106 research outputs found

    Intuitive Hand Teleoperation by Novice Operators Using a Continuous Teleoperation Subspace

    Full text link
    Human-in-the-loop manipulation is useful in when autonomous grasping is not able to deal sufficiently well with corner cases or cannot operate fast enough. Using the teleoperator's hand as an input device can provide an intuitive control method but requires mapping between pose spaces which may not be similar. We propose a low-dimensional and continuous teleoperation subspace which can be used as an intermediary for mapping between different hand pose spaces. We present an algorithm to project between pose space and teleoperation subspace. We use a non-anthropomorphic robot to experimentally prove that it is possible for teleoperation subspaces to effectively and intuitively enable teleoperation. In experiments, novice users completed pick and place tasks significantly faster using teleoperation subspace mapping than they did using state of the art teleoperation methods.Comment: ICRA 2018, 7 pages, 7 figures, 2 table

    Synergy-based policy improvement with path integrals for anthropomorphic hands

    Get PDF
    In this work, a synergy-based reinforcement learning algorithm has been developed to confer autonomous grasping capabilities to anthropomorphic hands. In the presence of high degrees of freedom, classical machine learning techniques require a number of iterations that increases with the size of the problem, thus convergence of the solution is not ensured. The use of postural synergies determines dimensionality reduction of the search space and allows recent learning techniques, such as Policy Improvement with Path Integrals, to become easily applicable. A key point is the adoption of a suitable reward function representing the goal of the task and ensuring onestep performance evaluation. Force-closure quality of the grasp in the synergies subspace has been chosen as a cost function for performance evaluation. The experiments conducted on the SCHUNK 5-Finger Hand demonstrate the effectiveness of the algorithm showing skills comparable to human capabilities in learning new grasps and in performing a wide variety from power to high precision grasps of very small objects

    Grasp plannind under task-specific contact constraints

    Get PDF
    Several aspects have to be addressed before realizing the dream of a robotic hand-arm system with human-like capabilities, ranging from the consolidation of a proper mechatronic design, to the development of precise, lightweight sensors and actuators, to the efficient planning and control of the articular forces and motions required for interaction with the environment. This thesis provides solution algorithms for a main problem within the latter aspect, known as the {\em grasp planning} problem: Given a robotic system formed by a multifinger hand attached to an arm, and an object to be grasped, both with a known geometry and location in 3-space, determine how the hand-arm system should be moved without colliding with itself or with the environment, in order to firmly grasp the object in a suitable way. Central to our algorithms is the explicit consideration of a given set of hand-object contact constraints to be satisfied in the final grasp configuration, imposed by the particular manipulation task to be performed with the object. This is a distinguishing feature from other grasp planning algorithms given in the literature, where a means of ensuring precise hand-object contact locations in the resulting grasp is usually not provided. These conventional algorithms are fast, and nicely suited for planning grasps for pick-an-place operations with the object, but not for planning grasps required for a specific manipulation of the object, like those necessary for holding a pen, a pair of scissors, or a jeweler's screwdriver, for instance, when writing, cutting a paper, or turning a screw, respectively. To be able to generate such highly-selective grasps, we assume that a number of surface regions on the hand are to be placed in contact with a number of corresponding regions on the object, and enforce the fulfilment of such constraints on the obtained solutions from the very beginning, in addition to the usual constraints of grasp restrainability, manipulability and collision avoidance. The proposed algorithms can be applied to robotic hands of arbitrary structure, possibly considering compliance in the joints and the contacts if desired, and they can accommodate general patch-patch contact constraints, instead of more restrictive contact types occasionally considered in the literature. It is worth noting, also, that while common force-closure or manipulability indices are used to asses the quality of grasps, no particular assumption is made on the mathematical properties of the quality index to be used, so that any quality criterion can be accommodated in principle. The algorithms have been tested and validated on numerous situations involving real mechanical hands and typical objects, and find applications in classical or emerging contexts like service robotics, telemedicine, space exploration, prosthetics, manipulation in hazardous environments, or human-robot interaction in general

    Planning grasping motions for humanoid robots

    Get PDF
    This paper addresses the problem of obtaining the required motions for a humanoid robot to perform grasp actions trying to mimic the coordinated hand–arm movements humans do. The first step is the data acquisition and analysis, which consists in capturing human movements while grasping several everyday objects (covering four possible grasp types), mapping them to the robot and computing the hand motion synergies for the pre-grasp and grasp phases (per grasp type). Then, the grasp and motion synthesis step is done, which consists in generating potential grasps for a given object using the four family types, and planning the motions using a bi-directional multi-goal sampling-based planner, which efficiently guides the motion planning following the synergies in a reduced search space, resulting in paths with human-like appearance. The approach has been tested in simulation, thoroughly compared with other state-of-the-art planning algorithms obtaining better results, and also implemented in a real robot.Peer ReviewedPostprint (author's final draft

    Motion planning using synergies : application to anthropomorphic dual-arm robots

    Get PDF
    Motion planning is a traditional field in robotics, but new problems are nevertheless incessantly appearing, due to continuous advances in the robot developments. In order to solve these new problems, as well as to improve the existing solutions to classical problems, new approaches are being proposed. A paradigmatic case is the humanoid robotics, since the advances done in this field require motion planners not only to look efficiently for an optimal solution in the classic way, i.e. optimizing consumed energy or time in the plan execution, but also looking for human-like solutions, i.e. requiring the robot movements to be similar to those of the human beings. This anthropomorphism in the robot motion is desired not only for aesthetical reasons, but it is also needed to allow a better and safer human-robot collaboration: humans can predict more easily anthropomorphic robot motions thus avoiding collisions and enhancing the collaboration with the robot. Nevertheless, obtaining a satisfactory performance of these anthropomorphic robotic systems requires the automatic planning of the movements, which is still an arduous and non-evident task since the complexity of the planning problem increases exponentially with the number of degrees of freedom of the robotic system. This doctoral thesis tackles the problem of planning the motions of dual-arm anthropomorphic robots (optionally with mobile base). The main objective is twofold: obtaining robot motions both in an efficient and in a human-like fashion at the same time. Trying to mimic the human movements while reducing the complexity of the search space for planning purposes leads to the concept of synergies, which could be conceptually defined as correlations (in the joint configuration space as well as in the joint velocity space) between the degrees of freedom of the system. This work proposes new sampling-based motion-planning procedures that exploit the concept of synergies, both in the configuration and velocity space, coordinating the movements of the arms, the hands and the mobile base of mobile anthropomorphic dual-arm robots.La planificación de movimientos es un campo tradicional de la robótica, sin embargo aparecen incesantemente nuevos problemas debido a los continuos avances en el desarrollo de los robots. Para resolver esos nuevos problemas, así como para mejorar las soluciones existentes a los problemas clásicos, se están proponiendo nuevos enfoques. Un caso paradigmático es la robótica humanoide, ya que los avances realizados en este campo requieren que los algoritmos planificadores de movimientos no sólo encuentren eficientemente una solución óptima en el sentido clásico, es decir, optimizar el consumo de energía o el tiempo de ejecución de la trayectoria; sino que también busquen soluciones con apariencia humana, es decir, que el movimiento del robot sea similar al del ser humano. Este antropomorfismo en el movimiento del robot se busca no sólo por razones estéticas, sino porque también es necesario para permitir una colaboración mejor y más segura entre el robot y el operario: el ser humano puede predecir con mayor facilidad los movimientos del robot si éstos son antropomórficos, evitando así las colisiones y mejorando la colaboración humano robot. Sin embargo, para obtener un desempeño satisfactorio de estos sistemas robóticos antropomórficos se requiere una planificación automática de sus movimientos, lo que sigue siendo una tarea ardua y poco evidente, ya que la complejidad del problema aumenta exponencialmente con el número de grados de libertad del sistema robótico. Esta tesis doctoral aborda el problema de la planificación de movimientos en robots antropomorfos bibrazo (opcionalmente con base móvil). El objetivo aquí es doble: obtener movimientos robóticos de forma eficiente y, a la vez, que tengan apariencia humana. Intentar imitar los movimientos humanos mientras a la vez se reduce la complejidad del espacio de búsqueda conduce al concepto de sinergias, que podrían definirse conceptualmente como correlaciones (tanto en el espacio de configuraciones como en el espacio de velocidades de las articulaciones) entre los distintos grados de libertad del sistema. Este trabajo propone nuevos procedimientos de planificación de movimientos que explotan el concepto de sinergias, tanto en el espacio de configuraciones como en el espacio de velocidades, coordinando así los movimientos de los brazos, las manos y la base móvil de robots móviles, bibrazo y antropomórficos.Postprint (published version

    Human to robot hand motion mapping methods: review and classification

    Get PDF
    In this article, the variety of approaches proposed in literature to address the problem of mapping human to robot hand motions are summarized and discussed. We particularly attempt to organize under macro-categories the great quantity of presented methods, that are often difficult to be seen from a general point of view due to different fields of application, specific use of algorithms, terminology and declared goals of the mappings. Firstly, a brief historical overview is reported, in order to provide a look on the emergence of the human to robot hand mapping problem as a both conceptual and analytical challenge that is still open nowadays. Thereafter, the survey mainly focuses on a classification of modern mapping methods under six categories: direct joint, direct Cartesian, taskoriented, dimensionality reduction based, pose recognition based and hybrid mappings. For each of these categories, the general view that associates the related reported studies is provided, and representative references are highlighted. Finally, a concluding discussion along with the authors’ point of view regarding future desirable trends are reported.This work was supported in part by the European Commission’s Horizon 2020 Framework Programme with the project REMODEL under Grant 870133 and in part by the Spanish Government under Grant PID2020-114819GB-I00.Peer ReviewedPostprint (published version

    Task-dependent synergies for motion planning of an anthropomorphic dual-arm system

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe paper deals with the problem of motion planning for anthropomorphic dual-arm robots. It introduces a measure of the similarity of the movements needed to solve two given tasks. Planning using this measure to select proper arm synergies for a given task improves the planning performance and the resulting plan.Peer ReviewedPostprint (author's final draft
    corecore