10,306 research outputs found

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    The evolution of cell formation problem methodologies based on recent studies (1997-2008): review and directions for future research

    Get PDF
    This paper presents a literature review of the cell formation (CF) problem concentrating on formulations proposed in the last decade. It refers to a number of solution approaches that have been employed for CF such as mathematical programming, heuristic and metaheuristic methodologies and artificial intelligence strategies. A comparison and evaluation of all methodologies is attempted and some shortcomings are highlighted. Finally, suggestions for future research are proposed useful for CF researchers

    Dynamic Facility Layout for Cellular and Reconfigurable Manufacturing using Dynamic Programming and Multi-Objective Metaheuristics

    Get PDF
    The facility layout problem is one of the most classical yet influential problems in the planning of production systems. A well-designed layout minimizes the material handling costs (MHC), personnel flow distances, work in process, and improves the performance of these systems in terms of operating costs and time. Because of this importance, facility layout has a rich literature in industrial engineering and operations research. Facility layout problems (FLPs) are generally concerned with positioning a set of facilities to satisfy some criteria or objectives under certain constraints. Traditional FLPs try to put facilities with the high material flow as close as possible to minimize the MHC. In static facility layout problems (SFLP), the product demands and mixes are considered deterministic parameters with constant values. The material flow between facilities is fixed over the planning horizon. However, in today’s market, manufacturing systems are constantly facing changes in product demands and mixes. These changes make it necessary to change the layout from one period to the other to be adapted to the changes. Consequently, there is a need for dynamic approaches of FLP that aim to generate layouts with high adaptation concerning changes in product demand and mix. This thesis focuses on studying the layout problems, with an emphasis on the changing environment of manufacturing systems. Despite the fact that designing layouts within the dynamic environment context is more realistic, the SFLP is observed to have been remained worthy to be analyzed. Hence, a math-heuristic approach is developed to solve an SFLP. To this aim, first, the facilities are grouped into many possible vertical clusters, second, the best combination of the generated clusters to be in the final layout are selected by solving a linear programming model, and finally, the selected clusters are sequenced within the shop floor. Although the presented math-heuristic approach is effective in solving SFLP, applying approaches to cope with the changing manufacturing environment is required. One of the most well-known approaches to deal with the changing manufacturing environment is the dynamic facility layout problem (DFLP). DFLP suits reconfigurable manufacturing systems since their machinery and material handling devices are reconfigurable to encounter the new necessities for the variations of product mix and demand. In DFLP, the planning horizon is divided into some periods. The goal is to find a layout for each period to minimize the total MHC for all periods and the total rearrangement costs between the periods. Dynamic programming (DP) has been known as one of the effective methods to optimize DFLP. In the DP method, all the possible layouts for every single period are generated and given to DP as its state-space. However, by increasing the number of facilities, it is impossible to give all the possible layouts to DP and only a restricted number of layouts should be fed to DP. This leads to ignoring some layouts and losing the optimality; to deal with this difficulty, an improved DP approach is proposed. It uses a hybrid metaheuristic algorithm to select the initial layouts for DP that lead to the best solution of DP for DFLP. The proposed approach includes two phases. In the first phase, a large set of layouts are generated through a heuristic method. In the second phase, a genetic algorithm (GA) is applied to search for the best subset of layouts to be given to DP. DP, improved by starting with the most promising initial layouts, is applied to find the multi-period layout. Finally, a tabu search algorithm is utilized for further improvement of the solution obtained by improved DP. Computational experiments show that improved DP provides more efficient solutions than DP approaches in the literature. The improved DP can efficiently solve DFLP and find the best layout for each period considering both material handling and layout rearrangement costs. However, rearrangement costs may include some unpredictable costs concerning interruption in production or moving of facilities. Therefore, in some cases, managerial decisions tend to avoid any rearrangements. To this aim, a semi-robust approach is developed to optimize an FLP in a cellular manufacturing system (CMS). In this approach, the pick-up/drop-off (P/D) points of the cells are changed to adapt the layout with changes in product demand and mix. This approach suits more a cellular flexible manufacturing system or a conventional system. A multi-objective nonlinear mixed-integer programming model is proposed to simultaneously search for the optimum number of cells, optimum allocation of facilities to cells, optimum intra- and inter-cellular layout design, and the optimum locations of the P/D points of the cells in each period. A modified non-dominated sorting genetic algorithm (MNSGA-II) enhanced by an improved non-dominated sorting strategy and a modified dynamic crowding distance procedure is used to find Pareto-optimal solutions. The computational experiments are carried out to show the effectiveness of the proposed MNSGA-II against other popular metaheuristic algorithms

    CHANGE-READY MPC SYSTEMS AND PROGRESSIVE MODELING: VISION, PRINCIPLES, AND APPLICATIONS

    Get PDF
    The last couple of decades have witnessed a level of fast-paced development of new ideas, products, manufacturing technologies, manufacturing practices, customer expectations, knowledge transition, and civilization movements, as it has never before. In today\u27s manufacturing world, change became an intrinsic characteristic that is addressed everywhere. How to deal with change, how to manage it, how to bind to it, how to steer it, and how to create a value out of it, were the key drivers that brought this research to existence. Change-Ready Manufacturing Planning and Control (CMPC) systems are presented as the first answer. CMPC characteristics, change drivers, and some principles of Component-Based Software Engineering (CBSE) are interwoven to present a blueprint of a new framework and mind-set in the manufacturing planning and control field, CMPC systems. In order to step further and make the internals of CMPC systems/components change-ready, an enabling modeling approach was needed. Progressive Modeling (PM), a forward-looking multi-disciplinary modeling approach, is developed in order to modernize the modeling process of today\u27s complex industrial problems and create pragmatic solutions for them. It is designed to be pragmatic, highly sophisticated, and revolves around many seminal principles that either innovated or imported from many disciplines: Systems Analysis and Design, Software Engineering, Advanced Optimization Algorisms, Business Concepts, Manufacturing Strategies, Operations Management, and others. Problems are systemized, analyzed, componentized; their logic and their solution approaches are redefined to make them progressive (ready to change, adapt, and develop further). Many innovations have been developed in order to enrich the modeling process and make it a well-assorted toolkit able to address today\u27s tougher, larger, and more complex industrial problems. PM brings so many novel gadgets in its toolbox: function templates, advanced notation, cascaded mathematical models, mathematical statements, society of decision structures, couplers--just to name a few. In this research, PM has been applied to three different applications: a couple of variants of Aggregate Production Planning (APP) Problem and the novel Reconfiguration and Operations Planning (ROP) problem. The latest is pioneering in both the Reconfigurable Manufacturing and the Operations Management fields. All the developed models, algorithms, and results reveal that the new analytical and computational power gained by PM development and demonstrate its ability to create a new generation of unmatched large scale and scope system problems and their integrated solutions. PM has the potential to be instrumental toolkit in the development of Reconfigurable Manufacturing Systems. In terms of other potential applications domain, PM is about to spark a new paradigm in addressing large-scale system problems of many engineering and scientific fields in a highly pragmatic way without losing the scientific rigor

    A fuzzy multiobjective algorithm for multiproduct batch plant: Application to protein production

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands and proposes an alternative treatment of the imprecision by using fuzzy concepts. For this purpose, we extended a multiobjective genetic algorithm (MOGA) developed in previousworks, taking into account simultaneously maximization of the net present value (NPV) and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The former is computed by comparing the fuzzy computed production time to a given fuzzy production time horizon and the latter is based on the additional fuzzy demand that the plant is able to produce. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage

    A study on battery model parametrisation problem: application-oriented trade-offs between accuracy and simplicity

    Get PDF
    This study is focused on fast low-fidelity battery modelling for online applications. Because the battery parameters change due to variations of battery’s states, the model may need to be updated during operation. This can be achieved through the use of an online parameter identification technique, making use of online current-voltage measurements. The parametrisation algorithm’s speed is a crucial issue in such applications. This paper describes a study exploring the trade-offs between speed and accuracy, considering equivalent circuit models with different levels of complexity and different parameter-fitting algorithms. A visual investigation of the battery parametrisation problem is also proposed by obtaining battery model identification surfaces which help us to avoid unnecessary complexities. Three standard fitting algorithms are used to parametrise battery models using current-voltage measurements. For each level of complexity, the algorithms performances are evaluated using experimental data from a small NiMH battery pack. An application-oriented view on this trade-offs is discussed which demonstrates that the final target of the battery parametrisation problem can significantly affect the choice of the fitting algorithm and battery model structur

    Cell Production System Design: A Literature Review

    Get PDF
    Purpose In a cell production system, a number of machines that differ in function are housed in the same cell. The task of these cells is to complete operations on similar parts that are in the same group. Determining the family of machine parts and cells is one of the major design problems of production cells. Cell production system design methods include clustering, graph theory, artificial intelligence, meta-heuristic, simulation, mathematical programming. This article discusses the operation of methods and research in the field of cell production system design. Methodology: To examine these methods, from 187 articles published in this field by authoritative scientific sources, based on the year of publication and the number of restrictions considered and close to reality, which are searched using the keywords of these restrictions and among them articles Various aspects of production and design problems, such as considering machine costs and cell size and process routing, have been selected simultaneously. Findings: Finally, the distribution diagram of the use of these methods and the limitations considered by their researchers, shows the use and efficiency of each of these methods. By examining them, more efficient and efficient design fields of this type of production system can be identified. Originality/Value: In this article, the literature on cell production system from 1972 to 2021 has been reviewed
    corecore