2,301 research outputs found

    Evolutionary neuro-space mapping technique for modeling of nonlinear microwave devices

    Get PDF
    This paper presents a new advance in Neuro-space mapping (Neuro-SM) techniques for modeling nonlinear microwave devices. Suppose that existing device models (namely, coarse models) cannot match the behavior of a new device (referred to as the fine model). By neural network mapping of the voltage and current signals from the coarse to the fine models, Neuro-SM can modify the behavior of the coarse model to match that of the fine model. However, the efficiency of mapping depends on both the mapping structure and the coarse model. In this paper, a structural optimization technique is presented to achieve optimal combinations of mapping structure and coarse model. An aggressive optimization formulation exploring detailed structural variations in both the mapping and the coarse model is proposed, where the internal branches of coarse models and separate mappings for the voltage and current at gate and drain are used as basic topology variables. The formulation of such a structural optimization by an evolutionary optimization algorithm is proposed. Numerical examples of metal-semiconductor field-effect transistor and high electron-mobility transistor modeling demonstrate that, by using the proposed algorithm, optimal combinations of space mapping and coarse model structures can be achieved leading to the best modeling accuracy with the simplest mapping function

    Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas

    Get PDF
    Accurate and fast models are indispensable in contemporary antenna design. In this paper, we describe the low-cost antenna modeling methodology involving variable-fidelity electromagnetic (EM) simulations and co-Kriging. Our approach exploits sparsely sampled accurate (high-fidelity) EM data as well as densely sampled coarse-discretization (low-fidelity) EM simulations that are accommodated into one model using the co-Kriging technique. By using coarse-discretization simulations, the computational cost of creating the antenna model is greatly reduced compared to conventional approaches, where high-fidelity simulations are directly used to set up the model. At the same time, the modeling accuracy is not compromised. The proposed technique is demonstrated using three examples of antenna structures. Comparisons with conventional modeling based on high-fidelity data approximation, as well as applications for antenna design, are also discussed

    Space Mapping With Adaptive Response Correction for Microwave Design Optimization

    Get PDF
    Output space mapping is a technique introduced to enhance the robustness of the space-mapping optimization process in case the space-mapped coarse model cannot provide sufficient matching with the fine model. The technique often works very well; however, in some cases it fails. Especially in the microwave area where the typical model response (e.g., 21) is a highly nonlinear function of the free parameter (e.g., frequency), the output spacemapping correction term may actually increase the mismatch between the surrogate and fine models for points other than the one at which the term was calculated, as in the surrogate model optimization process. In this paper, an adaptive response correction scheme is presented to work in conjunction with space-mapping optimization algorithms. This technique is designed to alleviate the difficulties of the standard output space mapping by adaptive adjustment of the response correction term according to the changes of the space-mapped coarse model response. Examples indicate the robustness of our approach

    An Early History of Optimization Technology for Automated Design of Microwave Circuits

    Get PDF
    This paper outlines the early history of optimization technology for the design of microwave circuits—a personal journey filled with aspirations, academic contributions, and commercial innovations. Microwave engineers have evolved from being consumers of mathematical optimization algorithms to originators of exciting concepts and technologies that have spread far beyond the boundaries of microwaves. From the early days of simple direct search algorithms based on heuristic methods through gradient-based electromagnetic optimization to space mapping technology we arrive at today’s surrogate methodologies. Our path finally connects to today’s multi-physics, system-level, and measurement-based optimization challenges exploiting confined and feature-based surrogates, cognition-driven space mapping, Bayesian approaches, and more. Our story recognizes visionaries such as William J. Getsinger of the 1960s and Robert Pucel of the 1980s, and highlights a seminal decades-long collaboration with mathematician Kaj Madsen. We address not only academic contributions that provide proof of concept, but also indicate early formative milestones in the development of commercially competitive software specifically featuring optimization technology.ITESO, A.C

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    Advanced RF and Microwave Design Optimization: A Journey and a Vision of Future Trends

    Get PDF
    In this paper, we outline the historical evolution of RF and microwave design optimization and envisage imminent and future challenges that will be addressed by the next generation of optimization developments. Our journey starts in the 1960s, with the emergence of formal numerical optimization algorithms for circuit design. In our fast historical analysis, we emphasize the last two decades of documented microwave design optimization problems and solutions. From that retrospective, we identify a number of prominent scientific and engineering challenges: 1) the reliable and computationally efficient optimization of highly accurate system-level complex models subject to statistical uncertainty and varying operating or environmental conditions; 2) the computationally-efficient EM-driven multi-objective design optimization in high-dimensional design spaces including categorical, conditional, or combinatorial variables; and 3) the manufacturability assessment, statistical design, and yield optimization of high-frequency structures based on high-fidelity multi-physical representations. To address these major challenges, we venture into the development of sophisticated optimization approaches, exploiting confined and dimensionally reduced surrogate vehicles, automated feature-engineering-based optimization, and formal cognition-driven space mapping approaches, assisted by Bayesian and machine learning techniques.ITESO, A.C

    Evolutionary Neuro-Space Mapping Technique for Modeling of Nonlinear Microwave Devices

    Full text link

    Modeling and Optimization of the Microwave PCB Interconnects Using Macromodel Techniques

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Efficient statistical simulation of microwave devices via stochastic testing-based circuit equivalents of nonlinear components

    Get PDF
    This paper delivers a considerable improvement in the framework of the statistical simulation of highly nonlinear devices via polynomial chaos-based circuit equivalents. Specifically, a far more efficient and "black-box" approach is proposed that reduces the model complexity for nonlinear components. Based on recent literature, the "stochastic testing" method is used in place of a Galerkin approach to find the pertinent circuit equivalents. The technique is demonstrated via the statistical analysis of a low-noise power amplifier and its features in terms of accuracy and efficiency are highlighted
    • …
    corecore