63 research outputs found

    Controlling Concurrent Change - A Multiview Approach Toward Updatable Vehicle Automation Systems

    Get PDF
    The development of SAE Level 3+ vehicles [{SAE}, 2014] poses new challenges not only for the functional development, but also for design and development processes. Such systems consist of a growing number of interconnected functional, as well as hardware and software components, making safety design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough systems engineering becomes a key requirement, which enables traceability between different design viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of such systems. Formal models can in turn assist in keeping track of how the different viewpoints relate to each other and how the interplay of components affects the overall system behavior. Based on experience from the project Controlling Concurrent Change, this paper presents an approach towards model-based integration and verification of a cause effect chain for a component-based vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers necessary aspects of a design in individual architectural views, e.g. safety and timing. In the synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into the design to ensure adherence to the model. We present a use case description for an environment perception system, starting with a functional architecture, which is the basis for componentization of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we are able to map the reasoning done during verification to vehicle behavior

    Towards QoS-Based Embedded Machine Learning

    Get PDF
    Due to various breakthroughs and advancements in machine learning and computer architectures, machine learning models are beginning to proliferate through embedded platforms. Some of these machine learning models cover a range of applications including computer vision, speech recognition, healthcare efficiency, industrial IoT, robotics and many more. However, there is a critical limitation in implementing ML algorithms efficiently on embedded platforms: the computational and memory expense of many machine learning models can make them unsuitable in resource-constrained environments. Therefore, to efficiently implement these memory-intensive and computationally expensive algorithms in an embedded computing environment, innovative resource management techniques are required at the hardware, software and system levels. To this end, we present a novel quality-of-service based resource allocation scheme that uses feedback control to adjust compute resources dynamically to cope with the varying and unpredictable workloads of ML applications while still maintaining an acceptable level of service to the user. To evaluate the feasibility of our approach we implemented a feedback control scheduling simulator that was used to analyze our framework under various simulated workloads. We also implemented our framework as a Linux kernel module running on a virtual machine as well as a Raspberry Pi 4 single board computer. Results illustrate that our approach was able to maintain a sufficient level of service without overloading the processor as well as providing an energy savings of almost 20% as compared to the native resource management in Linux

    Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA

    Get PDF
    Dissertação de mestrado em Informatics EngineeringIn the last few years, the automotive industry has relied heavily on deep learning applications for perception solutions. With data-heavy sensors, such as LiDAR, becoming a standard, the task of developing low-power and real-time applications has become increasingly more challenging. To obtain the maximum computational efficiency, no longer can one focus solely on the software aspect of such applications, while disregarding the underlying hardware. In this thesis, a hardware-software co-design approach is used to implement an inference application leveraging the SqueezeSegV3, a LiDAR-based convolutional neural network, on the Versal ACAP VCK190 FPGA. Automotive requirements carefully drive the development of the proposed solution, with real-time performance and low power consumption being the target metrics. A first experiment validates the suitability of Xilinx’s Vitis-AI tool for the deployment of deep convolutional neural networks on FPGAs. Both the ResNet-18 and SqueezeNet neural networks are deployed to the Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190 FPGAs. The results show that both networks achieve far more than the real-time requirements while consuming low power. Compared to an NVIDIA RTX 3090 GPU, the performance per watt during both network’s inference is 12x and 47.8x higher and 15.1x and 26.6x higher respectively for the Zynq UltraScale+ MPSoC ZCU104 and the Versal ACAP VCK190 FPGA. These results are obtained with no drop in accuracy in the quantization step. A second experiment builds upon the results of the first by deploying a real-time application containing the SqueezeSegV3 model using the Semantic-KITTI dataset. A framerate of 11 Hz is achieved with a peak power consumption of 78 Watts. The quantization step results in a minimal accuracy and IoU degradation of 0.7 and 1.5 points respectively. A smaller version of the same model is also deployed achieving a framerate of 19 Hz and a peak power consumption of 76 Watts. The application performs semantic segmentation over all the point cloud with a field of view of 360°.Nos últimos anos a indústria automóvel tem cada vez mais aplicado deep learning para solucionar problemas de perceção. Dado que os sensores que produzem grandes quantidades de dados, como o LiDAR, se têm tornado standard, a tarefa de desenvolver aplicações de baixo consumo energético e com capacidades de reagir em tempo real tem-se tornado cada vez mais desafiante. Para obter a máxima eficiência computacional, deixou de ser possível focar-se apenas no software aquando do desenvolvimento de uma aplicação deixando de lado o hardware subjacente. Nesta tese, uma abordagem de desenvolvimento simultâneo de hardware e software é usada para implementar uma aplicação de inferência usando o SqueezeSegV3, uma rede neuronal convolucional profunda, na FPGA Versal ACAP VCK190. São os requisitos automotive que guiam o desenvolvimento da solução proposta, sendo a performance em tempo real e o baixo consumo energético, as métricas alvo principais. Uma primeira experiência valida a aptidão da ferramenta Vitis-AI para a implantação de redes neuronais convolucionais profundas em FPGAs. As redes ResNet-18 e SqueezeNet são ambas implantadas nas FPGAs Zynq UltraScale+ MPSoC ZCU104 e Versal ACAP VCK190. Os resultados mostram que ambas as redes ultrapassam os requisitos de tempo real consumindo pouca energia. Comparado com a GPU NVIDIA RTX 3090, a performance por Watt durante a inferência de ambas as redes é superior em 12x e 47.8x e 15.1x e 26.6x respetivamente na Zynq UltraScale+ MPSoC ZCU104 e na Versal ACAP VCK190. Estes resultados foram obtidos sem qualquer perda de accuracy na etapa de quantização. Uma segunda experiência é feita no seguimento dos resultados da primeira, implantando uma aplicação de inferência em tempo real contendo o modelo SqueezeSegV3 e usando o conjunto de dados Semantic-KITTI. Um framerate de 11 Hz é atingido com um pico de consumo energético de 78 Watts. O processo de quantização resulta numa perda mínima de accuracy e IoU com valores de 0.7 e 1.5 pontos respetivamente. Uma versão mais pequena do mesmo modelo é também implantada, atingindo uma framerate de 19 Hz e um pico de consumo energético de 76 Watts. A aplicação desenvolvida executa segmentação semântica sobre a totalidade das nuvens de pontos LiDAR, com um campo de visão de 360°

    Deterministic Memory Abstraction and Supporting Multicore System Architecture

    Get PDF
    Poor time predictability of multicore processors has been a long-standing challenge in the real-time systems community. In this paper, we make a case that a fundamental problem that prevents efficient and predictable real-time computing on multicore is the lack of a proper memory abstraction to express memory criticality, which cuts across various layers of the system: the application, OS, and hardware. We, therefore, propose a new holistic resource management approach driven by a new memory abstraction, which we call Deterministic Memory. The key characteristic of deterministic memory is that the platform-the OS and hardware-guarantees small and tightly bounded worst-case memory access timing. In contrast, we call the conventional memory abstraction as best-effort memory in which only highly pessimistic worst-case bounds can be achieved. We propose to utilize both abstractions to achieve high time predictability but without significantly sacrificing performance. We present deterministic memory-aware OS and architecture designs, including OS-level page allocator, hardware-level cache, and DRAM controller designs. We implement the proposed OS and architecture extensions on Linux and gem5 simulator. Our evaluation results, using a set of synthetic and real-world benchmarks, demonstrate the feasibility and effectiveness of our approach

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    VEGa : a high performance vehicular Ethernet gateway on hybrid FPGA

    Get PDF
    Modern vehicles employ a large amount of distributed computation and require the underlying communication scheme to provide high bandwidth and low latency. Existing communication protocols like Controller Area Network (CAN) and FlexRay do not provide the required bandwidth, paving the way for adoption of Ethernet as the next generation network backbone for in-vehicle systems. Ethernet would co-exist with safety-critical communication on legacy networks, providing a scalable platform for evolving vehicular systems. This requires a high-performance network gateway that can simultaneously handle high bandwidth, low latency, and isolation; features that are not achievable with traditional processor based gateway implementations. We present VEGa, a configurable vehicular Ethernet gateway architecture utilising a hybrid FPGA to closely couple software control on a processor with dedicated switching circuit on the reconfigurable fabric. The fabric implements isolated interface ports and an accelerated routing mechanism, which can be controlled and monitored from software. Further, reconfigurability enables the switching behaviour to be altered at run-time under software control, while the configurable architecture allows easy adaptation to different vehicular architectures using high-level parameter settings. We demonstrate the architecture on the Xilinx Zynq platform and evaluate the bandwidth, latency, and isolation using extensive tests in hardware
    • …
    corecore