27 research outputs found

    A General Framework for Constructing and Analyzing Mixed Finite Volume Methods on Quadrilateral Grids: The Overlapping Covolume Case

    Get PDF
    We present a general framework for constructing and analyzing finite volume methods applied to the mixed formulation of second-order elliptic problems on quadrilateral grids. The control volumes, or covolumes, in the grids overlap. An overlapping finite volume method of this type was first introduced by Russell in [T. F. Russell, Tech. report 3, Reservoir Simulation Research Corp., Tulsa, OK, 1995] and was tested for a variety of problems on rectangular and quadrilateral grids in [Z. Cai et al., Comput Geosci., 1 (1997), pp. 289–315]. Later in [S. H. Chou and D. Y. Kwak, SIAM J. Numer. Anal., 37 (2000), pp. 758–771], Chou and Kwak reformulated it as their mixed covolume method and proved optimal order error estimates using the covolume methodology from [S. H. Chou, Math. Comp., 66 (1997), pp. 85–104] and [S. H. Chou and D. Y. Kwak, SIAM J. Numer. Anal., 35 (1998), pp. 494–507]. However, their treatment was restricted to the case of diagonal coefficient tensor and rectangular grids since a different approach was needed for the quadrilateral (distorted rectangular) case. In this paper we give a new framework, which can handle not only the rectangular anisotropic case but also the anisotropic and irregular grid cases in which the locally supported test functions are images of the natural unit coordinate vectors under the Piola transformation. Our theory sheds light on how to create new test functions using quadratures and now covers Russell’s quadrilateral case

    Mixed Covolume Methods for Elliptic Problems on Triangular Grids

    Get PDF
    We consider a covolume or finite volume method for a system of first-order PDEs resulting from the mixed formulation of the variable coefficient-matrix Poisson equation with the Neumann boundary condition. The system may represent either the Darcy law and the mass conservation law in anisotropic porous media flow, or Fourier law and energy conservation. The velocity and pressure are approximated by the lowest order Raviart-Thomas space on triangles. We prove its first-order optimal rate of convergence for the approximate velocities in the L2-and H(div; Q)-norms as well as for the approximate pressures in the L2-norm. Numerical experiments are included

    Mixed Covolume Methods on Rectangular Grids for Elliptic Problems

    Get PDF
    We consider a covolume method for a system of first order PDEs resulting from the mixed formulation of the variable-coefficient-matrix Poisson equation with the Neumann boundary condition. The system may be used to represent the Darcy law and the mass conservation law in anisotropic porous media flow. The velocity and pressure are approximated by the lowest order Raviart-Thomas space on rectangles. The method was introduced by Russell [Rigorous Block- centered Discretizations on Irregular Grids: Improved Simulation of Complex Reservoir Systems, Reservoir Simulation Research Corporation, Denver, CO, 1995] as a control-volume mixed method and has been extensively tested by Jones [A Mixed Finite Volume Elementary Method for Accurate Computation of Fluid Velocities in Porous Media, University of Colorado at Denver, 1995] and Cai et al. [Computational Geosciences, 1 (1997), pp. 289-345]. We reformulate it as a covolume method and prove its first order optimal rate of convergence for the approximate velocities as well as for the approximate pressures

    Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems

    Get PDF
    We establish a general framework for analyzing the class of finite volume methods which employ continuous or totally discontinuous trial functions and piecewise constant test functions. Under the framework, optimal order convergence in the H1 and L2 norms can be obtained in a natural and systematic way for classical finite volume methods and new finite volume methods such as discontinuous finite volume methods applied to second order elliptic proble

    Conservative P1 Conforming and Nonconforming Galerkin Fems: Effective Flux Evaluation via a Nonmixed Method Approach

    Get PDF
    Given a P1 conforming or nonconforming Galerkin finite element method (GFEM) solution ph, which approximates the exact solution p of the diffusion-reaction equation −∇·K∇p + αp = f with full tensor variable coefficient K, we evaluate the approximate flux uh to the exact flux u = −K∇p by a simple but physically intuitive formula over each finite element. The flux is sought in the continuous (in normal component) or the discontinuous Raviart–Thomas space. A systematic way of deriving such a formula is introduced. This direct method retains local conservation property at the element level, typical of mixed methods (finite element or finite volume type), but avoids solving an indefinite linear system. In short, the present method retains the best of the GFEM and the mixed method but without their shortcomings. Thus we view our method as a conservative GFEM and demonstrate its equivalence to a certain mixed finite volume box method. The equivalence theorems explain how the pressure can decouple basically cost free from the mixed formulation. The accuracy in the flux is of first order in the H(div;Ω) norm. Numerical results are provided to support the theory

    Stable and locally mass- and momentum-conservative control-volume finite-element schemes for the Stokes problem

    Full text link
    We introduce new control-volume finite-element discretization schemes suitable for solving the Stokes problem. Within a common framework, we present different approaches for constructing such schemes. The first and most established strategy employs a non-overlapping partitioning into control volumes. The second represents a new idea by splitting into two sets of control volumes, the first set yielding a partition of the domain and the second containing the remaining overlapping control volumes required for stability. The third represents a hybrid approach where finite volumes are combined with finite elements based on a hierarchical splitting of the ansatz space. All approaches are based on typical finite element function spaces but yield locally mass and momentum conservative discretization schemes that can be interpreted as finite volume schemes. We apply all strategies to the inf-sub stable MINI finite-element pair. Various test cases, including convergence tests and the numerical observation of the boundedness of the number of preconditioned Krylov solver iterations, as well as more complex scenarios of flow around obstacles or through a three-dimensional vessel bifurcation, demonstrate the stability and robustness of the schemes

    The finite volume method based on stabilized finite element for the stationary Navier–Stokes problem

    Get PDF
    AbstractA finite volume method based on stabilized finite element for the two-dimensional stationary Navier–Stokes equations is investigated in this work. A macroelement condition is introduced for constructing the local stabilized formulation for the problem. We obtain the well-posedness of the FVM based on stabilized finite element for the stationary Navier–Stokes equations. Moreover, for quadrilateral and triangular partition, the optimal H1 error estimate of the finite volume solution uh and L2 error estimate for ph are introduced. Finally, we provide a numerical example to confirm the efficiency of the FVM
    corecore