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bstract

This paper addresses the problem of the optimal design of batch plants with imprecise demands and proposes an alternative treatment of the
mprecision by using fuzzy concepts. For this purpose, we extended a multiobjective genetic algorithm (MOGA) developed in previous works, taking
nto account simultaneously maximization of the net present value (NPV) and two other performance criteria, i.e. the production delay/advance

nd a flexibility criterion. The former is computed by comparing the fuzzy computed production time to a given fuzzy production time horizon and
he latter is based on the additional fuzzy demand that the plant is able to produce. The methodology provides a set of scenarios that are helpful to
he decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage.
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. Introduction

In recent years, there has been an increased interest in the
esign of batch processes due to the growth of specialty chem-
cal, pharmaceutical, and related industries, because they are a
referred operating method for manufacturing small volumes of
igh-value products. The market demand for such products is
sually changeable, and at the stage of conceptual design of a
atch plant, it is almost impossible to obtain the precise infor-
ation on the future product demand over the lifetime of the

lant. However, decisions must be made on the plant capacity.
his capacity should be able to balance the product demand sat-

sfaction and extra plant capacity in order to reduce the loss on
he excessive investment cost or that on market share due to the
arying demands on products. The design of multiproduct batch
lants has been an active area of research over the past decade
e.g. Pinto & Grossmann, 1998; Shah, 1998 for reviews). Most

f the work has been yet limited to deterministic approaches,
herein the problem parameters are assumed to be known with

ertainty. However, in reality there can be uncertainty in a num-
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er of factors such as processing times, costs, demands, and
ot all the requirements placed by the technology of the pro-
ess and the properties of the substances are defined. To cope
ith this, there has been a major interest in the development of
ifferent types of probabilistic models that explicitly take into
ccount the various uncertainties (Sahinidis, 2003). It must be
ointed out that in the context of engineering design, the term of
mprecision is used to mean uncertainty in choosing among alter-
atives. For example, Wellons and Reklaitis (1989) proposed an
INLP model for the design of batch plants under uncertainty
ith staged capacity expansions. Based on the structure of mul-

iproduct batch plants, Straub and Grossmann (1992) developed
n efficient procedure to evaluate the expected stochastic flexi-
ility, embedded within an optimization framework for selecting
he design (size and number of parallel equipment). Two-stage
tochastic programming approaches have also been applied
or design under uncertainty (Cao & Yuan, 2002; Harding &
loudas, 1997; Ierapetritou & Pistikopolous, 1996; Petkov &
aranas, 1998).
It must be clearly said that the use of probabilistic models
hat describe the uncertain parameters in terms of probability
istributions in an optimization framework may involve a large
umber of scenarios in the discrete representation of the uncer-
ainty and use complex integration techniques when uncertainty
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Nomenclature

a tax rate (0)
Ap depreciation (MD /year)
Bis batch size for product i in batch stage s (kg)
dij power coefficient for processing time of product

i in batch stage j
Dik duty factor for product i in semi-continuous stage

k (L/kg)
Dp operation cost (MD /year)
f working capital (MD )
gij coefficient for processing time of product i in

batch stage j
H due date (h)
Hi production time of product i (h)
i discount rate (0.1)
i index for products
I total number of products
Inv investment cost (MD )
j index for batch stages
J total number of batch stages
Js total number of batch stages in sub-process s
k index for semi-continuous stages
K total number of semi-continuous stages
Ks total number of semi-continuous stages in sub-

process s
mj number of parallel out-of-phase items in batch

stage j
M number of stages
n number of periods (5)
nk number of parallel out-of-phase items in semi-

continuous stage k
pij processing time of product i in batch stage j (h)
p0

ij constant for calculation of processing time of
product i in batch stage j (h)

P number of products to be produced
Prodi global productivity for product i (kg/h)
Prodlocis local productivity for product i in sub-process s

(kg/h)
Qi demand for product i
Rk processing rate for semi-continuous stage k (L/h)
Rmax maximum feasible processing rate for semi-

continuous stage k (L/h)
Rmin minimum feasible processing rate for semi-

continuous stage k (L/h)
S total number of sub-processes
Sij size factor of product i in batch stage j (L/kg)
Sis size factor of product i in intermediate storage

tanks (L/kg)
Tij cycling time of product i in batch stage j (h)
T L

is limiting cycling time of product i in sub-process
s (h)

Vj size of batch stage j (L)
Vmax maximum feasible size of batch stage j (L)
Vmin minimum feasible size of batch stage j (L)

Vp revenue (MD /year)
Vs size of intermediate storage tank (L)

Greek letters
αj cost factor for batch stage j
βj cost exponent for batch stage j
βk power cost coefficient for semi-continuous stage

k
γs power cost coefficient for intermediate storage
Θ operating time of product i in semi-continuous
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s modeled by continuous distributions. Besides, the use of prob-
bilistic models is realistic only when a historic data set is
vailable for uncertain parameters, which is rarely the case at
he preliminary design stages in new product development.

In this work, fuzzy concepts and arithmetic constitute an alter-
ative to describe the imprecise nature on product demands. For
his purpose, we extended a multiobjective genetic algorithm,
eveloped in previous works (Dietz, Azzaro-Pantel, Pibouleau,

Domenech, 2005, 2006), taking into account simultaneously
he maximization of the net present value (NPV) and two other
erformance criteria, i.e. the production delay/advance and a
exibility criterion. The paper is organized as follows. Section 2

s devoted to a brief process description. Section 3 presents prob-
em formulation and an overview of fuzzy set theory involved in
he fuzzy framework within a multiobjective genetic algorithm.
he presentation is then illustrated by some typical results in
ection 4. Finally, the conclusions on this work are drawn.

. Process description

The case study is a multiproduct batch plant for the produc-
ion of proteins taken from the literature (Montagna, Vecchietti,
ribarren, Pinto, & Asenjo, 2000; Pinto, Montagna, Vecchietti,
ribarren, & Asenjo, 2001). This example is used as a test bench
ince short-cut models describing the unit operations involved in
he process are available. The batch plant involves eight stages
or producing four recombinant proteins, on one hand two ther-
peutic proteins, human insulin (I) and vaccine for hepatitis B
V) and, on the other hand, a food grade protein, chymosin (C)
nd a detergent enzyme, cryophilic protease (P).

Fig. 1 shows the flowsheet of the multiproduct batch plant
onsidered in this study. All the proteins are produced as cells
row in the fermenter (Fer).

Vaccine and protease are considered as being intracellu-
ar: the first microfilter (Mf1) is used to concentrate the cell
uspension, which is then sent to the homogenizer (Hom) for
ell disruption to liberate the intracellular proteins. The second
icrofilter (Mf2) is used to remove the cell debris from the
olution proteins.
The ultrafiltration (Uf1) step is designed to concentrate the

olution in order to minimize the extractor volume. In the
iquid–liquid extractor (Ext), salt concentration (NaCl) is used
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Fig. 1. Multiproduct batc

o first drive the product to a poly-ethylene-glycol (PEG) phase
nd again into an aqueous saline solution in the back extraction.
ltrafiltration (Uf2) is used again to concentrate the solution.
he last stage is finally chromatography (Chr), during which
elective binding is used to better separate the product of interest
rom the other proteins.

Insulin and chymosin are extracellular products. Proteins are
eparated from the cells in the first microfilter (Mf1), where cells
nd some of the supernatant liquid stay behind. To reduce the
mount of valuable products lost in the retentate, extra water
s added to the cell suspension. The homogenizer (Hom) and

icrofilter (Mf2) for cell debris removal are not used when
he product is extracellular. Nevertheless, the ultrafilter (Uf1) is
ecessary to concentrate the dilute solution prior to extraction.

The final step of extraction (Ext), ultrafiltration (Uf2) and
hromatography (Chr) are common to both the extracellular and
ntracellular products.

. Problem formulation

.1. Batch plant design and optimization criteria

In previous works (Dietz et al., 2005, 2006), batch plant
esign was carried out minimizing the investment cost and
he production system was represented using discrete-event
imulation techniques in order to take into account different pro-
uction policies. Two strategies for campaign policies, either
onoproduct or multiproduct, were tested. In this work, only

he monoproduct campaign policy was considered, so that the
omputation of cycle time can be easily implemented using
he classical formulation proposed in Montagna et al. (2000),
nvolving size and time equations as well as constraints. The
daptations made are given in what follows.

Let us recall here that the methodology proposed by
ontagna et al. (2000) was initially based on a mixed inte-

er nonlinear programming approach solved within GAMS
odeling environment (DICOPT module) (Brooke, Kendrick,

eeraus, & Raman, 1998). A similar formulation was adopted

n this work but the optimization problem is solved by an
xtended version of the multiobjective genetic algorithm previ-
usly developed by Dietz et al. (2005, 2006). The model uses the
t for protein production.

ormulation presented in Modi and Karimi (1989), then modi-
ed in Xu, Zheng, and Cheng (1993), for multiproduct batch
lant design formulation. It considers not only treatment in
atch stages, which usually appears in all kinds of formulation,
ut also represents semi-continuous units that are part of the
hole process (pumps, heat exchangers, etc.). Let us recall that
semi-continuous unit is defined as a continuous unit working
y alternating low-activity and normal activity periods. Besides,
his formulation takes into account short-term or mid-term inter-

ediate storage tanks. They are used to divide the whole process
nto sub-processes, in order to store materials corresponding to
he difference of each sub-process productivity. This representa-
ion mode confers to the plant a major flexibility for numerical
esolution, by preventing the whole process production from
eing paralysed by one bottleneck stage. So, a batch plant is
nally represented by series of batch stages (B), semi-continuous
tages (SC) and storage tanks (T).

The model considers the synthesis of I products treated in
batch stages and K semi-continuous stages. Each batch stage

onsists of mj out-of-phase parallel items of same size Vj. Each
emi-continuous stage consists of nk out-of-phase parallel items
f same processing rate Rk. The item size (continuous vari-
bles) and equipment number per stage (discrete variables) are
ounded. The S − 1 storage tanks, of size V ∗

s , divide the whole
rocess into S sub-processes.

The quantities which are considered as imprecise are denoted
ith a ∼-symbol and concern explicitly production requirements

nd a horizon time constraint for each product. The problem
ormulation is subjected to three kinds of constraints:

(i) Variable bounding:

Vmin ≤ Vj ≤ Vmax ∀j ∈ {1, . . . , J} (1)

Rmin ≤ Rk ≤ Rmax ∀k ∈ {1, . . . , K} (2)

(ii) Time constraint: the total production time for each product
˜
Hi can be deduced from demands and productivities:

I∑
i=1

H̃i =
I∑

i=1

Q̃i

Prodi

(3)
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where Q̃i is the demand for product I which is imprecise
by nature.

iii) Constraint on productivities: the global productivity for
product i (of the whole process) is equal to the lowest local
productivity (of each sub-process s):

Prodi = min
s ∈ S

[Prodlocis] ∀i ∈ {1, . . . , I} (4)

These local productivities are calculated from the following
quations:

a) Local productivities for product i in sub-process s:

Prodlocis = Bis

T L
is

∀i ∈ {1, . . . , I}; ∀s ∈ {1, . . . , S} (5)

b) Limiting cycle time for product i in sub-process s:

T L
is = max

j ∈ Js,k ∈ Ks

[
Tij, Θik

]
∀i ∈ {1, . . . , I}; ∀s ∈ {1, . . . , S} (6)

Js and Ks are respectively the sets of batch and semi-
continuous stages in sub-process s.

c) Cycle time for product I in batch stage j:

Tij = Θik + Θi(k+1) + pij

mj

∀i ∈ {1, . . . , I}; ∀j ∈ {1, . . . , J} (7)

k and k + 1 represent the semi-continuous stages before and
after batch stage j.

d) Processing time of product i in batch stage j:
A classical formula such as

pij = p0
ij + gijB

dij
is

∀i ∈ {1, . . . , I}; ∀j ∈ {1, . . . , Js}; ∀s ∈ {1, . . . , S} (8)

for the computation was used by Montagna et al. (2000)
to obtain the processing time of product i in batch stage j.
Instead, we used here the computation procedures devel-
oped by Dietz et al. (2005, 2006) to explicitly calculate the
processing time as a function of the operating parameters at
each processing step.

The general form of the involved model is proposed as
follows:

(V s
batch, C

s
i , X

s
0, X

s
1, X

s
2, effluents)

= fi(V
e
batch, C

e
i , X

e
0, X

e
1, X

e
2, operating conditions) (9)

The objective is to compute batch size, concentration and
composition at each processing step output, as well as the
effluent as a function fi of the input conditions.

More detail can be found in Dietz et al. (2005, 2006).
e) Operating time for product i in semi-continuous stage k:
Θik = BisDik

Rknk

∀i ∈ {1, . . . , I}; ∀k ∈ {1, . . . , Ks};

∀s ∈ {1, . . . , S} (10)
f) Batch size of product i in sub-process s:
Instead of using a classical formula involving size factors

such as

Bis = min
j ∈ Js

[
Vj

Sij

]
∀i ∈ {1, . . . , I}; ∀s ∈ {1, . . . , S} (11)

the batch size for each product is given by the maximal value
that can be treated without splitting.

Finally, the size of intermediate storage tanks is estimated
as the highest difference between the batch sizes treated by
two successive sub-processes:

V s = max
i ∈ I

[ProdiSis(T
L
is + T L

i(s+1) − Θit − Θi(t+1))]

∀s ∈ {1, . . . , S − 1} (12)

A key-point of the procedure is the computation of the so-
alled cycle time TLi for each product, which corresponds to the
imiting time, i.e. the time between two consecutive batches of
he product. The objective is to determine the number and size
f parallel equipment units/storage as well as some key process
ariables in order to satisfy one or several criteria (see Dietz et al.,
005), for a complete description of the problem. Although the
inimizing investment is most often considered in the dedicated

iterature, it is not the most adequate objective for the optimal
esign problem. In real applications, designers preferentially
ot only consider to maximize the net present value (NPV),
ut also to satisfy a due date. The corresponding mathematical
xpressions of the objective functions are proposed as follows:

Maximize the net present value defined in (13):

ãx(NP̃V) = Max(f̃1) =

−Inv − f +
n∑

p=1

(Ṽp − D̃p − Ap)(1 − a) + Ap

(1 + i)n
+ f

(1 + i)n

(13)

here Inv is the investment cost given by (14):

nv =
M∑

j=1

NjαjV
βj
j (14)

= 0.15 Inv (15)

˜
p =

N∑
i=1

CPi Q̃i (16)

˜
P =

N∑
i=1

M∑
j=1

CEj

Q̃i

Bis

+ COi Q̃i (17)

p = I

n
(18)

nd
m̃in(advance/delay) = Mĩn(f̃2) =
∣∣∣∣∣∣H̃ −

P∑
p=1

H̃i

∣∣∣∣∣∣ penalization

(19)
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∀α
˜ represents the requirement on total time for production, which
s part of customers’ specifications. Nevertheless, a crisp value

ay be difficult to determine a priori and a more appropriate
ay is to consider tolerances on this quantity. This is why a
-symbol is also used at this level.

The definition of process and decision parameters is listed in
omenclature.
The penalization term in (19) is equal to an arbitrary value

f 1/ω for an advance and ω for a delay in order to penalize
ore delays than advances. A sensitivity analysis leads to adopt
value of 4 for ω. Finally, an additional criterion was com-

uted in case of an advance (respectively a delay), representing
he additional production that the batch plant is able to pro-
uce. Without going further in the detailed presentation of the
omputation procedure, it can be simply said that a flexibility
ndex (called criterion f3) is computed by dividing the potential
apacity of the plant by its actual value.

ax(flexibility index) = max(f3) (20)

A key-point of the proposed approach which is presented in
he following section is to consider all the criteria simultaneously
ather than combine them into one hybrid criterion reflecting the
ifferent aspects. A thorough comparison of such an approach
ithin a crisp framework was already performed (Dietz, 2004).
weighting sum, i.e. the function to optimize is the weighted

um of the set of objective function was computed. The main
rawback is due to the different values to assign the weights
o lead to the so-called Pareto front, for which the points may
e not uniformly distributed and may require a great number of
imulations to be constituted. This is why this technique was
iscarded.

.2. Overview of fuzzy multiobjective genetic algorithm
pproach

In the context of engineering design, an imprecise variable
s a variable that may potentially assume any value within a
ossible range because the designer does not know a priori the
nal value that will emerge from the design process. The fuzzy
et theory was introduced (Zadeh, 1975) to deal with problems
n which a source of vagueness is involved. It is well-recognized
hat fuzzy set theory offers a relevant framework to model impre-
ision.
.2.1. Representation of fuzzy demands and time horizon
ue date

In this section, only the key concepts from the theory of
uzzy sets that will be used for batch plant design are pre-

μ

Fig. 3. Fuzzy representation of p
Fig. 2. Demand modeling by fuzzy numbers, Q = (q1, q2, q3, q4).

ented; more detail can be found in Kaufmann and Gupta (1988).
ifferent forms can be used for modeling the membership

unctions of fuzzy numbers. We have chosen to use normal-
zed trapezoidal fuzzy numbers (TrFNs) for modeling product
emand, which can be represented by a membership function
(x).

Let us recall that the membership function values of a TrFN
ange from zero to one with the mode at one. The possibility
istribution of TrFNs represented by a four-tuple [q1, q2, q3,
4] with q1 ≤ q2 ≤ q3 ≤ q4 describes the more or less possible
alues for a demand. In other words, they can be interpreted
s pessimistic or optimistic viewpoints of the designer. Fig. 2
escribes the more or less possible values for the Q demand.
riangular fuzzy numbers, which need only two uncertain con-
tants, i.e. for low and large values of demand could also be used,
ince they are special cases of TrFNs (q2 = q3). Nevertheless, the
se of a TrFN is more intuitive to users: the interval (q2, q3) rep-
esents demands with a membership function at level μ = 1, the
ntervals (q1, q2) and (q3, q4) represent the more and less possi-
le values of demand, i.e. demand is guaranteed, its value may
ary from q1 to q4 with conjuncture but may be expected to take
alues ranging from q2 to q3 (Kaufmann & Gupta, 1988) (see
ig. 2).

A fuzzy demand can thus be represented by a membership
unction μQ(x) at μ level by the following expression:

∈ [0, 1], Qμ = [(q2 − q1)α + q1, −(q4 − q3)α + q4]

(21)

The membership function is defined by

Q(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
0, x < q1,

x − q1

q2 − q1
, q1 ≤ x ≤ q2,

1, q2 ≤ x ≤ q3, (22)
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
q4 − x

q4 − q3
, q3 ≤ x ≤ q4,

0, x > q4.

roduct demand (kg/year).
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Fig. 4. Fuzzy representation of horizon time (h).

Fig. 3 presents the typical values adopted in this work which
orrespond respectively to an imprecision of 10% with mode at
ne (respectively 15% with mode at zero). We also introduced in
he model a fuzzy horizon time with a “rectangular” representa-
ion which may be viewed as latest and earliest dates to satisfy,
ith an imprecision of 10% (see Fig. 4).
The fuzzy approach can also embed imprecision on a variable

nd tolerances on another one in a same formulation.

.2.2. Fuzzy arithmetic operations
They involve addition, subtraction, taking the maximum

f two fuzzy numbers (mainly at the selection stage and at
he Pareto sort procedure), through the extension principle of
Zadeh, 1975).

The sum of two fuzzy numbers Ã and B̃ given by Ã(+)B̃ is
efined by

Ã(+)B̃ = sup
{

min(μÃ(z − y), μB̃(y)/y ∈ �, z ∈ �}
(23)

The subtraction of two fuzzy numbers Ã and B̃ given by
˜ (−)B̃ is defined by

Ã(−)B̃ = sup
{

min(μÃ(z + y), μB̃(y)/y ∈ �, z ∈ �}
(24)

Although the objective functions used in this problem are
onlinear and dependent on the uncertain variables, the com-
utation can be made easily since the uncertain variables only
nvolve addition and subtraction operations which are conserva-
ive.

.2.3. Fuzzy numbers comparison
A variety of methods for comparing or ranking fuzzy numbers

as been reported in the literature (Baas & Kwakernaak, 1977;
ortolan & Degani, 1985; Chen, 1985; Delgado, Verdegay, &
illa, 1988; Dubois & Prade, 1983; Lee & Li, 1988; Liou &
ang, 1992; Yager, 1981; Yuan, 1991). According to Yuan

1991), different properties are desirable with a fuzzy ranking
ethod: (1) fuzzy preference representation; (2) rationality of

reference ordering; (3) distinguishability. However, most of
he approaches based on the possibility theory that have been
eveloped suffer from lack of discrimination (a consistent total
rdering is not always guaranteed) and occasionally conflict with
ntuition. Some methods use probabilistic indexes (Lee & Li,
988) and have defined generalized mean values of fuzzy num-

ers. In general, decisions makers having different degrees of
ptimism should give ranking outcomes under the same situa-
ion. Several authors have thus suggested methods of ranking
uzzy numbers with an index of optimism to reflect the decision

(
o
i
a

aker’s optimistic or pessimistic viewpoint. Among them, the
pproach proposed by Liou and Wang (1992) using an inte-
ral value is particularly attractive. It is independent of the
ype of the membership function and of the normality of the
unctions and can rank more than two fuzzy numbers simul-
aneously. It is particularly simple in computation, especially
n ranking TrFNs and has proven its robustness to discrim-
nate fuzzy numbers. Let us briefly recall here its principle:
he membership function of a TrFN is decomposed into two
unctions:

L
A(x) = x − a1

a2 − a1
(25)

R
A(x) = x − a4

a3 − a4
(26)

They then resort to the inverse functions of μL
A(x) and μR

A(x),
hich are denoted in this study νL

A(x) and νR
A(x). They can be

xpressed as follows:

∈ [0, 1], νL
A(x) = a1 + (a2 − a1)x (27)

∈ [0, 1] νR
A(x) = a4 + (a3 − a4)x (28)

These functions are integrable, they are real numbers and the
ntegral values of TrFn are given by

L(A) =
∫ 1

0
νLG
A (x) dx =

∫ 1

0
[a1 + (a2 − a1)x] dx

= 0.5(a1 + a2) (29)

R(A) =
∫ 1

0
νRD
A (x) dx =

∫ 1

0
[a4 + (a3 − a4)x] dx

= 0.5(a3 + a4) (30)

The left (respectively right) integral value is used to reflect
he pessimistic (respectively optimistic) viewpoint of the deci-
ion maker. A combination of these integral values through
n index of optimism denoted β is called the total integral
alue:

β
T = βIR(A) + (1 − β)IL(A) (31)

A value of β equal to zero corresponds to the most pes-
imistic viewpoint of a decision’s maker and, conversely, a
alue of β equal to 1 corresponds to his most optimistic view-
oint.

The computations were performed with an average value of
equal to 0.5.

.2.4. Fuzzy extension of a multiobjective genetic algorithm

.2.4.1. Brief literature survey on fuzzy multiobjective optimiza-
ion. The literature on multiobjective optimization is abundant

Sawaragi, Nakayama, & Tanino, 1985) and will not be devel-
ped here exhaustively. Classically, a large number of methods
mply the concept of Pareto-optimality. In that context, the big
dvantage of genetic algorithms over other methods, particularly
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ver other stochastic procedures such as simulated annealing, is
hat a GA manipulates a population of individuals. It is therefore
empting to develop a strategy in which the population captures
he whole Pareto front in one single optimization run. Litera-
ure surveys and comparative studies on multiobjective genetic
lgorithms are also given in Bhaskar, Gupta, and Ray (2000),
oello Coello (2000), Fonseca and Fleming (1995), and Holland

1975). They have divided multiobjective genetic algorithms
n non-Pareto (Schaffer, 1985) and Pareto-based approaches
Goldberg, 1994). Yet unfortunately, multiobjective and fuzzy
oncepts are not very often taken into account simultaneously.

very interesting contribution is the work of Huang and Wang
2002) introducing a fuzzy decision-making approach to solve
he fuzzy goal optimization problem. Three common aggrega-
ion functions have been used in fuzzy optimization problems
iscussed in the textbook of Sakawa (1993) and have adopted
n their approach. A membership function is used to define the
egree of satisfaction for each objective function so that the
uzzy goal optimization problem is then converted into an aug-
ented minimax problem formulated as MINLP models. Such
INLP problems involving nonlinear real and integer variables

re unable to be directly solved by some commercial algo-
ithms, e.g. DICOPT++. In order to obtain a unique solution
or the MINLP problem, the authors introduce a mixed coding

volutionary algorithm (EA) to solve the augmented minimax
roblem. In addition, an interactive algorithm is also proposed
o obtain a satisfied solution for the fuzzy goal optimization
roblem.

c
c
p
t

Fig. 5. List of optimiz
.2.4.2. Presentation of the proposed contribution. In our
ork, the multiobjective genetic algorithm presented elsewhere

Dietz et al., 2006), was extended to take into account the fuzzy
ature of both demand and horizon time.

The originality of this proposed investigation is that fuzzi-
ess is maintained throughout the computation procedure and
o defuzzification is operated so that fuzzy results are proposed
o the decision’s maker. In what follows, the typical features of
he introduction of fuzzy concepts in the procedure are high-
ighted.

Let us mention that the same encoding procedure was adopted
ince no fuzzy parameter is involved at that stage. The opti-
ization variables are structure variables (number of parallel

quipment), equipment size and operating conditions. An indi-
idual which is generated at the initial population creation step
ill be entirely defined by a chromosome with three parts rela-

ive to these variable types. From production requirements, the
nitialization procedure for equipment unit values allows to com-
ute (a crisp value is used for estimation purpose), the batch
ize for each product that can be treated in each equipment item
ithout splitting. As abovementioned, the computation proce-
ure replaces the traditional formulation in which batch size is
omputed from equipment volume and size factors. A call to the
iscrete-event simulator developed in Dietz et al. (2005) is thus

arried out to compute the operating times of the involved pro-
esses from representation models. Then, limiting cycle time and
roductivities are computed classically. The fuzziness feature
hrough the nonlinear model propagates mainly from the com-

ation variables.
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Fig. 6. Fuzzy gene
utation of the total production time for each product H̃i which
s calculated from fuzzy demands and productivities (these are
educed from the following equations of the model, see Eq.
3)). The interest of the upper optimization procedure is that
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Fig. 7. Fuzzy evaluation p
orithm flowchart.
he time horizon constraint prevents from obtaining too relaxed
alues for total production times, for which the membership
unction will be too dispersed so that no valuable decision can be
educed.

rocedure in the GA.
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From Montagna et al. (2000), the optimization variables
dopted in this study are presented in Fig. 5. More detail can
e found in Dietz et al. (2005).

The tunable parameters of the GA will also not be discussed
ere. Although the GA basic principles will not be recalled, it
ust be said that arithmetic operations on fuzzy numbers that
ill be used concern exclusively the objective functions and the

onstraints.
Only the main steps of the MOGA are presented here (see

ig. 6):

Initial population creation: it is generated randomly but, only
the individuals that do not violate the horizon time constraint
are selected to follow the remaining algorithmic process, i.e.

I∑
i=1

H̃i =
I∑

i=1

Q̃i

Prodi

≤ H̃ (32)

Crossover and mutation procedures: they are identical to the
crisp version of the algorithm (see Dietz et al., 2005).
Selection: the selection procedure is identical to the one pro-
posed by Dietz (2004), in which the multicriteria aspects are
taken into account at the selection step whereas the search
for compromise solutions occurs at the crossover step. The
same number of surviving individuals is chosen for each cri-
terion. The selection procedure is carried out by a classical
Goldberg’s wheel. At this level, a distinction must be made
between the randomly sort procedure involved in the roulette
wheel and the computation of the fitness function. Although
fitness computations are performed with fuzzy numbers, the
wheel partitioning occurs by defuzzifying the fitness values
to avoid overlapping of sectors, which can be detrimental to
results interpretation.
The fuzzy numbers comparison is performed by means of
Liou and Wang’s method (1992), as already discussed.

Looking more closely at the selection stage, three cases were
onsidered, as qualitatively shown in Fig. 7, corresponding to
ither unfeasible solutions leading to unacceptable violations
f a time horizon constraint (f3 = 0), or to acceptable solutions
haring a time domain with an horizon constraint (f3 = 1), or,
nally, to solutions for which the computation of the additional
emand that the batch plant is able to satisfy is interesting from
flexibility viewpoint (f3 > 1).

Let us illustrate how the criteria are determined in this case.
It was arbitrarily selected to share equitably the available time

mong the products to manufacture.

vailable production time for each product(APT)

H̃∗

number of products
(33)

To compute the additional demand for each product, the fol-

owing formulation was adopted involving the available time
nd the productivity of each product:

˜ ∗
i = Productivityi(available time for each product) (34)

w
a
I
c

From this new global demand, the demand of each product
s computed by:

˜ new =
I∑

i=1

Q̃∗
i (35)

The new total demand is then computed:

˜ total = Q̃new + Q̃initial (36)

The flexibility index is computed by the following relation in
defuzzifying way:

lexibility index = Qtotal

Qnew
(37)

The procedure is similar in the other cases.
In case C, the computed value of the total time necessary to

anufacture all the products is shifted to the right so that the
ighest (respectively lowest) value of the four-tuple of the TrFN
orresponds to that of the due date for time horizon.

The computation procedure for flexibility criterion evalua-
ion is illustrated in Fig. 8. When production is in advance with
espect to horizon due date (case C), the discrepancy between
hese two fuzzy values is then computed and considered as an
dditional potential production time. Considering once more the
atch plant productivity for the different products and product
ix and ratio, this time is assigned for an additional prod-

ct manufacture. The new production is then compared to the
xpected value and two cases are exhibited. In the former, the
ain cores of the two fuzzy numbers are overlapping, so the

ew production is then accepted and the new NPV criterion is
omputed for this new production value as well as the flexibil-
ty criterion. When the two main cores are not overlapping, the
roduction capacity of the plant is considered superior to the
esired one. This capacity is used to compute the flexibility cri-
erion and then a production correction is carried out as shown
n Fig. 8 in order to compute the NPV criterion. It must be noted
hat the delay–advance criterion is not modified, which in turn
enalizes this solution when the multicriteria batch plant design
ramework is applied.

. Typical results

.1. Monocriterion case

A monocriterion study was first performed with NPV as the
nly criterion to serve as a reference for the multicriteria study.
he data used are proposed in Fig. 9.

The GA parameters used in the example are displayed in
able 1 and GA typical results are presented in Table 2. Ten
uns were performed to guarantee the stochastic nature of the
A.
It must be pointed out that a thorough study on how the com-

utational demand is expected to increase with problem sizes

as already performed in Ponsich, Azzaro-Pantel, Domenech,

nd Pibouleau (2007) for a crisp study in a monocriterion case.
t could be expected here that computational time would practi-
ally increase by a factor 4 (superior bound) from the results of



Fig. 8. Computing procedure for solution evaluation: correcting procedure.

Fig. 9. Data used in the example.



Fig. 10. Best solution for th

Table 1
Parameter setting for GA

Population size 200
Generation number 1000
Survival rate 0.5
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utation rate 0.4
litism 1

he cited reference, since a four-tuple is used here to represent
he demand and the horizon time.

Table 2 presents the mean value of the NPV as well as the right
ore and support deviation from the mean value. Symmetrical
alues are obtained since symmetrical data were considered for
oth product demand and horizon due date. It must be pointed
ut that the order of magnitude of the results is of interest at the
esign preliminary stages.

The batch plant configuration with the highest value for NPV
s presented in Fig. 10. The results of the optimization variables
re presented in Table 3.

The results of the 10 runs exhibit symmetrical values for

PV since demands were also symmetrical but with different
pening range. These results cannot be yet compared directly
ith the ones obtained in the previous works (Dietz et al., 2005,
006) since only the investment cost was considered. It is yet

able 2
onocriterion (NPV) batch plant design

un Mean value
(MD )

Right core
deviation (%)

Right support
deviation (%)

G01 4.64 12.5 18.8
G02 4.65 12.5 18.7
G03 4.59 12.6 19.0
G04 4.61 12.6 18.9
G05 4.29 13.5 20.3
G06 4.60 12.6 12.6
G07 4.77 12.9 12.9
G08 4.61 12.6 12.6
G09 4.65 12.5 12.5
G10 4.63 12.5 12.5
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e monocriterion case.

nteresting to point out that the same batch plant structure was
btained containing five fermentation units and one equipment
tem for each separation and purification treatment stage.

.2. Bicriteria case

The optimization criteria were then considered by pairs in
rder to visualize the compromise existing between them.

The NPV criterion and the production delay–advance crite-
ion (Fig. 11) are first examined and the non-dominated Pareto
olutions of each GA implementation are presented in Fig. 11
or three optimization runs. It can be observed that the solution
roposed at each implementation is qualitatively similar. From
his set of solution, a final Pareto sort procedure is carried out
n order to obtain the final solution to the optimization problem.
t can be observed that the optimal solution for each criterion
s obtained as well as a complete set of compromise solutions.
onsidering the best solutions for the delay–advance criterion,

t can be observed that both figures are completely overlapping
hile maximizing the surface and, consequently, the just-in-time

ase.
Fig. 12 presents the results obtained when the NPV and the

exibility criterion were considered after the final Pareto pro-
edure. In this case, the best solution for the NPV is obtained
gain and the production advance is used to compute the flexibil-
ty criterion. It can be shown that the interest region corresponds
o a low advance, thus reducing the risk of a high storage cost.
his solution yet confers some flexibility to the batch plant with

espect to the production capacity.
Finally, the bicriteria {production delay/advance − flexi-

ility} case was considered (Fig. 13). From a practical point
f view, there is not interest in carrying out this design but helps
nderstand the results obtained when the three criteria will be
onsidered simultaneously.
As the economical criterion was not considered, it is not
urprising that a large number of solutions are obtained. For
nstance, the optimal solution for the delay–advance criterion
eads to a batch plant having a production time that overlaps



Table 3
Optimization variables for the best solution

Discrete variables
Fermentation unit number 5
Fermentation size (m3) M

Number of Mf1 units 1
Retentate size M
Filtration surface size G
Permeate size G

Homogenization unit number 1
Homogenization storage size P
Homogenization unit capacity M

Number of Mf2 units 1
Retentate size P
Filtration surface size M
Permeate size P

Number of Uf1 units 1
Retentate size G
Filtration surface size M

Liquid–liquid extraction unit number 1
Liquid–liquid extraction unit size P

Number of Uf2 units 1
Retentate size P
Filtration surface size P

Chromatographic column number 1
Storage size P
Column size G

Storage tank number 0

Continuous variables
Final concentration, Fer (kg/m3)

Insulin, Ci,Fer 53.9
Vaccine, Cv,Fer 34.6
Chymosie, Cc,Fer 43.7
Protease, Cp,Fer 38.4

Final concentration, Mf1 (kg/m3)
Insulin, Ci,Mf1 209.2
Vaccine, Cv,Mf1 224.1
Chymosin, Cc,Mf1 150.3
Protease, Cp,Mf1 221.7

Pass number, HOM
Vaccine, Cv,Hom 2.2
Protease, Cp,Hom 1.2

Eau de lavage, Mf2 (m3/m3)
Vaccine, Ev,Mf2 1.9
Protease, Ep,Mf2 2.5

Water, Mf1 (m3/m3)
Insulin, Ei,Mf1 1.5
Chymosin, Ec,Mf1 2.5

Phase ratio, Ext (m3/m3)
Insulin, Ri,Ext 0.7
Vaccine, Rv,Ext 0.6

c
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Fig. 11. Bicriteria NPV–PDA results: three optimization runs.
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net present value criterion.

We do not pretend that the optimizations have converged from
a mathematical rigorous viewpoint. This is a criticism which is
often used against stochastic algorithms. The difficulty is all the
Chymosin, Rc,Ext 0.4
Protease, Rp,Ext 0.7

ompletely the horizon time. For the flexibility criterion, the

est solution corresponds to the biggest batch plant size that
aximizes the production and the other ones are compromise

olutions.
Fig. 12. Bicriteria NPV–flexibility results: final Pareto sort procedure.

.3. Tricriteria case

Table 4 presents the results obtained at each optimization run
hen the three criteria are considered simultaneously. For the
et present value criterion, a similar behaviour to the mono- and
icriteria cases can be observed; the best solution is obtained
nce and the other are around 2–3% from it. Concerning the
exibility index, the best value has no practical interest because it

reats five times the initial demand. This criterion was considered
n order to screen compromises near the optimal value for the
Fig. 13. Bicriteria PDA–flexibility results: final Pareto sort procedure.



Table 4
Tricriteria results

Run Criterion 1 Criterion 2 Criterion 3

AG01 D 4,415,720 1600 519,192
AG02 D 4,551,110 1600 520,444
AG03 D 4,444,000 1600 519,749
AG04 D 4,495,280 1600 523,219
AG05 D 3,935,540 1600 522,881
AG06 D 4,555,870 1600 523,356
AG07 D 4,628,410 1600 516,386
AG08 D 4,261,440 1600 522,571
AG09 D 4,018,120 1600 519,471
AG10 D 4,279,590 1600 523,328

Best D 4,628,410 1600 523,356
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verage D 4,358,508 1600 521,060
td. Dev. D 232,999 0 002,371

ore important here as trapezoidal fuzzy numbers are involved
nd as a multiobjective optimization is performed. In the com-
utations performed, we use a maximum number of generations
1000), which is high enough to guarantee a non-evolution of
he criteria.

From the results in Table 4, the standard deviation repre-
ents 5% of the average value, which is an acceptable order of
agnitude at the earlier stages of process design.

Fig. 14 displays the results when the three criteria are con-

idered simultaneously after the final Pareto sort procedure over
he solutions corresponding to each optimization run. Only the
verage value of the involved criteria is reported here. Although

4

a

Fig. 14. Tricrite
thorough analysis was performed, only the guidelines that may
e useful for the practitioner are given. For instance, this curve
ay be useful to detect unfeasible regions and to identify the

romising regions from the viewpoints of NPV and flexibility
ndex. We also indicate some regions which may be interesting
o explore since they involve high values for the net present value
nd exhibit a flexibility index greater than 1, corresponding to
n acceptable advance in production: a front of solutions where
he NPV criterion is comprised between 1000 and 45,000 kD ,
he delay–advance criterion is around 500 and the flexibility of
round 10% is thus exhibited.

It must be pointed out that not only interesting isolated solu-
ions can be obtained, but also a compromise pattern region is
hown, from which the decision’s maker can select a strategy.

We are aware that the proposed method is not strictly speaking
decision-making one, in the sense that it does not lead to a set
f solutions, ranked by preferential order. From our viewpoint, it
s important to give the decision’s maker a zone of compromise
olutions among them he has to choose the most appropriate one
rom considerations which may be difficult to formulate mathe-
atically. The illustration which has just been presented through

everal optimization runs (mono-, bi- and tricriteria) serves as a
ind of guidance for the treatment of similar examples.
.4. Fuzzy MOGA performance

The best solutions obtained for the net present value criterion
t the different optimization steps, monocriterion, bicriteria and

ria results.
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Fig. 15. GA search performances.

ricriteria, respectively, are presented in Fig. 15. The best result
as not surprisingly obtained for the monocriterion case, how-

ver when the other criteria are considered, the best solution is
ear to the global best solution. Note that a better solution was
btained in the tricriteria case than in the bicriteria one, which
ay come from the stochastic aspects of GA.
The best solution for the NPV criterion was obtained in the

icriteria optimization case. It can be explained by the fact that
hen considering several criteria simultaneously, the GA search

s diversified, extracting the algorithm from the local optimal
olution, which is also confirmed in the tricriteria case.

Concerning the average value of the best solution obtained at
ach GA implementation, it can be observed that almost identical
alues are obtained for the multicriteria optimization.

. Conclusions

In this paper, we have proposed a fuzzy approach to the treat-
ent of imprecise demands in the batch design problem. Its

enefits can be summarized as follows:

Fuzzy concepts allow us to model imprecision in cases where
historical data are not readily available, i.e. for demand rep-
resentation.
The models do not suffer from the combinatorial explosion
of scenarios that discrete probabilistic uncertainty represen-
tation exhibit.
Another significant advantage is that heuristic search
algorithms, namely genetic algorithms for combinatorial opti-
mization can be easily extended to the fuzzy case.
Multiobjective concepts can also be taken into account.
The preferences of customers can also be captured by fuzzy
sets via acceptable values for due dates.

An example was used to illustrate the proposed approach.

he results show that a set of compromise solutions is generated

o the decision’s maker, with an acceptable degree of impreci-
ion affecting the defined criteria, which seems more realistic
han a classical crisp approach. This will reduce the risk of mak-

M

ng design decisions incorrectly. Providing (fuzzy) set based
nformation can thus facilitate design.

Finally, this framework provides an interesting decision-
aking approach to design multiproduct batch plants under

onflicting goals.
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