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Abstract

A finite volume method based on stabilized finite element for the two-dimensional stationary Navier–Stokes equations is inves-
tigated in this work. A macroelement condition is introduced for constructing the local stabilized formulation for the problem. We
obtain the well-posedness of the FVM based on stabilized finite element for the stationary Navier–Stokes equations. Moreover, for
quadrilateral and triangular partition, the optimal H 1 error estimate of the finite volume solution uh and L2 error estimate for ph

are introduced. Finally, we provide a numerical example to confirm the efficiency of the FVM.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Finite difference and finite element methods have been widely used in computational fluid dynamics. On the one
hand, the finite difference methods are easy to set up and implement, and conserve mass locally; on the other hand,
they are not flexible in the treatment of complicated geometry and general boundary conditions. The finite element
methods have the intrinsic grid flexibility but do not conserve mass locally (i.e., at the element level). Recently, fi-
nite volume methods (FVMs) have been employed to enforce such a local conservation property [10]. Generally
speaking, the FVMs can be treated as an efficient middle ground between the finite difference and finite element
methods. They were developed as an attempt to use the finite element idea in the finite difference setting. Based
on volumes or control volumes, their basic idea is to approximate discrete fluxes of a partial differential equa-
tion using a finite element procedure. Flux-oriented approximation methods are collectively known as box meth-
ods [2,24], generalized difference methods [32,25,26,18], FVMs [6,4,14,20], control volume methods [9], balance
methods [5], MAC (marker and cell) methods [12,27,16], covolume methods [11], and cell-centered approximation
methods [7].
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Regardless of their physical interpretations, FVMs can be mathematically treated as Petrov–Galerkin methods with
trial function spaces associated with certain finite element spaces and test spaces related to finite volumes. In this paper
we relate these methods for the Navier–Stokes equations to standard Galerkin or mixed finite element methods through
introducing an interpolation (or lumping) operator that maps the trial spaces into the test spaces. The interpolation
operator itself does not play a large role in the implementation of the FVMs.

FVMs have been widely used, but their analysis is far behind that of finite element methods, not to mention their
analysis for complex problems in computational fluid dynamics. The development of efficient discretization methods is
key for numerically solving the transient Navier–Stokes equations. On the one hand, their numerical solution requires the
development of accurate, locally conservative discretization methods. On the other hand, these discretization methods
must satisfy the discrete inf–sup (stability) condition to ensure the compatibility of approximations for velocity and
pressure. It is also well known that the simplest conforming low-order elements like the P1 − P0 (linear velocity,
constant pressure) triangular element and Q1 − P0 (bilinear velocity, constant pressure) quadrilateral element are not
stable.

During the last two decades there has been a rapid development in practical stabilization techniques for the P1 − P0
element and the Q1 − P0 element for solving the Stokes problem. For this purpose a local “macroelement condition”
and some energy methods have been used. The use of such a macroelement condition as a means of verifying the
(Babuška–Brezzi) inf–sup condition is a standard technique (see, for example [15]); the basic idea was first introduced
by Boland and Nicolaides [3], and independently by Stenberg [31]. Recently, Kechkar and Silvester [22,30], Kay and
Silvester [21], Norburn and Silvester [28] pursued work which laid the foundations of the mathematical analysis and
numerics of locally stabilized mixed finite element methods for the Stokes problem. For stationary Navier–Stokes, the
results in He [17] are also valuable.

The aim of this paper is to construct the FVM based on the stabilized finite element method for solving the stationary
Navier–Stokes problem. A macroelement condition is introduced for constructing the local stabilized formulation of
the problem. By satisfying this condition the stability of the Q1 − P0 quadrilateral element and the P1 − P0 triangular
element are established. Moreover, we obtain the well-posedness and the optimal error estimate of the stabilized FVM
for the stationary Navier–Stokes problem.

An outline of the paper is as follows. In the next section we introduce the mathematical setting of the stationary
Navier–Stokes problem. In Section 3, we recall the notion of local stabilization of the Q1 − P0 quadrilateral element
and the P1 − P0 triangular element based on the macroelement condition. We, in Section 4, prove the well-posedness
of the stabilized FVM and the optimal H 1 error estimate of uh and L2 error estimate of ph introduced in Section 3.
Finally, we provide a numerical example to confirm the efficiency of the FVM. Below c (with or without a subscript)
is a generic positive constant depending only on �.

2. Functional setting of the Navier–Stokes problem

Let � be a bounded domain in R2 assumed to have a Lipschitz continuous boundary �� and to satisfy a further
condition stated in (A1) below. We consider the stationary Navier–Stokes equations{−��u + (u · ∇)u + ∇p = f, div u = 0, x ∈ �,

u|�� = 0,
(2.1)

where u = (u1(x), u2(x)) represents the velocity vector, p = p(x) the pressure, f = f (x) the prescribed body force,
and � > 0 the viscosity.

For the mathematical setting of problem (2.1), we introduce the following Hilbert spaces

X = (H 1
0 (�))2, Y = (L2(�))2, M =

{
q ∈ L2(�) :

∫
�

q dx = 0

}
,

H = {v ∈ L2(�)2; div v = 0 in �, and v · n|�� = 0}.

The spaces (L2(�))m (m = 1, 2, 4) are endowed with the usual L2-scalar product (·, ·) and norm ‖ · ‖0, as appropriate.
The space X is equipped with the scalar product (∇u, ∇v) and norm ‖∇u‖0.
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Define Au = −�u, which is the operator associated with the Navier–Stokes equations. It’s positive self-adjoint
operator from D(A) = (H 2(�))2 ∩ X onto Y, so, for � ∈ R, the powers A� of A is well defined. In particular,
D(A1/2) = X, D(A0) = Y , and

(A1/2u, A1/2v) = (∇u, ∇v), ‖A1/2u‖0 = (∇u, ∇u)1/2

for all u, v ∈ X.
As mentioned above, we need a further assumption on �:
(A1) Assume that � is regular so that the unique solution (v, q) ∈ (X, M) of the steady Stokes problem

−�v + ∇q = g, div v = 0 in �, v|�� = 0

for a prescribed g ∈ Y exists and satisfies

‖v‖2 + ‖q‖1 �c‖g‖0,

where ‖ · ‖i denotes the usual norm of the Sobolev space Hi(�) or Hi(�)2 for i = 1, 2.
We also introduce the following bilinear operator

B(u, v) = (u · ∇)v + 1
2 (div u)v ∀u, v ∈ X.

Moreover, we define the continuous bilinear forms a(·, ·) and d(·, ·) on X × X and X × M , respectively, by

a(u, v) = �((u, v)) ∀u, v ∈ X, d(v, q) = −(v, ∇q) = (q, div v) ∀v ∈ X, q ∈ M ,

and a generalized bilinear form on (X, M) × (X, M) by

B((u, p); (v, q)) = a(u, v) − d(v, p) + d(u, q),

and a trilinear form on X × X × X by

b(u, v, w) = 〈B(u, v), w〉X′×X = ((u · ∇)v, w) + 1
2 ((div u)v, w)

= 1
2 ((u · ∇)v, w) − 1

2 ((u · ∇)w, v) ∀u, v, w ∈ X.

We remark that the validity of assumption (A1) is known (see [19,23]) if �� is of C2, or if � is a two-dimensional
convex polygon. From assumption (A1), it is easily shown [19] that

‖v‖0 ��0‖A1/2v‖0 ∀v ∈ X, ‖v‖2 ��1‖�̃v‖0 ∀v ∈ H 2(�)2 ∩ X, (2.2)

where �̃=P�, and P is the L2-orthonormal projection of L2(�)2 onto the space H, and �0, �1, . . . are positive constants
depending only on �.

It is easy to verify that B and b satisfy the following important properties (see [15,19,21,22]): there hold⎧⎪⎪⎪⎨⎪⎪⎪⎩
�‖A1/2u‖2

0 = B((u, p); (u, p)),

|B((u, p); (v, q))|��2(‖A1/2u‖0 + ‖p‖0)(‖A1/2v‖0 + ‖q‖0),

�0(‖A1/2u‖0 + ‖p‖0)� sup
(v,q)∈(X,M)

B((u, p); (v, q))

‖A1/2v‖0 + ‖q‖0

(2.3)

for all (u, p), (v, q) ∈ (X, M) and constants �2 > 0 and �0 > 0,

b(u, v, w) = −b(u, w, v), (2.4)

|b(u, v, w)|� 1
2c0‖u‖1/2

0 ‖A1/2u‖1/2
0 (‖A1/2v‖0‖w‖1/2

0 ‖A1/2w‖1/2
0 + ‖v‖1/2

0 ‖A1/2v‖1/2
0 ‖A1/2w‖0), (2.5)

|b(u, v, w)|�c‖u‖1/2
0 ‖A1/2u‖1/2

0 ‖A1/2v‖0‖w‖1/2
0 ‖A1/2w‖1/2

0 (2.6)

for all u, v, w ∈ X and

|b(u, v, w)| + |b(v, u, w)| + |b(w, u, v)|�c‖A1/2u‖0‖Av‖0‖w‖0 (2.7)

for all u ∈ X, v ∈ D(A), w ∈ Y .
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Under the above notations, the variational formulation of the problem (2.1) reads as: find (u, p) ∈ (X, M) such that
for all (v, q) ∈ (X, M):

B((u, p); (v, q)) + b(u, u, v) = (f, v). (2.8)

The following existence and uniqueness results are classical (see [33]).

Theorem 2.1. Assume that � and f ∈ Y satisfy the following uniqueness condition:

1 − N1

�2 ‖f ‖−1 > 0,

where

N1 = sup
u,v,w∈H 1

0 (�)

b(u, v, w)

‖A1/2u‖0‖A1/2v‖0‖A1/2w‖0
.

Then the problem (2.8) admits a unique solution (u, p) ∈ (D(A) ∩ X, H 1(�) ∩ M) such that

‖A1/2u‖0 ��−1‖f ‖−1, ‖u‖2 + ‖p‖1 �c‖f ‖0. (2.9)

3. FVM based on stabilized finite element approximation

Based on stabilized finite element method developed for the incompressible Navier–Stokes equations [17], we, in this
section, consider the FVM for two-dimensional stationary incompressible Navier–Stokes equations (2.1). Let h > 0 be
a real positive parameter. The finite element subspace (Xh, Mh) of (X, M) is characterized by Th=Th(�), a partitioning
of �̄ into triangles or quadrilaterals, assumed to be regular in the usual sense (see [13,15,21,22]), i.e., for some � and
� with � > 1 and 0 < � < 1,

hK ��	K ∀K ∈ 
h, (3.1)

| cos �iK |��, i = 1, 2, 3, 4 ∀K ∈ 
h, (3.2)

where hK is the diameter of element K, 	K is the diameter of the inscribed circle of element K, and �iK are the angles
of K in the case of a quadrilateral partitioning. The mesh parameter h is given by h = max{hK}, and the set of all
interelement boundaries will be denoted by �h.

We also construct a dual partition T ∗
h of Th. The dual partition, consisting of dual elements of Th usually called boxes

or control volumes, is arbitrary, but the choice of appropriate dual elements is crucial for the analysis of the underlying
discretization method. In general, the choices of dual partition based on circumcenter, orthocenter, incenter, or centroid
of K ∈ Th are adaptable with some restricts, more or less, of the partition Th (see [2,14,7]).

We call the dual partition T ∗
h regular or quasi-uniform if there exist a positive constant c > 0 such that

c−1h2 � meas(K∗
i )�ch2 ∀K∗

i ∈ T ∗
h ;

here h is the maximum diameter of all element K ∈ Th.
In this paper, we use a popular configuration in which the interior point pi is chosen to the barycenter of element

Ki ∈ Th, and the midpoint mij on side of vivj in Fig. 1. This type of dual partition for triangular and quadrilateral leads
to relatively simple calculations for both two- and three-dimensional problems. In addition, if Th is locally regular, then
this dual partition is also regular.

Finite element subspaces of interest in this paper are defined by setting

R1(K) =
{

P1(K) if K is triangular,

Q1(K) if K is quadrilateral,
(3.3)

giving the continuous piecewise (bi)linear velocity subspace

Xh = {v ∈ X : vh|K ∈ (R1(K))2 ∀K ∈ Th},
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Fig. 1. The partition and dual partition of a rectangular and triangular.

the piecewise constant pressure subspace

Mh = {q ∈ M : q|K ∈ P0(K) ∀K ∈ Th},
and the dual space of velocity subspace X∗

h,

X∗
h = {v ∈ (L2(�))2 : v|K∗ ∈ (P0(K

∗))2 ∀K∗ ∈ T ∗
h }.

Actually, this choice of X∗
h is the span of the characteristic functions of the volume K∗.

Note that neither of these finite element methods are stable in standard Babuška–Brezzi sense; P1 − P0 triangle
“locks” on regular grids (since there are more discrete incompressibility constraints than velocity degrees of free-
dom), and the Q1 − P0 quadrilateral is the most infamous example of an unstable mixed method, as elucidated by
Sani et al. [29].

Furthermore, we need to introduce the discrete analogue Ah : Xh → Xh of the operator A = −�, through the
condition:

(Ahvh, h) = (A1/2vh, A
1/2h) ∀vh, h ∈ Xh,

‖A1/2
h uh‖2

0 = (A1/2uh, A
1/2uh) ∀uh ∈ Xh.

We have

‖A1/2
h uh‖0 = ‖A1/2uh‖0 ∀uh ∈ Xh.

Let interpolation operator I ∗
h : Xh → X∗

h,

I ∗
huh =

∑
xi∈Nh

uh(xi)�i (x),

where Nh = {Pi : vertices of quadrilateral or triangles in Th}.
We define the continuous bilinear forms ã(·, ·) and d̃(·, ·) on Xh × Xh and Xh × Mh, respectively, by

ã(uh, I
∗
h vh) = �((uh, I

∗
h vh)) = −�

∑
K∗

i ∈T ∗
h

∫
�K∗

i

vh(xi)
�uh

�n
ds ∀uh, vh ∈ Xh,

d̃(I ∗
h vh, ph) = (I ∗

h vh, ∇ph) =
∑

K∗
i ∈T ∗

h

∫
�K∗

i

vh(xi)ph · n ds ∀uh ∈ Xh, ph ∈ Mh,
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where n is the outnormal vector. We also define the trilinear forms ˜̃
b(·, ·, ·), b̃(·, ·, ·), and b(·, ·, ·) on Xh × Xh × Xh by˜̃

b(uh, vh, I
∗
hwh) = ((uh · ∇)vh, I

∗
hwh),

b̃(uh, vh, I
∗
hwh) = ((uh · ∇)vh, I

∗
hwh) + 1

2 ((div uh)vh, I
∗
hwh),

b(uh, vh, wh − I ∗
hwh) = ((uh · ∇)vh, wh − I ∗

hwh) + 1
2 ((div uh)vh, wh − I ∗

hwh),

for all uh, vh, wh ∈ Xh, the right side of term

(f, I ∗
h vh) =

∑
K∗

i ∈T ∗
h

∫
K∗

i

vh(xi)f dx ∀vh ∈ Xh,

and a generalized bilinear form on

B̃((uh, ph); (I ∗
h vh, qh)) = ã(uh, I

∗
h vh) − d̃(I ∗

h vh, ph) + d(uh, qh).

We define the norms and semi-norms

‖uh‖0,h =
⎛⎝ ∑

K∈Th

‖uh‖2
0,h,K

⎞⎠1/2

,

‖Ã1/2
h uh‖0 =

⎛⎝ ∑
K∈Th

‖Ã1/2
h uh‖2

0,h,K

⎞⎠1/2

,

‖uh‖1,h = (‖uh‖2
0,h + ‖Ã1/2

h uh‖2
0)

1/2,

where

‖uh‖0,h,K =

⎧⎪⎪⎨⎪⎪⎩
[
Sv

3
(u2

Pi
+ u2

Pj
+ u2

Pk
)

]1/2

, if K is triangular,[
Sp

4
(u2

P1
+ u2

P2
+ u2

P3
+ u2

P4
)

]1/2

, if K is rectangular,

‖Ã1/2
h uh‖0,h,K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[(
�uh(p)

�x

)2

+
(

�uh(p)

�y

)2
]

Sv

}1/2

, if K is triangular,{[(
�uh(M12)

�x

)2

+
(

�uh(M34)

�x

)2

+
(

�uh(M41)

�y

)2

+
(

�uh(M23)

�y

)2
]

Sp

}1/2

, if K is rectangular,

with Sv , Sp the area of �vivj vk and �p1p2p3p4, respectively (see Fig. 1).
In order to define a locally stabilized formulation of the stationary Navier–Stokes problem, we introduce a macroele-

ment partitioning �h as follows: given any subdivision Th, a macroelement partitioning �h may be defined such that
each macroelement K is a connected set of adjoining elements from Th. Every element K must lie in exactly one
macroelement, which implies that macroelements do not overlap. For each K, the set of interelement edges which
are strictly in the interior of K will be denoted by �K, and the length of an edge e ∈ �K is denoted by he. For a
macroelement K the restricted pressure space is given by

M0,h = {q ∈ L2
0(K) : q|K ∈ P0(K) ∀K ∈ K}.

With the above choices of the velocity–pressure finite element spaces Xh, X∗
h, Mh and these additional definitions,

a locally stabilized formulation of the Navier–Stokes problem (2.8) can be stated as follows.
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Definition 3.1 (Locally stabilized FVM formulation). Find (uh, ph) ∈ (Xh, Mh), such that for all (v, q) ∈ (Xh, Mh),

B̃h((uh, ph); (I ∗
h v, q)) +˜̃

b(uh, uh, I
∗
h vh) = (f, I ∗

h v), (3.4)

where

B̃h((uh, ph); (I ∗
h v, q)) = B̃((uh, ph); (I ∗

h v, q)) + �Ch(ph, q) ∀(uh, ph), (v, q) ∈ (Xh, Mh),

Ch(p, q) =
∑

K∈�h

∑
e∈�K

he

∫
e

[p]e[q]e ds,

for all p, q in the algebraic sum H 1(�) + Mh, and [·]e is the jump operator across e ∈ �K and � > 0 is the local
stabilization parameter.

A general framework for analyzing the locally stabilized formulation (3.4) can be developed using the notion of
equivalence class of macroelements. As in Stenberg [31], each equivalence class, denoted by E

K̂
, contains macroele-

ments which are topologically equivalent to a reference macroelement K̂. To illustrate the idea, two practical examples
of locally stabilized mixed approximations are given below.

Example 3.1. A locally stabilized formulation (3.4) can be constructed in this case, if Th is such that the elements K
can be grouped into 2 × 2 macroelements K = {K1, K2, K3, K4}, with the reference macroelement

K̂ = {K̂1, K̂2, K̂3, K̂4}.
An obvious way of constructing such a partitioning in practice is to form the grid Th by uniformly refining a coarse
grid �h, for example, by joining the mid-edge points.

Example 3.2. The triangularP1−P0 approximation pair can similarly be established if the partitioningTh is constructed
such that the elements can be grouped into disjoint macroelements, all consisting of four elements.

For the above finite element spaces Xh and Mh, it is well known that the following approximation properties and
inverse inequality

‖A1/2
h vh‖0 �ch−1‖vh‖0 ∀vh ∈ Xh,

‖v − Ihv‖0 + h‖A1/2
h (v − Ihv)‖0 �ch2‖Ahv‖0 ∀v ∈ D(A),

‖v − I ∗
h v‖0 �ch‖A1/2

h v‖0 ∀v ∈ Xh,

‖q − Jhq‖0 �ch‖q‖1 ∀q ∈ H 1(�) ∩ M , (3.5)

hold (see [1,13]), where Ih : D(A) → Xh is the interpolation operator and Jh : H 1(�)∩M → Mh is the L2-orthogonal
projection.

With all the above notation, we have the following [14,25,26].

Lemma 3.2. There exist constants c1, c
′
1, c2, c

′
2 > 0, independent of h, such that

c′
1‖uh‖0,h �‖uh‖0 �c1‖uh‖0,h ∀uh ∈ Xh,

c′
2‖Ã1/2

h uh‖0 �‖A1/2
h uh‖0 �c2‖Ã1/2

h uh‖0 ∀uh ∈ Xh. (3.6)

Following [31], we define Q∗
h to the L2 projection from Mh onto the subspace

Qh = {� ∈ L2
0(�) : �|K ∈ P0(K) ∀K ∈ �h}.
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Set

�K = inf
p∈M0,K ,‖p‖0,M=1

Ch(p, p),

we have the following “global” inequality [22]:

Ch(q, q)��1‖(I − Q∗
h)q‖2

0 ∀q ∈ Mh, (3.7)

where �1 = min{�M̂i
, i = 1, . . . , n} and is independent of h.

The following stability results of these mixed methods for the macroelement partitioning defined above were formally
established by Kay and Silvester [21] and Kechkar and Silvester [22]. Throughout the article we shall assume that ���0.

Theorem 3.3. Given a stabilization parameter ���0 > 0, suppose that every macroelement K ∈ �h belongs to
one of the equivalence classes E

K̂
, and that the following macroelement connectivity condition is valid: for any two

neighboring macroelements K1 and K2 with
∫
K1∩K2

ds = 0 there exists v ∈ Xh such that

supp v ⊂ K1 ∪ K2 and
∫
K1∩K2

v · n ds = 0. (3.8)

Then,

|Ch(p, q)|�c
∑

K∈Th

(∫
K

(|p|2 + h2|∇p|2) dx

)1/2(∫
K

(|q|2 + h2|∇q|2) dx

)1/2

(3.9)

for all p, q ∈ H 1(�) + Mh, and

Ch(p, qh) = 0, Ch(ph, q) = 0, Ch(p, q) = 0 ∀p, q ∈ H 1(�), ph, qh ∈ Mh, (3.10)

where c > 0 is a constant independent of h and �, and �0 is some fixed positive constant.

4. Error estimates

Our view of the FVE method as a Petrov–Galerkin finite element method suggests that we treat the FVE method as
a perturbation of the Galerkin finite element method so that we can derive optimal-order H 1 error estimate for uh and
L2 for ph with a reasonable assumption.

The following two lemmas can be found in [14,12,25,26,8].

Lemma 4.1. For any uh, vh ∈ Xh, we have

a(uh, vh) = ã(uh, I
∗
h vh) + E(uh, vh), (4.1)

d(vh, ph) = d̃(I ∗
h vh, ph), (4.2)

with

E(uh, vh) =
{

0 if K is triangular partition,

1
24

∑
K [hs

x(h
s
y)

3 + (hs
x)

3hs
y](uh xy · vh xy) if K is rectangular partition.

Lemma 4.2. For any uh, vh ∈ Xh, qh ∈ Mh, there exist constants c, �2, c3, c
′
3 > 0, independent of h, such that

ã(uh, I
∗
h vh)�c‖Ã1/2

h uh‖0‖A1/2
h vh‖0, ã(uh, I

∗
huh)��2‖Ã1/2

h uh‖2
0, (4.3)

c3‖Ã1/2
h uh‖2

0 �E(uh, uh)�c′
3‖Ã1/2

h uh‖2
0, (4.4)

d̃(uh, ph)�c‖Ã1/2
h uh‖0‖ph‖0. (4.5)

In order to derive error estimates of (uh, ph) in the FVM, we need to prove the existence of the variational
problem (3.4).
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Lemma 4.3. Under the assumptions of Theorem 3.3, there exist constants �′ and � > 0 such that

�‖Ã1/2
h uh‖2

0 + �Ch(ph, ph) = B̃h((uh, ph); (I ∗
huh, ph)), (4.6)

|B̃h((uh, ph); (I ∗
h vh, qh))|��′

2(‖Ã1/2
h uh‖0 + ‖ph‖0)(‖Ã1/2

h vh‖0 + ‖qh‖0), (4.7)

�(‖Ã1/2
h uh‖0 + ‖ph‖0)� sup

(vh,qh)∈(Xh,Mh)

B̃h((uh, ph); (I ∗
h vh, qh))

‖Ã1/2
h vh‖0 + ‖qh‖0

, (4.8)

hold for all (uh, ph) and (vh, qh) ∈ (Xh, Mh).

Proof. Eqs. (4.6) and (4.7) are the results of (2.3) and Lemmas 3.2 and 4.1.
For quadrilateral partition, let (uh, ph) ∈ (Xh, Mh). Because of the condition (3.8), there exist a positive constant

�3 [22], independent of h, and a gh ∈ Xh satisfy

(Q∗
hph, div gh) = ‖Q∗

hph‖2
0 and ‖Ã1/2

h gh‖0 ��3‖Q∗
hph‖0. (4.9)

If vh ∈ Xh and qh ∈ Mh are now chosen such that vh = uh − �gh and qh = −ph, where

� = 1

�2
3

(
1 + c′

3 + 1

�1�0

)−1

. (4.10)

With (3.7), Lemma (4.1), (4.9), (4.10), it follows that

B̃h((uh, ph); (I ∗
h vh, qh)) = ã(uh, I

∗
huh) + E(uh, uh) − �̃a(uh, I

∗
h gh)

− �E(uh, gh) − �d(ph, div gh) + Ch(ph, ph)

�(1 + c3)‖Ã1/2
h uh‖2

0 − (1 + c′
3)�‖Ã1/2

h uh‖0‖Ã1/2
h gh‖0

+ �d(Q∗
hph, div gh) − �d((Q∗

h − I )ph, div gh) + �1�‖(I − Q∗
h)ph‖2

0

�(1 + c3)‖Ã1/2
h uh‖2

0 − �3�(1 + c′
3)‖Ã1/2

h uh‖0‖Q∗
hph‖0 + �‖Q∗

hph‖2
0

− ��3‖(I − Q∗
h)ph‖0‖Q∗

hph‖0 + �1�0‖(I − Q∗
h)ph‖2

0

�
(

1

2
+ c3

)
‖Ã1/2

h uh‖2
0 − (1 + c′

3)
�2�2

3

2
‖Q∗

hph‖2
0 + �‖Q∗

hph‖2
0

− �2�2
3

2�1�0
‖Q∗

hph‖2
0 + �1�0

2
‖(I − Q∗

h)ph‖2
0,

that is,

B̃h((uh, ph); (I ∗
h vh, qh))�

(
1

2
+ c3

)
‖Ã1/2

h uh‖2
0 + �

2
‖Q∗

hph‖2
0 + �1�0

2
‖(I − Q∗

h)ph‖2
0,

i.e., there is a positive constant �1, independent of �, such that

B̃h((uh, ph); (I ∗
h vh, qh))��1(‖Ã1/2

h uh‖0 + ‖ph‖0)
2. (4.11)

On the other hand,

‖Ã1/2
h vh‖0 + ‖qh‖0 ��2(‖Ã1/2

h uh‖0 + ‖ph‖0), (4.12)

for some positive constant �2.
Finally, combining (4.11) and (4.12) establishes inequality (4.8) with � = �1/�2, independent of �. �



660 G. He, Y. He / Journal of Computational and Applied Mathematics 205 (2007) 651–665

For the trilinear term ˜̃
b(uh, vh, I

∗
hwh), the following properties are useful. Set

N2 = sup
u,v,w∈H 1

0 (�)

˜̃
b(u, v, I ∗

hw)

‖Ã1/2
h u‖0‖Ã1/2

h v‖0‖Ã1/2
h w‖0

,

N = max{c2
2N1, N2}. (4.13)

Lemma 4.4. The trilinear forms b̃ and ˜̃
b satisfy

|̃b(uh, vh, I
∗
hwh)|�N‖Ã1/2

h uh‖0‖Ã1/2
h vh‖0‖Ã1/2

h wh‖0,

|b(uh, vh, wh − I ∗
hwh)|�N‖Ã1/2

h uh‖0‖Ã1/2
h vh‖0‖Ã1/2

h wh‖0,

|̃̃b(uh, vh, I
∗
hwh)|�c‖uh‖1/2

0 ‖Ã1/2
h uh‖1/2

0 ‖Ã1/2
h vh‖0‖Ãhwh|1/2

0 ‖Ã1/2
h wh‖1/2

0 , (4.14)

for any uh, vh, wh ∈ Xh.

Proof. For any uh, vh, wh ∈ Xh, the first inequality is the result of the definition of b̃(uh, vh, I
∗
hwh). Since uh, vh, wh ∈

Xh are all (bi)linear function, direct computation gives the second one. To prove the third, in addition to the approx-
imation property and the inverse inequality in (3.5), we also need the discrete analogue of the Sobolev inequality
[33,19]

‖h‖L4 �c‖h‖1/2
0 ‖A1/2

h h‖1/2
0 ∀h ∈ Xh. (4.15)

Moreover, note that, for any uh, vh, wh ∈ Xh,

|̃̃b(uh, vh, I
∗
hwh)|�c‖uh‖L4‖A1/2

h vh‖0‖wh‖L4 ,

which, together with (4.15) and Lemma 3.2, implies the second inequality of (4.14). �

Theorem 4.5. Suppose the assumptions of Theorems 2.1 and 3.3 holds, and the body force f satisfies the following
uniqueness condition

1 − 4N

�2 ‖f ‖−1 > 0. (4.16)

Then there exists a unique solution (uh, ph) of problem (3.4) satisfying the following estimate:

�‖Ã1/2
h uh‖2

0 + ‖ph‖2
0 ��. (4.17)

Proof. Let the Hilbert space Hh = (Xh, Mh) be supplied with the scalar product and norm:

((v, q); (I ∗
hw, r))Hh

= ((v, I ∗
hw)) + (q, r), ‖(v, q)‖2

Hh
= ‖Ã1/2

h v‖2
0 + ‖q‖2

0,

and Kh be a non-void, convex and compact subset of Hh defined by

Kh =
{
(v, q) ∈ Hh : ‖Ã1/2

h v‖0 � 2

�
‖f ‖−1, ‖q‖0 � �′

2

�
‖f ‖−1 + 4�′

2N

��2 ‖f ‖2−1

}
.

We now define a continuous mapping from Kh into Hh as follows: Given (v̄, q̄) ∈ Kh find (u, p) = �(v̄, q̄) such that
for all (v, q) ∈ Hh

B̃h((u, p); (I ∗
h v, q)) +˜̃

b(v̄, u, I ∗
h v) = (f, I ∗

h v). (4.18)

Taking (v, q) = (u, p) in (4.18) and using (4.13), we obtain

�‖Ã1/2
h u‖2

0 �‖f ‖−1‖Ã1/2
h u‖0 + N‖Ã1/2

h v̄‖0‖Ã1/2
h u‖0‖Ã1/2

h u‖0. (4.19)
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Since v ∈ Kh and f satisfies the uniqueness condition (4.16), we see that

‖Ã1/2
h u‖0 � 2

�
‖f ‖−1,

�(‖Ã1/2
h u‖0 + ‖p‖0)��′

2(‖f ‖−1 + N‖Ã1/2
h v̄‖0‖Ã1/2

h u‖0)��′
2‖f ‖−1 + 4�′

2N

�2 ‖f ‖2−1,

which implies �(v̄, q̄) = (u, p) ∈ Kh. By the fixed point theorem (see [15]), the mapping �(v̄, q̄) has at least a fixed
point (uh, ph) ∈ Kh, namely, (uh, ph) ∈ Kh is a FVM solution of problem (3.4).

Next, we shall prove that problem (3.4) has only one solution (uh, ph). In fact, if (u1, p1) and (u2, p2) all satisfy
formulation (3.4), then for all (v, q) ∈ (Xh, Mh),

B̃h((u1 − u2, p1 − p2); (I ∗
h v, q)) +˜̃

b(u1 − u2, u1, I
∗
h v) +˜̃

b(u2, u1 − u2, I
∗
h v) = 0. (4.20)

Taking v = u1 − u2, q = p1 − p2 in Eq. (4.20), we see that

�‖Ã1/2
h (u1 − u2)‖2

0 � |̃̃b(u1 − u2, u1, I
∗
h v)| + |̃̃b(u2, u1 − u2, I

∗
h v)|. (4.21)

Combining (4.21) with (4.13) yields

�‖Ã1/2
h (u1 − u2)‖2

0 �N(‖Ã1/2
h u1‖0 + ‖Ã1/2

h u2‖0)‖Ã1/2
h (u1 − u2)‖2

0,

which implies

�

(
1 − 4N

�2 ‖f ‖−1

)
‖Ã1/2

h (u1 − u2)‖2
0 �0.

Hence by uniqueness condition (4.16), we have proven that the solution, uh, of problem (3.4) is unique. Using again
(4.8), (4.13) and (4.20), we also obtain the uniqueness of ph.

The estimate (4.17) is simple. �

For the error estimate of (uh, ph), we need the following Galerkin projection (R̃h, Q̃h) : (X, M) → (Xh, Mh)

defined by

B̃h((R̃h(v, q), Q̃h(v, q)); (I ∗
h vh, qh)) = B̃((v, q); (I ∗

h vh, qh)) ∀(vh, qh) ∈ (Xh, Mh), (4.22)

for each (v, q) ∈ (X, M).
Note that, due to Lemma 4.3, (R̃h, Q̃h) is well defined. By using a similar argument to ones used by He in [17], the

following approximate properties can be obtained.

Lemma 4.6. Under the assumptions of Lemma 4.3, the projection (R̃h, Q̃h) satisfies

‖Ã1/2
h (v − R̃h(v, q))‖0 + ‖q − Q̃h(v, q)‖0 �c(‖A1/2v‖0 + ‖q‖0), (4.23)

for all (v, q) ∈ (X, M) and

‖Ã1/2
h (v − R̃h(v, q))‖0 + ‖q − Q̃h(v, q)‖0 �ch(‖Av‖0 + ‖A1/2q‖0), (4.24)

for all (v, q) ∈ (D(A), H 1(�) ∩ M).

Proof. The stability of the projection follows simply by Lemma 4.3, namely

‖Ã1/2
h R̃h(v, q)‖0 + ‖Q̃h(v, q)‖0 ��−1 sup

(wh,rh)∈(Xh,Mh)

B̃h((R̃h(v, q), Q̃h(v, q)); (I ∗
hwh, rh))

‖Ã1/2
h wh‖0 + ‖rh‖0

��−1 sup
(wh,rh)∈(Xh,Mh)

B((v, q); (I ∗
hwh, rh))

‖Ã1/2
h wh‖0 + ‖rh‖0

�c(‖A1/2v‖0 + ‖q‖0) ∀(v, q) ∈ (X, M). (4.25)
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Now the triangle inequality gives

‖Ã1/2
h (v − R̃h(v, q))‖0 + ‖q − Q̃h(v, q)‖0 �c(‖A1/2v‖0 + ‖q‖0), (4.26)

for all (v, q) ∈ (X, M), which is (4.23).
Next, let (v, q) ∈ (D(A), H 1(�) ∩ M), using the standard interpolation (Ihv, Jhp) ∈ (Xh, Mh) and Lemma 4.3,

we have

‖Ã1/2
h (Ihv − R̃h(v, q))‖0 + ‖Jhq − Q̃h(v, q)‖0

��−1 sup
(vh,qh)∈(Xh,Mh)

B̃h((Ihv − R̃h(v, q), Jhq − Q̃h(v, q)); (I ∗
h vh, qh))

‖Ã1/2
h vh‖0 + ‖qh‖0

��−1 sup
(vh,qh)∈(Xh,Mh)

B̃h((Ihv − v, Jhq − q); (I ∗
h vh, qh))

‖Ã1/2
h vh‖0 + ‖qh‖0

�c(‖Ã1/2
h (Ihv − v)‖0 + ‖Jhq − q‖0). (4.27)

Thus the triangles inequality and approximate properties (3.5) give

‖Ã1/2
h (v − R̃h(v, q))‖0 + ‖q − Q̃h(v, q)‖0 �ch(‖Av‖0 + ‖A1/2q‖0). � (4.28)

Now, we derive the following optimal H 1 error estimate of uh and L2 error estimate of ph defined in (3.4).

Theorem 4.7. Assume that the assumptions of Theorem 4.5 hold. Then there exists a positive constant � such that the
stabilized finite volume solution (uh, ph) satisfies the error estimate:

‖Ã1/2
h (u − uh)‖0 + ‖p − ph‖0 ��h. (4.29)

Proof. By subtracting (3.4) from (2.8) and using the properties of the Galerkin projection (R̃h, Q̃h), we obtain

B̃h((eh, �h); (I ∗
h v, q)) + E(u, v) + b(u, u − uh, v) + b(u − uh, u, v)

− b(u − uh, u − uh, v) − b(uh, uh, v − I ∗
h v) = (f, v − I ∗

h v), (4.30)

for all (v, q) ∈ (Xh, Mh), where

eh = R̃h(u, p) − uh, �h = Q̃h(u, p) − ph, u − uh = wh + eh.

Then, setting (v, q) = (eh, �h) in (4.30) and using (2.4), it follows that

�‖Ã1/2
h eh‖2 + �Ch(�h, �h) + b(eh + wh, u, eh) + b(u, wh, eh) − b(eh + wh, wh, eh)

− b(eh + wh, u, eh − I ∗
h eh) − b(uh, eh + wh, eh − I ∗

h eh)

+ b(u, u, eh − I ∗
h eh) + b(u − uh, u − uh, eh − I ∗

h eh) + E(u, eh)

= (f, eh − I ∗
h eh), (4.31)
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where wh = u − R̃h(u, p). We rewrite (4.31) as

�‖u − uh‖2 + �Ch(�h, �h) = − b(u, u − uh, wh) + b(u − uh, u, u − uh)

− b(u − uh, uh, wh) − b(u − uh, u, (u − uh) − I ∗
h (u − uh))

− b(uh, u − uh, (u − uh) − I ∗
h (u − uh))

+ b(u, u, (u − uh) − I ∗
h (u − uh)) − b(u − uh, u, wh − I ∗

hwh)

− b(uh, u − uh, wh − I ∗
hwh) + b(u, u, wh − I ∗

hwh) − ã(wh, wh)

+ 2̃a(wh, u − uh) − E(u, (u − uh)) + E(u, wh)

+ (f, (u − uh) − I ∗
h (u − uh)) + (f, wh − I ∗

hwh). (4.32)

Note that

E(u, vh)�ch‖Au‖0‖vh‖0 ∀u ∈ D(A) ∩ X, vh ∈ Xh.

We shall make the following estimates for some nonlinear terms on the right-hand side in (4.32):

|b(u, u − uh, wh)|�c‖Ã1/2
h wh‖0‖A1/2

h u‖0‖Ã1/2
h (u − uh)‖0

� �

32
‖Ã1/2

h (u − uh)‖2
0 + �‖Ã1/2

h wh‖2
0‖A1/2

h u‖2
0,

|b(u − uh, uh, wh)|�c‖Ã1/2
h wh‖0‖Ã1/2

h u‖0‖Ã1/2
h (u − uh)‖0

� �

32
‖Ã1/2

h (u − uh)‖2
0 + �‖Ã1/2

h wh‖2
0‖Ã1/2

h u‖2
0,

|b(u − uh, u, u − uh)|�N1‖A1/2
h u‖0‖A1/2

h (u − uh)‖2
0

�N‖A1/2
h u‖0‖Ã1/2

h (u − uh)‖2
0,

|b(uh, u − uh, (u − uh) − I ∗
h (u − uh))|�N‖Ã1/2

h uh‖0‖Ã1/2
h (u − uh)‖2

0,

|b(u − uh, u, (u − uh) − I ∗
h (u − uh))|�ch‖Au‖0‖Ã1/2

h (u − uh)‖2
0

� �

32
‖Ã1/2

h (u − uh)‖2
0 + �h2‖Au‖2

0‖A1/2u‖2
0,

|b(u, u, (u − uh) − I ∗
h (u − uh))|�ch‖Au‖0‖A1/2u‖0‖Ã1/2

h (u − uh)‖0

� �

32
‖Ã1/2

h (u − uh)‖2
0 + �h2‖Au‖2

0‖A1/2u‖2
0,

|b(u − uh, u, wh − I ∗
hwh)|�c‖Ã1/2

h wh‖0‖A1/2u‖0‖Ã1/2
h (u − uh)‖

� �

32
‖Ã1/2

h (u − uh)‖2
0 + �‖Ã1/2

h wh‖2
0‖A1/2u‖2

0,

|b(uh, u − uh, wh − I ∗
hwh)|�c‖Ã1/2

h wh‖0‖Ã1/2
h uh‖0‖Ã1/2

h (u − uh)‖

� �

32
‖Ã1/2

h (u − uh)‖2
0 + �‖Ã1/2

h wh‖2
0‖Ã1/2

h uh‖2
0,

|b(u, u, wh − I ∗
hwh)|�c‖Ã1/2

h wh‖0‖A1/2u‖2
0.
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Table 1
Numerical results of the FVM and FEM

h Method
‖Ã1/2

h (u−uh)‖0

‖Ã1/2
h u‖0

‖u−uh‖0‖u‖0

‖p−ph‖0
‖p‖0

1
16 FEM 0.13493775 0.05282056 0.08907621
1

16 FVM 0.13754968 0.05310531 0.09503956
1

32 FEM 0.06749820 0.04425722 0.04428041
1

32 FVM 0.07662815 0.04921347 0.05417745
1

64 FEM 0.03653298 0.02869463 0.01700283
1

64 FVM 0.04927651 0.03424916 0.02715132

Combining the above estimates with (4.32) and using Theorems 2.1, 4.5 yields(
3�

4
− N(‖A1/2

h u‖0 + ‖Ã1/2
h uh‖0)

)
‖Ã1/2

h (u − uh)‖2
0 + �Ch(�h, �h)

��‖Ã1/2
h wh‖2 + �h2(‖Au‖2

0‖A1/2u‖2
0 + ‖Au‖2

0 + ‖A1/2u‖2
0 + ‖wh‖2

0 + ‖f ‖2
0).

Using (4.16), Theorems 2.1, 4.5 and Lemma 4.6, one finds

‖Ã1/2
h (u − uh)‖2

0 ��h2. (4.33)

Since Ch(p, qh) = 0, ∀p ∈ (H 1(�) ∩ M), ∀qh ∈ Mh, using again (4.8), (4.30), (2.9) and (4.17), we have

‖�h‖0 ��−1c(‖A1/2u‖0 + ‖Ã1/2
h uh‖0)‖Ã1/2

h (u − uh)‖0 ��‖Ã1/2
h (u − uh)‖0. (4.34)

Finally, one finds

‖p − ph‖0 = ‖p − Q̃h(u, p) + Q̃h(u, p) − ph‖0

�‖p − Q̃h(u, p)‖0 + ‖Q̃h(u, p) − ph‖0 ��h. (4.35)

Hence, (4.29) follows. �

5. Numerical example

For the easy comparison with locally stabilized finite element method (FEM) [17], we also set that the exact solution
is given by

u(x, y) = (u1(x, y), u2(x, y)), p(x, y) = 10(2x − 1)(2y − 1),

u1(x, y) = 10x2(x − 1)2y(y − 1)(2y − 1), u2(x, y) = −10x(x − 1)(2x − 1)y2(y − 1)2,

with � = 0.005 and f is determined by (2.1). Next, we provide the convergence accuracy of the stabilized FVM and
FEM with h = 1

16 , 1
32 and 1

64 when the parameter value � = 9.18 is used to solve the flow problem on a uniformly
refined sequence of grids in Table 1.

The results show the anticipated first-order convergence rate.
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