton, GB (571)  2. Hamburg, DE (36)  3. Bremerhaven, DE (309)  4. 

Rotterdam, NL (364)  5. Zeebrugge, BE (302)  6. Le Havre, FR (2538)  7. Malta, 

MT (4089)  8. Khor al Fakkan, AE (199)  9. Jebel Ali, AE (3741)  10. Port 

Kelang, MY (2835)  11. Ningbo, CN (87)  12. Shanghai, CN (606)  13. Xiamen, 

CN (955)  14. Hong Kong, HK (375)  15. Chiwan, CN (395)  16. Yantian, CN 

(2045)  17. Port Kelang, MY (7490)  18. Tanger Med, MA (1367)  1. 

Southampton, GB 

 
 

16 http://ports.com/sea-route 
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Figure 40. French Asia Line 1 (CMA CGM)17 

 
 

The required numerical data were generated based on the available liner shipping 

literature and are presented in Table 11. Unit bunker and weekly operating costs were 

assumed to be 500 USD/ton and 300,000 USD respectively (Wang & Meng, 2012b; 

Wang et al., 2014). Port waiting cost was set equal to a certain percentage of the weekly 

operating cost (=40% default value, which may depend on the port of call, vessel 

characteristics, etc.). Delayed vessel arrival penalties vary from port to port, and were 

assigned randomly between 5,000 USD/hr. and 6,000 USD/hr. (Zampelli et al., 2014). It 

is assumed that the liner shipping company cannot deploy more than 𝑞𝑚𝑎𝑥 = 15 vessels 

at the given route. The latest start at each port of call was set using the following 

relationship: 𝑡𝑤𝑖
𝑙 = 𝑡𝑤𝑖−1

𝑙 + 𝑙𝑖
𝑈𝑛𝑖𝑓𝑜𝑟𝑚[𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛]

 ∀𝑖 ∈ 𝐼. The duration of a TW (𝑡𝑤𝑖
𝑙 −

𝑡𝑤𝑖
𝑒) was assigned as uniformly distributed pseudorandom numbers between 24 hrs. and 

72 hrs. (OOCL, 2014).   

17 http://www.cma-cgm.com/products-services/line-services/flyer/FAL (accessed on 15 November 
2014) 
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A set of available port handling times 𝑝𝑖𝑠 at each port of call was assigned based 

on the weekly demand 𝑁𝐶𝑖 (in TEUs) and the available handling rates 𝑆𝑖 at the given 

port. Large ports were assumed to have the weekly demand, uniformly distributed 

between 500 TEUs and 2000 TEUs. Note that term “large port” was applied to those 

ports of call, if they were included in the list of top 20 world container ports based on 

their throughput according to the World Shipping Council data18. Weekly demand for 

smaller ports was uniformly distributed between 200 TEUs and 1000 TEUs. Large ports 

were able to offer 4 possible handling rates: [125; 100; 75; 50] TEUs/hr. Smaller ports 

could provide either 3 ([100; 75; 50] TEUs/hr.) or 2 handling rates ([75; 50] TEUs/hr.). 

The latter assumption can be explained by the fact that terminal operators at large ports 

usually have more vessel handling equipment available and can offer more handling rate 

options to the liner shipping company. Furthermore, higher amounts of TEU handled can 

increase productivity. 

 

Table 11  
Numerical Data 
Bunker consumption coefficients 𝛼, 𝛾 𝑎 = 3, 𝛾 = 0.012 
Unit bunker cost 𝛽 (USD/ton) 500 
Vessel weekly operating cost 𝑐𝑂𝐶 (USD/week) 300,000 
Port waiting cost 𝑐𝑤 (USD/hr.) 0.40 × 𝑐𝑂𝐶/168 
Delayed arrival penalty 𝑐𝑙𝑡 (USD/hr.) Uniform[5,000; 6,000] 
Minimum vessel sailing speed 𝑣𝑚𝑖𝑛 (knots) 10 
Maximum vessel sailing speed 𝑣𝑚𝑎𝑥 (knots) 25 
Maximum number of deployed vessels 𝑞𝑚𝑎𝑥 15 
TW duration (hrs.) Uniform[24; 72] 
 
 

18 http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports 
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The handling cost at each port 𝑖 under handling rate 𝑠 was computed as: 𝑠𝑐𝑖𝑠 =

𝑎𝑠𝑐 ± 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0; 50] ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖, where 𝑎𝑠𝑐 is the average container handling cost.  

Based on the available literature (Trade Fact of the Week, 2014; TRP, 2014) and 

assuming a mix of vessel operations that include mooring, loading and discharge of 

containers, type of container (empty, loaded, size, reefer), re-stowing (on-board the vessel 

or via quay), the average container handling cost was set equal to [700; 625; 550; 475] 

USD/TEU for handling rates [125; 100; 75; 50] TEUs/hr. respectively. It was assumed 

that each terminal operator perceives handling cost differently (i.e., service charge for the 

same handling rate varies from port to port), which is accounted for by the second (and 

random) term of the 𝑠𝑐𝑖𝑠 formula.  

All numerical experiments were conducted on a Dell T1500 Intel(T) Core i5 

Processor with 1.96 GB of RAM. A piecewise linear approximation of the bunker 

consumption function was performed in MATLAB 2014a. A linearized mixed-integer 

problem formulation FDPL was solved using CPLEX of General Algebraic Modeling 

System (GAMS19). 

Bunker consumption function estimation method evaluation. Before assessing 

potential benefits from the proposed service policy agreement between the liner shipping 

company and terminal operators, it is necessary to evaluate the suggested bunker 

consumption function estimation method (AP-2).  

 

 

19 http://www.gams.com/ 
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Performance of AP-2 in terms of time complexity and objective function value 

was evaluated for piecewise linear functions 𝐺𝐺𝑚1 (𝑦𝑦) and 𝐺𝐺𝑚2 (𝑦𝑦), using the numerical data, 

presented in section “Input data description”. A total of 14 instances were generated by 

varying the number of linear segments 𝑚 used with each function. Ten replications were 

performed for each instance to estimate the average computational times. Note that 

computational time was calculated separately for the following processes: a) Piecewise 

linear regression in MATLAB 2014a, b) Transfer of the data to GAMS, c) Solving FDPL 

using CPLEX within the GAMS domain, and d) Retrieving the data form GAMS. 

The objective function value 𝑍 and model accuracy (measured by the coefficient 

of determination 𝑅𝑅2) were recorded for each instance along with the computational time. 

Changes in the objective function value (referred to as objective gap ∆) with increasing 

number of linear segments for a given piecewise approximating function were computed 

for each instance as: ∆𝑖𝑛𝑠𝑡= 100 × |1 − 𝑍𝑖𝑛𝑠𝑡
𝑍(𝑚=100) |. Results of the analysis are presented 

in Table 12 for piecewise linear functions 𝐺𝐺𝑚1 (𝑦𝑦) and 𝐺𝐺𝑚2 (𝑦𝑦).  

In Table 12 the first and second columns show the instance number and number 

of segments respectively. The remaining columns present coefficient of determination 

𝑅𝑅2, objective function value 𝑍,  objective gap ∆, and CPU time for each piecewise linear 

function. For example, when 6 segments are used (see instance 5 in Table 12) in 

approximations 𝐺𝐺𝑚1 (𝑦𝑦) and 𝐺𝐺𝑚2 (𝑦𝑦), the objective function values at the optimum solution 

are 𝑍1 = 15.22 × 106 𝑈𝑆𝐷 and 𝑍2 = 15.25 × 106 𝑈𝑆𝐷 respectively. 
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Table 12  
AP-2 Evaluation 

Instance #Segments,  
𝑚 

Piecewise Linear Function 
𝐺𝐺𝑚1 (𝑦𝑦) 

Piecewise Linear Function 
𝐺𝐺𝑚2 (𝑦𝑦) 

 

Z1, 106 

USD 
Δ1, 
% 

CPU 
Time, 

sec 

 Z2, 106 

USD 
Δ2, 
% 

CPU 
Time, 

sec 
1 2 0.9783 15.50 3.54 0.24 0.9689 15.71 2.58 0.25 
2 3 0.9944 15.54 3.28 0.27 0.9652 15.22 0.62 0.28 
3 4 0.9980 15.34 4.50 0.34 0.9731 15.41 0.61 0.32 
4 5 0.9991 15.17 5.58 0.35 0.9853 15.22 0.62 0.37 
5 6 0.9996 15.22 5.25 0.43 0.9945 15.25 0.43 0.48 
6 7 0.9998 15.22 5.26 0.51 0.9950 15.20 0.77 0.55 
7 8 0.9999 15.16 5.68 0.60 0.9958 15.17 0.97 0.71 
8 9 0.9999 15.60 2.93 0.86 0.9977 15.16 1.07 0.85 
9 10 0.9999 15.16 5.64 0.85 0.9961 15.18 0.93 0.86 

10 20 1.0000 15.93 0.85 1.30 0.9977 15.80 3.17 1.33 
11 40 1.0000 15.95 0.76 3.76 0.9989 16.26 6.15 3.94 
12 60 1.0000 16.01 0.37 9.59 0.9997 15.27 0.32 9.50 
13 80 1.0000 16.20 0.83 20.94 0.9994 16.13 5.30 21.22 
14 100 1.0000 16.07 0.00 37.72 0.9994 15.32 0.00 37.41 

 
 

For both 𝐺𝐺𝑚1 (𝑦𝑦) and 𝐺𝐺𝑚2 (𝑦𝑦) the objective gap did not exceed 6.15%. As expected, 

increasing number of segments improved the approximation accuracy (increase in the 

value of 𝑅𝑅2), but increased computational time. However, the computational time 

increase even for the largest number of segments (𝑚 = 100) was found to be acceptable 

(< 38 sec). The piecewise linear function 𝐺𝐺𝑚1 (𝑦𝑦)  demonstrated higher accuracy as 

compared to 𝐺𝐺𝑚2 (𝑦𝑦) and will be further used in numerical experiments. Based on the 

computational time and the approximation accuracy the number of segments for 𝐺𝐺𝑚1 (𝑦𝑦) 

will be set to 20.   

𝑅𝑅12 𝑅𝑅22 
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Input parameter sensitivity analysis. Input parameter sensitivity analysis was 

conducted for: a) unit bunker cost, b) vessel weekly operating cost, c) port waiting cost, 

and d) delayed arrival penalty. Next we present results from the sensitivity analysis for 

each of those input parameters. 

Unit bunker cost sensitivity. The main objective of the analysis, presented in this 

subsection, was to determine how the objective function value will be affected with 

changing unit bunker cost. From the available literature (Wang & Meng, 2012b) it was 

found that the unit bunker cost varies from 300 to 1,000 USD/ton. A total of 8 instances 

were generated by changing the unit bunker cost from 300 to 1,000 USD/ton with an 

increment of 100 USD/ton. FPDL was solved for each one of those instances using the 

numerical data, presented in section “Input data description”. Results of the analysis are 

shown in Figure 41.  

We observe that increasing price of fuel substantially affects the objective 

function value, and in case of 𝛽 = 1,000 USD/ton the total bunker cost 𝐵𝐶 =

𝛽∑ �𝑙𝑖 ∑ 𝐺𝐺𝑘(𝑦𝑦𝑖)𝑘∈𝐾 �𝑖∈𝐼  may comprise up to 30% of the total route service cost. 
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Figure 41 Bunker Cost Sensitivity 

 
 

Vessel weekly operating cost sensitivity From the available literature it was found 

that the weekly operating cost depends on the type of vessel and varies roughly from 

100,000 to 500,000 USD (Wang & Meng, 2012a-c; Wang et al., 2014). The number of 

vessels deployed at the given service route is not solely determined by weekly operating 

costs, as it is also affected by the other FPDL decision and auxiliary variables (e.g., 

bunker cost, port handling cost, port waiting cost, etc.).  

In this analysis the number of required vessels was estimated for different 

combinations of weekly operating and unit bunker costs, while the other input parameters 

(adopted from Table 11) were assumed to be constant. A total of 72 instances were 

generated, where the weekly operating cost varied from 100,000 to 500,000 USD with an 
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increment of 50,000 USD, while the unit bunker cost varied from 300 to 1,000 USD/ton 

with an increment of 100 USD/ton. FPDL was solved for each one of those instances and 

the number of required vessels for each instance is presented in Figure 42. As expected, 

increasing unit bunker cost results in the deployment of more vessels (and in the 

reduction of vessel sailing speed), while increasing weekly operating cost results in the 

reduction of the deployed vessels (and in the increase of vessel sailing speed). However, 

for instances with low bunker costs (𝛽 < 400 USD/ton) the number of required vessels 

was not affected by the weekly operating cost. 

Port waiting cost sensitivity. As previously discussed, in some cases a vessel is 

required to wait at a dedicated area at a given port to ensure feasibility of arrival at the 

next port of call. In this subsection we explore how the total port waiting time varies with 

the hourly port waiting time cost. Port waiting time cost was estimated as hourly 

percentage of the weekly operating cost. A total of 10 instances were generated, where 

the waiting time cost varied from 5% of the weekly operating cost (i.e., 0.05 × 𝑐𝑜𝑐

168
=

0.05 × 3,000,000
168

= 89 USD/hr.) to 50% of the weekly operating cost (i.e., 0.5 × 𝑐𝑜𝑐

168
=

0.05 × 3,000,000
168

= 893 USD/hr.) with an increment of 5%. FPDL was solved for each 

one of those instances using the numerical data, described in section “Input data 

description”. Results of the total port waiting time vs. the hourly port waiting time cost 

from the analysis are presented in Figure 43. From these experiments no obvious pattern 

emerged between hourly and total port waiting time costs.  
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Figure 42. Number of Required Vessels Estimation 
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Figure 43. Port Waiting Cost Sensitivity 

 
 

Delayed arrival penalty sensitivity. The main objective of the analysis presented 

in this subsection was to identify how late arrivals fluctuate with the delayed arrival 

penalty value. A total of 8 instances were generated by varying the lower and upper 

bounds of the uniform distribution, representing the delayed arrival penalty, from 

Uniform[2,000; 3,000] to Uniform[9,000; 10,000] USD/hr. with an increment of 1,000 

USD/hr. FPDL was solved for each of those instances using the numerical data, 

presented in section “Input data description”. Results of the analysis are depicted in 

Figure 44 and indicate that increasing delayed arrival penalty significantly reduces total 

port late arrivals. For the problem instance with the lowest penalty value (Uniform[2,000; 

3,000]) total port late arrivals equal roughly 126 hrs., while for instances with high 

penalty values Uniform[7,000; 8,000] - Uniform[9,000; 10,000] the total port late arrivals 

did not exceed ≈50 min. Note that this model does not account for costs to the liner 

shipping company by the shipper(s) for late arrivals of cargo. 
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Figure 44. Delayed Arrival Penalty Sensitivity 

 
 

Service policy agreement evaluation. This section presents computational 

experiments conducted to quantify efficiency of the proposed service policy agreement. 

A total of 5 instances were generated by varying the number of available handling rates at 

each port of cal. All instances are outlined next. 

• Instance 1: Large ports have 4 handling rates, smaller ports have 2÷3 handling 

rates (as described in section 6.1) 

• Instance 2: Large ports have 3 handling rates, smaller ports have 2÷3 handling 

rates 

• Instance 3: Large ports have 2 handling rates, smaller ports have 1÷2 handling 

rates 

• Instance 4: Large ports have 1 handling rate, smaller ports have 1÷2 handling 

rates 

• Instance 5: All ports have only one available handling rate. 
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FPDL was solved for each one of those instances using the numerical data, 

described in section 6.1. Results, presented in Table 13, include total port handling costs 

(𝑃𝐶 = ∑ ∑ 𝑝𝑖𝑠𝑥𝑖𝑠𝑠𝑐𝑖𝑠)𝑠∈𝑆𝑖𝑖∈𝐼  and savings and the objective function value and savings. 

Savings are estimated as a percentage in 𝑃𝐶 and 𝑍 reduction of the best alternative 

(instance 1 with the largest amount of available handling rates) as compared to the other 

alternatives (instances 2 through 5). The highest total port handling cost and the highest 

total route service cost were recorded for Instance 5, when only one handling rate was 

available at each port of call. Furthermore, the suggested agreement between liner 

shipping companies and terminal operators could yield up 35.9% and 14.4% savings for 

the former in total port handling cost and total route service cost respectively. 

 
 
Table 13  
Service Policy Agreement Evaluation Results 
Instance PC, 106 USD Z, 106 USD PC savings from I1, % Z savings from I1, % 

I1 9.1 15.9 0.0 0.0 
I2 9.3 16.1 2.2 1.3 
I3 9.9 16.4 9.4 3.0 
I4 11.6 17.6 27.5 10.6 
I5 12.4 18.2 35.9 14.4 

 
 

Conclusions and Future Research 

  Taking into account increasing international seaborne trade volumes, liner 

shipping companies and marine container terminal operators should improve efficiency 

of their operations in order to serve the growing demand. This study proposed a new 

service policy agreement between a liner shipping company and several terminal 

operators, where each terminal operator offers a set of handling rates to the liner shipping 
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company. The problem was formulated as a mixed integer non-linear mathematical 

programming model, minimizing the total route service cost for the liner shipping 

company. The proposed model formulation was linearized and solved using CPLEX 

within acceptable computational time. Numerical experiments were performed for French 

Asia Line 1 route, served by CMA CGM liner shipping company. Results demonstrated 

efficiency of the suggested methodology for estimating the approximated bunker 

consumption value. Furthermore, it was found that the proposed form of agreement 

between liner shipping companies and terminal operators could yield up to 14.4% savings 

in the total route service cost. Future research may focus on the following: a) uncertainty 

in port handling and sailing times, b) multiple service routes, c) heterogeneous vessel 

fleet, d) multiple (non-consecutive) service time windows at each port of call, and e) 

penalties (by shippers) for late arrival of cargo.  
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6. FLEET DEPLOYMENT PROBLEM WITH UNCERTAIN SAILING SPEEDS 

AND PORT HANDLING TIMES: A GAME THEORETIC APPROACH 

Introduction 

As it underlined in the previous chapter, both MCT operators and liner shipping 

companies have to account for different types of uncertainty in their operations. Drewry 

Maritime Research mentions that at certain liner shipping routes (e.g., Asia-Europe) only 

around 60% of the vessels arrive to the ports of call on time (Cargo Business, 2014). Both 

MCT operators and liner shipping companies have to mitigate negative externalities, 

caused by uncertainties, and maintain efficiency of their operations. This chapter 

overviews different approaches for modeling uncertainty in liner shipping with emphasis 

on vessel sailing and/or port handling times and proposes a new framework, capturing 

uncertainty in port and liner shipping services, which can be used by a liner shipping 

company in the development of robust vessel schedules. 

Overview of the Relevant Literature 

As a result of the literature research it was found that a very few studies focused 

on modeling uncertainty in liner shipping operations (Wang & Meng, 2012c). A detailed 

description of those studies was presented in the previous chapter. A summary of relevant 

studies is outlined in Table 14, including the following: authors, year, modeling port time 

uncertainty, modeling sailing time uncertainty, solution approach used/notes. Those 

studies can be divided in the following groups depending on how the uncertainty was 

captured: 1) assigning statistical distributions for both port and sailing times (Chuang et 

al., 2010), 2) assigning a statistical distribution to one of the components (either port time 

or sailing time), while the other component is estimated based on the objective function 
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and realization of the uncertain parameter (Wang & Meng, 2012a; Wang & Meng, 

2012c), and 3) consideration of multiple scenarios for uncertain port and/or sailing times 

(Brouer et al., 2013; Qi & Song, 2012). Along with studies, described herein, a few 

researchers considered uncertainty in container demand (Wang et al., 2013; Wang et al., 

2014). 

 

Table 14 
Overview of the Literature on Uncertainty in Liner Shipping 
Authors Year Port 

Time 
Sailing 
Time 

Solution Approach/Notes 

Chuang et 
al. 

2010 Statistical 
distribution 

Statistical 
distribution 

Fuzzy EA. Triangular distributions were assigned to 
port and sailing times. 

Qi & Song 2012 Scenario 
analysis 

Objective Simulation-based stochastic approximation method. 
Different levels of port time uncertainty (ranging 
from U[0,0] to U[0,20] hrs.20) were considered. 

Wang & 
Meng 

2012a Statistical 
distribution 

Objective The original program was reformulated as a linear 
problem and solved using CPLEX. The port time 
uncertainty was modeled using uniform distribution, 
while the sailing time contingency was estimated 
based on realization of a port time and an additional 
parameter, denoting hedge against contingency 
(proportional to length of a voyage leg). 

Wang & 
Meng 

2012c Statistical 
distribution 

Objective The original problem was linearized and solved using 
CPLEX. Sample average approximation (SAA) was 
used to address stochastic port waiting and service 
times. Uncertainties in port waiting and handling 
times were modeled using the truncated normal 
distributions. 

Brouer et 
al. (2013) 

2013 Scenario 
analysis 

Scenario 
analysis 

The problem was solved using CPLEX. The 
following disruptive scenarios were modeled: a) 
vessel delays due to weather conditions, b) a port 
closure, c) a berth prioritization, when two vessels 
arrive simultaneously to the port and are scheduled at 
the same berth, and d) an expected port congestion. 

 

 

20 U[a; b] denotes uniform distribution with bounds a and b 
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Ben-Tal and Nemirovski (1998) outlined the following approaches for modeling 

uncertainty: 

1. Post-optimization – uncertainty is initially ignored, but once the optimal 

solution for the problem is found, an additional sensitivity analysis is conducted 

for uncertain parameters; 

2. Stochastic Programming – uncertainty is assumed to be stochastic in nature, 

and a specific statistical distribution is assigned to each uncertain parameter; 

3. Robust Mathematical Programming – several scenarios are considered for 

uncertain parameters. A candidate solution is allowed to violate scenario 

realization, but violations are penalized.  

The first approach does not explicitly capture uncertainty. Ben-Tal and 

Nemirovski (1998) mentioned that the stochastic programming approach might be 

problematic, as it is usually quite difficult to derive probabilistic distributions for 

uncertain parameters (not enough data, errors in fitting the data to a specific statistical 

distribution, etc.). Scenario analysis may be time consuming depending on the number of 

scenarios to be considered. This study will model uncertainty via introduction of upper 

and lower bounds on uncertain parameters (which is an extension of the robust 

mathematical programming). Such approach was used by several researchers in the past 

and was found to be efficient (Ben-Tal & Nemirovski, 1998; Golias et al., 2013; Konur & 

Golias, 2013). 

Problem Description 

The problem, studied herein, is similar to the one, presented in chapter 5 of this 

dissertation. A liner shipping company has to provide service for a shipping route, which 
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includes 𝐼 = {1, … ,𝑛} ports of call (see Figure 36). Each port should be visited once a 

week. A given vessel should arrive to each port of call within specific TW. Late arrivals 

will be penalized (see chapter 5, Figure 37). Weekly demand at each port of call is 

known. Each terminal operator offers various handling rates to the liner shipping 

company. Container handling charges increase, if faster vessel service is requested. The 

vessel has to wait at a given port of call, if it arrives to the next port of call before the 

earliest TW when sailing at the lowest possible speed (see Figure 37). Assumptions 

regarding the bunker consumption will be similar to the ones, adopted in chapter 5.  

Unlike in chapter 5, vessel sailing speed at each leg and port handling time at each 

port of call are assumed to be uncertain. As mentioned earlier, this study will use upper 

and lower bounds for capturing uncertainty of a given parameter. It is assumed that 

longer legs will have larger difference between upper and lower bounds, because sailing 

at the desired speed is more uncertain at longer legs as compared to shorter legs. 

Similarly, faster handling rates will have larger difference between upper and lower 

bounds, because port handling time is more uncertain under the faster handling rate. 

Mathematical Formulation 

A mixed integer non-liner mathematical model for the robust fleet deployment 

problem with uncertain vessel sailing speeds and port handling times RFDP[1] is 

presented next. 

Nomenclature 

Sets 

𝐼 = {1, … ,𝑛} set of ports to be visited 
𝑆𝑖 = {1, … , 𝑠𝑖} set of available handling rates21 at each port 𝑖 ∈ 𝐼  

21 Set of handling rates contains indexes of available handling rates (i.e., if a terminal operator at 
port 𝑖 offers two handling rates 75 TEUs/hr. and 50 TEUs/hr., then 𝑆𝑖 = {1,2}) 
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Decision variables 
𝑥𝑖𝑠 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 =1 if handling rate 𝑠 is selected at port 𝑖 (=0 otherwise) 
 
Auxiliary variables 
𝑞 number of vessels deployed at the given route 
𝑡𝑖𝑎  ∀𝑖 ∈ 𝐼 arrival time to port 𝑖 (hrs.) 
𝑡𝑖𝑑  ∀𝑖 ∈ 𝐼 departure time from port 𝑖 (hrs.) 
𝑤𝑡𝑖 ∀𝑖 ∈ 𝐼 waiting time of a vessel at port 𝑖 (hrs.) 
𝑡𝑖 ∀𝑖 ∈ 𝐼 vessel sailing time at leg 𝑖, connecting ports (𝑖) and (𝑖 + 1) 
𝑓(𝑣𝑖) ∀𝑖 ∈ 𝐼 bunker consumption at leg 𝑖 when sailing at speed 𝑣𝑖 (tons of 

fuel/nmi) 
𝑙𝑡𝑖 ∀𝑖 ∈ 𝐼 vessel late arrival to port 𝑖 (hrs.) 
 
Parameters 
𝛽 unit bunker cost (USD/ton) 
𝑐𝑂𝐶 vessel weekly operating cost (USD/week) 
𝑐𝑤 port waiting cost (USD/hr.) 
𝑐𝑙𝑡 delayed arrival penalty (USD/hr.) 
𝑙𝑖 ∀𝑖 ∈ 𝐼 length of leg 𝑖 (nmi) 
𝑣𝑚𝑖𝑛 minimum vessel sailing speed (knots) 
𝑣𝑚𝑎𝑥 maximum vessel sailing speed (knots) 
𝑞𝑚𝑎𝑥  maximum number of deployed vessels 
𝑡𝑤𝑖𝑒  ∀𝑖 ∈ 𝐼 the earliest start at port 𝑖 (hrs.) 
𝑡𝑤𝑖𝑙  ∀𝑖 ∈ 𝐼 the latest start at port 𝑖 (hrs.) 
𝑡𝑐𝑖𝑠 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 handling cost at port 𝑖 under handling rate 𝑠 (USD) 
𝒗𝒊�  ∀𝑖 ∈ 𝐼 vessel sailing speed at leg 𝑖, connecting ports (𝑖) and (𝑖 + 1)  
𝒑𝒊𝒔�  ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 vessel handling time at port 𝑖 under handling rate 𝑠 (hrs.) 
�𝑣𝑖𝑢,𝑣𝑖𝑙� ∀𝑖 ∈ 𝐼 upper and lower bounds on sailing speed at leg 𝑖 (knots) 
[𝑝𝑖𝑠𝑢 ,𝑝𝑖𝑠𝑙 ] ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 upper and lower bounds on vessel handling time at port 𝑖 under 

handling rate 𝑠 (hrs.) 
 

The objective (54) minimizes the total route service cost, which includes 5 

components: 1) total vessel weekly operating cost, 2) total bunker consumption cost, 3) 

total port handling cost, 4) total port waiting cost, and 5) total late arrival penalty. 

 

𝑚𝑖𝑛 [𝑐𝑂𝐶𝑞 + 𝛽�𝑙𝑖𝑓(𝒗𝒊� )
𝑖∈𝐼

+ ��𝑡𝑐𝑖𝑠𝑥𝑖𝑠
𝑠∈𝑆𝑖𝑖∈𝐼

+ �𝑐𝑤𝑤𝑡𝑖
𝑖∈𝐼

+ �𝑐𝑙𝑡𝑙𝑡𝑖
𝑖∈𝐼

] (54) 

 
Denote the objective (54) as 𝑍(𝑞,𝒗�, 𝑥,𝑤𝑡, 𝑙𝑡). Since vessel sailing speeds and port 

handling times are not known with certainty, the liner shipping company aims to develop 
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a robust schedule by minimizing the average total route service cost and range of the total 

route service cost. 

 
RFDP[1] 

The objective (55) minimizes the average total route service cost. 

𝑚𝑖𝑛
𝑣

[
1
2

× (𝑚𝑎𝑥
𝑥

{𝑍(𝑞,𝒗�,𝒙�,𝑤𝑡, 𝑙𝑡)} + 𝑚𝑖𝑛
𝑥

{𝑍(𝑞,𝒗�,𝒙�,𝑤𝑡, 𝑙𝑡)})] (55) 

 
The objective (56) minimizes range of the total route service cost. 

𝑚𝑖𝑛
𝑣

[𝑚𝑎𝑥
𝑥

{𝑍(𝑞,𝒗�,𝒙�,𝑤𝑡, 𝑙𝑡)} −𝑚𝑖𝑛
𝑥

{𝑍(𝑞,𝒗�,𝒙�,𝑤𝑡, 𝑙𝑡)}] (56) 

 
Subject to:   

Constraints set (57) indicate that only one handling rate can be selected at each port of 

call. 

�𝑥𝑖𝑠
𝑠∈𝑆𝑖

= 1 ∀𝑖 ∈ 𝐼 (57) 

 
Constraints set (58) define range of a handling time at the port 𝑖 ∈ 𝐼 under service rate 

𝑠 ∈ 𝑆𝑖. 

𝑝𝑖𝑠𝑙 ≤ 𝒑𝒊𝒔� ≤ 𝑝𝑖𝑠𝑢  ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 (58) 
 
Constraints set (59) calculate a vessel sailing time between ports 𝑖 and 𝑖 + 1. 

𝑡𝑖 =
𝑙𝑖
𝒗𝒊�

 ∀𝑖 ∈ 𝐼 (59) 

 
Constraints set (60) ensure that a vessel cannot arrive at the port 𝑖 ∈ 𝐼 before the agreed 

TW. 

𝑡𝑖𝑎 ≥ 𝑡𝑤𝑖𝑒 ∀𝑖 ∈ 𝐼 (60) 
 
Constraints sets (61) and (62) compute waiting time at the port 𝑖 ∈ 𝐼, necessary to ensure 

feasibility of arriving to the next port of call. 
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𝑡𝑖𝑎 + ∑ (𝒑𝒊𝒔�𝑠∈𝑆𝑖 𝑥𝑖𝑠) + 𝑤𝑡𝑖 + 𝑡𝑖 ≥ 𝑡𝑤𝑖+1𝑒  ∀𝑖 < |𝐼|  (61) 
𝑡𝑖𝑎 + ∑ (𝒑𝒊𝒔�𝑠∈𝑆𝑖 𝑥𝑖𝑠) + 𝑤𝑡𝑖 + 𝑡𝑖 − 168𝑞 ≥ 𝑡𝑤1𝑒 ∀𝑖 = |𝐼|  (62) 
 
Constraints set (63) calculate a vessel departure time from the port 𝑖 ∈ 𝐼.  

𝑡𝑖𝑑 = 𝑡𝑖𝑎 + ∑ (𝒑𝒊𝒔�𝑠∈𝑆𝑖 𝑥𝑖𝑠) + 𝑤𝑡𝑖 ∀𝑖 ∈ 𝐼  (63) 
 
Constraints set (64) estimate hours of late arrival to the port 𝑖 ∈ 𝐼. 

𝑙𝑡𝑖 ≥  𝑡𝑖𝑎 −  𝑡𝑤𝑖𝑙  ∀𝑖 ∈ 𝐼  (64) 
 
Constraints sets (65) and (66) compute a vessel arrival to the next port of call 𝑖 ∈ 𝐼. 

𝑡𝑖+1𝑎 = 𝑡𝑖𝑑 + 𝑡𝑖 ∀𝑖 < |𝐼|  (65) 
𝑡1𝑎 = 𝑡𝑖𝑑 + 𝑡𝑖 − 168𝑞 ∀𝑖 = |𝐼|  (66) 
 
Constraints set (67) ensure weekly service frequency (168 denotes the total number of 

hours in a week). The right-hand-side of an equality estimates the total turnaround time 

of a vessel at the given route (where the first component is the total sailing time, the 

second component is the total port handling time, and the third component is the total 

port waiting time). 

168𝑞 ≥�𝑡𝑖
𝑖∈𝐼

+ ��(𝒑𝒊𝒔�𝑥𝑖𝑠
𝑠∈𝑆𝑖𝑖∈𝐼

) + �𝑤𝑡𝑖
𝑖∈𝐼

 (67) 

 
Constraints set (68) ensure that the number of vessels to be deployed at the given route 

should not exceed the number of available vessels. 

𝑞 ≤ 𝑞𝑚𝑎𝑥 (68) 
 
Constraints set (69) show that a vessel sailing speed should be within specific limits. 

𝑣𝑚𝑖𝑛 ≤ 𝒗𝒊� ≤ 𝑣𝑚𝑎𝑥 ∀𝑖 ∈ 𝐼 (69) 
 
Constraints set (70) define range of a sailing speed at leg 𝑖 ∈ 𝐼. 

𝑣𝑖𝑙 ≤ 𝒗𝒊� ≤ 𝑣𝑖𝑢 ∀𝑖 ∈ 𝐼 (70) 
 
Constraints (71) – (73) define ranges of parameters and variables. 
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𝑥𝑖𝑠  ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 (71) 
𝑞, 𝑞𝑚𝑎𝑥 ∈ 𝑁 ∀𝑖 ∈ 𝐼 (72) 
𝒗𝒊� , 𝑡𝑖𝑎 , 𝑡𝑖𝑑 ,𝑤𝑡𝑖, 𝑡𝑖,𝑓(𝑣𝑖), 𝑙𝑡𝑖,𝛽, 𝑐𝑂𝐶 , 𝑐𝑤 , 𝑐𝑙𝑡, 𝑙𝑖 , 𝑣𝑚𝑖𝑛,𝑣𝑚𝑎𝑥,𝒑𝒊𝒔� , 𝑡𝑤𝑖𝑒 , 𝑡𝑤𝑖𝑙 , 𝑠𝑐𝑖𝑠 ∈ 𝑅𝑅+ ∀𝑖

∈ 𝐼, 𝑠 ∈ 𝑆𝑖 
(73) 

 
 

Bi-level Model Formulation 

Both objective functions (55) and (56) contain two optimization problems (i.e., 

maximization and minimization of the total route service cost). To overcome this issue 

we reformulate RFDP as a bi-level bi-objective optimization problem BRFDP. Denote 

𝑣𝑖 as a realization of the uncertain vessel sailing speed 𝒗𝒊�  at leg 𝑖, and 𝑝𝑖𝑠 as a realization 

of the uncertain handling time  𝒑𝒊𝒔�   at port 𝑖 under handling rate 𝑠. Realizations of 

uncertain vessel sailing speeds and port handling times can be assigned using uniform 

distribution. Denote [𝑄𝑀𝐴𝑋 ,𝑋𝑀𝐴𝑋 ,𝑊𝑇𝑀𝐴𝑋 , 𝐿𝑇𝑀𝐴𝑋] and [𝑄𝑀𝐼𝑁 ,𝑋𝑀𝐼𝑁 ,𝑊𝑇𝑀𝐼𝑁 , 𝐿𝑇𝑀𝐼𝑁] as 

number of vessels, port handling rate, port waiting time, and hours of late vessel arrivals 

that maximize and minimize the total route service cost of the given liner shipping 

schedule for given realizations 𝑣𝑖 and 𝑝𝑖𝑠. 

BRFDP[1] 

Upper Level: 

The objective (74) minimizes the average total route service cost. 

𝑚𝑖𝑛
𝑣

[
1
2

× ({𝑍(𝑄𝑀𝐴𝑋 ,𝒗�,𝑋𝑀𝐴𝑋 ,𝑊𝑇𝑀𝐴𝑋 , 𝐿𝑇𝑀𝐴𝑋)} + {𝑍(𝑄𝑀𝐼𝑁 ,𝒗�,𝑋𝑀𝐼𝑁 ,𝑊𝑇𝑀𝐼𝑁 , 𝐿𝑇𝑀𝐼𝑁)})] (74) 

 
The objective (75) minimizes range of the total route service cost. 

𝑚𝑖𝑛
𝑣

[{𝑍(𝑄𝑀𝐴𝑋 ,𝒗�,𝑋𝑀𝐴𝑋 ,𝑊𝑇𝑀𝐴𝑋 , 𝐿𝑇𝑀𝐴𝑋)} − {𝑍(𝑄𝑀𝐼𝑁 ,𝒗�,𝑋𝑀𝐼𝑁 ,𝑊𝑇𝑀𝐼𝑁 , 𝐿𝑇𝑀𝐼𝑁)}] (75) 

 
Subject to:   

Constraints sets (57) – (73) 
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Lower Level: 

[𝑄𝑀𝐴𝑋,𝑋𝑀𝐴𝑋, 𝐿𝑇𝑀𝐴𝑋,𝑊𝑇𝑀𝐴𝑋] = 𝑎𝑟𝑔𝑚𝑎𝑥[{𝑍(𝑞, 𝑣,𝒙�,𝑤𝑡, 𝑙𝑡)}] (76) 
 
Subject to:   

Constraints sets (57) – (73) 

[𝑄𝑀𝐼𝑁,𝑋𝑀𝐼𝑁 ,𝐿𝑇𝑀𝐼𝑁,𝑊𝑇𝑀𝐼𝑁] = 𝑎𝑟𝑔𝑚𝑖𝑛[{𝑍(𝑞, 𝑣,𝒙�,𝑤𝑡, 𝑙𝑡)}] (77) 
 
Subject to:   

Constraints sets (57) – (73) 

Complexity and Solution Algorithm 

Bi-level optimization problems are non-convex and difficult to solve using exact 

optimization algorithms (Golias et al., 2013; Konur & Golias, 2013). A stochastic search 

algorithm should be developed to solve BRFDP[1]. However, lower level problems (76) 

and (77) can be solved optimally using CPLEX. Despite this fact the future research may 

focus on the development of efficient heuristics for solving lower level problems faster 

with acceptable optimality gaps in order to reduce the computational time, required for 

solving BRFDP[1]. 

Conclusions and Future Research 

 The future research may focus on the following: a) design of the solution 

algorithm for BRFDP[1], b) development of additional heuristics to facilitate 

convergence of the algorithm, c) conduct numerical experiments for one of the liner 

shipping routes. 
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7. CONCLUSIONS AND FUTURE RESEARCH 

Maritime transportation plays a very important role for the global trade. The 

amount of cargos, carried by vessels, increase from year to year. Taking into account 

international seaborne trade tendencies, MCT operators and liner shipping companies 

have to improve efficiency of their operations in order to meet the growing demand. This 

dissertation proposes and models a set of alternatives that can enhance MCT operations 

and improve efficiency of the liner shipping services. As for MCT operations, it was 

found that the floaterm concept, when additional QCs were introduced for container 

handling, substantially reduced the vessel service makespan and improved resilience in 

case of disruptive events especially for scenarios with significant transshipment volumes. 

The suggested collaborative agreement between dedicated and multi-user MCT operators, 

when some of the vessels, arriving for the service to dedicated MCT, could be diverted 

for the service during specific time windows at a multi-user MCT, resulted in significant 

total vessel service cost savings. 

As for liner shipping services, this dissertation proposes and evaluates a new 

contractual agreement between liner shipping companies and MCT operators, according 

to which MCT operators offered various handling rate options to a liner shipping 

company. The suggested policy yielded substantial total route service cost savings. 

Besides, the scope of this work included development of the novel framework for 

capturing uncertainty in liner shipping operations via hierarchical optimization. The 

future research avenues include the following: 

1. Simulation modeling of floaterm MCTs 

a) capturing ITV interference 
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b) implementing optimal ITV deployment strategies 

c) accounting for terminal congestion 

d) modeling different storage yard strategies and areas for hazmat, overweight, 

oversized, and refrigerator containers. 

2. Berth scheduling at dedicated MCTs with excessive demand 

a) cost functions for penalties/premiums based on vessel size and load 

b) vessel priorities 

c) multiple vessel service per time window 

d) adaptive mutation operators to improve solution quality and convergence rates 

e) vessel assignment heuristics during mutation. 

3. Fleet deployment problem with variable sailing speeds and port handling 

times 

a) apply the proposed methodology for multiple service routes 

b) introduce heterogeneous vessel fleet 

c) multiple TWs at each port of call 

d) late port arrival penalties by shippers. 

4. Fleet deployment problem with uncertain sailing speeds and port handling 

times: a game theoretic approach 

a) design of the solution algorithm  

b) development of additional heuristics to facilitate convergence of the algorithm 

c) conduct numerical experiments for one of the liner shipping routes. 
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