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SIAM J. NUMER. ANAL. (?) 1998 Society for Industrial and Applied Mathematics 
Vol. 35, No. 5, pp. 1850-1861, October 1998 008 

MIXED COVOLUME METHODS FOR ELLIPTIC PROBLEMS 
ON TRIANGULAR GRIDS* 

SO-HSIANG CHOUt, DO Y. KWAKt, AND PANAYOT S. VASSILEVSKI? 

Abstract. We consider a covolume or finite volume method for a system of first-order PDEs 
resulting from the mixed formulation of the variable coefficient-matrix Poisson equation with the 
Neumann boundary condition. The system may represent either the Darcy law and the mass con- 
servation law in anisotropic porous media flow, or Fourier law and energy conservation. The velocity 
and pressure are approximated by the lowest order Raviart-Thomas space on triangles. We prove its 
first-order optimal rate of convergence for the approximate velocities in the L2-and H(div; Q)-norms 
as well as for the approximate pressures in the L2-norm. Numerical experiments are included. 

Key words. MAC method, mixed finite elements, covolume methods, finite volume methods, 
Raviart-Thomas spaces, error estimates, preconditioning, hierarchical methods 

AMS subject classifications. 65F10, 65N20, 65N30 

PII. S0036142997321285 

1. Introduction. Consider the variable coefficient Poisson equation in a poly- 
gonal domain Q C R2 

f -V PCVp finQ, 
(1.1) l PCVp n = in&Q, 

where IC = PC(x) = diag(r1 (x), l (x)) is a symmetric positive definite diagonal 
matrix function and its entries are bounded from below and above by positive con- 
stants. The function f satisfies the compatibility condition fA f dx = 0. Furthermore, 
we shall assume that Tr, T2 are locally Lipschitz. 

Let us introduce a new variable u =-CVp and write the above equation as the 
system of first-order partial differential equations 

I t-lu = -Vp, 
(1.2) divu = f, 

u n = Oon&Q. 

This system can be interpreted as modeling an incompressible single phase flow in a 
reservoir, ignoring gravitational effects. The matrix IC is the mobility ri/lt, the ratio 
of permeability tensor to viscosity of the fluid u is the Darcy velocity and p the 
pressure. The first equation is the Darcy law and the second represents conservation 
of mass with f standing for a source or sink term. Since r, is in general discontinuous 
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MIXED COVOLUME METHODS ON TRIANGULAR GRIDS 1851 

due to different rock formations, separating the Darcy law from the second-order 
equation and discretizing it directly together with the mass conservation may lead to 
a better numerical treatment on the velocity than just computing it from the pressure 
via the Darcy law. This approach is well known in the finite element circle [191, but 
the same approach can be applied in conjunction with the finite volume method as 
well (see [4, 7, 10, 20]). 

The associated weak formulation of our first-order system is: Find (u, p) c Ho x 
LO such that 

(1.3) (Ai1u,v) (p,divv), Vv in Ho, ( ) ~~~~(divu, q) = (f, q), Vlq in L'o, 

where Ho := H(div; Q) n {u. n = 0} and LO := {q C 12: f2 qdx = 0}. The space 
H(div; Q) is the set of all vector-valued functions w C L2(Q)2 such that divw C 
L2 (Q). 

We will use a covolume method to approximate this system. In a covolume 
method for differential systems one uses two staggered irregular grids a primal grid 
consisting of primal volumes (elements) and a dual grid consisting of covolumes (dual 
elements). The associated discretization equations are derived by integrating the 
differential equations over the volumes and using the divergence theorem or the Stokes 
theorem when proper. The balance between the numbers of unknowns and equations 
depends on a judicious placement of the degrees of freedom for the unknown functions. 
A well-known example of this approach in the fluid dynamics is the marker and cell 
(MAC) method [14] on staggered rectangular grids for the Navier-Stokes equations. 
In the MAC method one places the velocity degree of freedom on the boundary 
of the volumes in the primal partition and the pressure degree of freedom at the 
centers. The MAC method actually preceded the covolume method, and there are 
many generalizations of the MAC method to irregular grids, e.g., [13, 15, 16] for the 
Navier-Stokes equations, among others. In our covolume method we will adopt the 
same type of MAC variable placement for the pressure and velocity variables, although 
we are not dealing with the Navier-Stokes equations. The covolume approach can 
also be applied to other systems such as the div-curl system arising from the Maxwell 
equations. We refer the reader to the survey paper by Nicolaides, Porsching, and 
Hall [17] for other applications and status of the covolume method up to 1995. The 
reader can also find therein other interpretations of the covolume approach. 

One recent emphasis in the development has been to put the convergence and 
stability analysis of the covolume method into a general framework [5, 6, 7, 8, 9, 10]. 
In these papers the covolume method was viewed as a Petrov-Galerkin scheme. The 
basic technique was to relate the scheme to a standard finite element Galerkin or 
mixed method through an introduction of the transfer operator that maps the trial 
function space into the test function space. However, the transfer operator played no 
essential role in the implementation of the method itself. 

The purpose of this paper is to consider a covolume method on triangular- 
quadrilateral grids which makes essential use of the transfer operator. In other words, 
the operator is not only used as an analysis tool, but also defines the scheme itself. To 
ease the description let us define two partitions on the domain Q, a primal partition 
over which to integrate the continuity equation, and a dual partition for integrating 
the Darcy law. 

Referring to Fig. 1, let Th {KB} be a partition of the domain Q into a 
union of triangular elements, where KB stands for the triangle whose barycenter is 
B. We define the nodes of a triangular element to be its midpoints and denote by 
P1, P2,..., PNS those nodes belonging to the interior of Q and PNs+1,... , PN those 
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1852 S.-H. CHOU, D. Y. KWAK, AND P. S. VASSILEVSKI 

A1 

A4 

FIG. 1. Primal and dual domains. 

nodes on the boundary. The trial function space Hh associated with the approxi- 
mation of the fluid velocity is the lowest-order Raviart-Thomas space for triangles, 
i.e., 

Hh ={Vh C Ho: VhpK =(a?+bx, c?+by), K C Th}, 

and the trial space associated with the pressure is 

Lh ={q,h C t: qh K iS constant VEKCTh}. 

Next we construct the dual partition Th* and the test function space. The dual grid 
is a union of interior quadrilaterals and border triangles. Referring to Fig. 1, the 
interior node P3 belongs to the comnmon side of the triangles KB1 = \~A1A2A3 and 
KB2 = /A1A3A5, and the quadrilateral A1B2A3B1 is the dual element with node at 
P3. For a boundary node like P6 the associated dual element is a triangle (Z\.A5B3A4 
in this case). 

In general, let KP (dashed quadrilateral in Fig. 1) be an interior dual element 
that is the union of two primal elements KL (the triangle Z\A1B2A3 in Fig. 1) and 
KR (the triangle /AAB2A3). Define the operator 2 Yh: Hh -* 

(1.*4) 'YhWh t ( (Wh|KL (Pj )XK; nKL + Wh |KR (Pj )XKnKR ), 

where XQ is the characteristic function of the set Q and Ns is the number of interior 
edges of Th. The test space associated with the Darcy law is defined as 

Yh := RQtyh) =the range of tYh 

Thus, by (1.4) a function wh C Yh is a piecewise constant vector function, which 
can take on different constant vector values on the left and right pieces of an interior 
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MIXED COVOLUME METHODS ON TRIANGULAR GRIDS 1853 

dual element and is zero on any boundary dual element. Note that the two constant 
vector values WhIKL and Wh KR must satisfy 

Wh IKL * n = Wh I KR n, 

where n is a fixed normal unit vector to the common edge of KL and KR. It is 
now easy to see that the transfer operator -Yh sets up a one-to-one correspondence 
between the trial and test spaces and dimYh =dim Hh. We mention in passing that 
the space Yh is also very natural for defining upwinding mixed finite volume methods 
[10, 11, 12]. 

The standard mixed method on the primal grid is: Find (flh, 1h) C Hh x Lh such 
that 

(1.5) ( l(C'1ih, Vh) - (diVVh,13h) = 0, VVh in Hh, 
(divflh, qh) = (f, qh), Vqh in Lh. 

A natural Petrov-Galerkin method which corresponds to the above method and which 
obeys the MAC placement of variables is to replace vh C Hh by wh C Yh. To this 
end, let us define the bilinear forms a(., ) on Hh X Yh, b(., ) on Yh x Lh, and c(.,) 
on Hh x Lh as follows: 

(1.6) a(Vh, Wh) = jA Vh * Whdx, Vh C Hh, Wh C Yh, 

NS 

(1.7) b(Wh,Ph) ZVh(Pi)KL K J qhndo 
1 JaK,O KL 
NS 

- E Vh(Pi) KR / qhndoT, 
1 JaK* nKR 

T 
(1.8) C(Vh, qh) E qh(Bk) J divvhdx 

k^=1 KB 

( 1. 9) j qhdivqhdx. 

Then the covolume method we consider is: Find (Uh, Ph) C Hh X Lh such that 

(I.10o) a(uh,wYhvh) + b(Yhvh,Ph) = 0) VVh in Hh, 
C(Uh, qh) = (f, qh), Vqh in Lh. 

Set 

(1.11) A(uh,vh) := a(Uh,Yhvh)= (h71Uh,YhVh), Uh,Vh C Hh 

and 

(1.12) B(vh, qh) = b(YhVh, qh), VVh C Hh, qh C Lh. 

We show in Lemma 2.1 that B =-c so that (1.10) becomes 

(1.13) A(uh,wh)+B(Wh,Ph) 0, VWhinHh, 

(1.14) B(Uh,qh) - (f,qh), Vqh in Lh, 

which differs from the standard mixed method (1.5) only in the bilinear form A. The 
first-order convergence of the solutions of (1.13)-(1.14) is established in Theorem 3.1 
by comparing the two methods. 
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1854 S.-H. CHOU, D. Y. KWAK, AND P. S. VASSILEVSKI 

The organization of this paper is as follows. In section 2 we establish some 
preliminary lemmas. We prove our main theorem in section 3, which demonstrates 
the first-order convergence of the velocity in the H(div) norm and of the pressure 
in the L2-norm. We provide numerical results in the last section and compare them 
with the standard mixed method. 

2. Saddle-point formulation. In this section the symbol C will denote a pos- 
itive generic constant independent of h that may take on different values in different 
places. 

LEMMA 2.1. The following holds. 

B(Vh, qh) = b(Yhvh, qh) = -C(Vh, qh), VVh C Hh,qh C Lh. 

Proof. 

-B(Vh, qh) = VhJ(Pi)IKL qhndo- + Vh(Pi) KR f O qhndo) 
1 o~~K*. nKL AK*. nKR 

S IK 
KETh 

Then 
3 

IK 5 qhVh(Pj) ndo- 
j=l Aj+IBAj 

J3 BA 

E [I div (qhvh(Pj))do- -qhvh(Pj) ndoj 
j.=l \Aj+I BAj AjAj+l 

3 = E o j qhVh(PF) ndoj 
j= 1 Aj Aj+ 1 

3 
- E(qhVh(Pj) ) n)lAjAj+ll 

j_1 

3 
Vh(A.L+V(A.~ \ j=l1 =- Eqh nl(j 

VhA+) 
AjAj+ 

I 

3 

E ?qhVh(x) ndo- 
j=l jAjA+l 

-qh J div (Vh(x)) dx. [ 

We next show the coercivity of A. 
LEMMA 2.2. There exists a constant C independent of h such that 

A(vh,Vh) > CVh 11(div)2 Vv c Hh 

with divvh = 0. 
Proof. Since on each K, Vh is of the form (a + bx, c + by), divvh 0 implies 

b 0 O. Thus we have Uh = (a, c) and -yuh = Uh on K and the result is trivial. [1 
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MIXED COVOLUME METHODS ON TRIANGULAR GRIDS 1855 

Then the problem becomes 

(2.1) A(uh, wh) + B(wh,ph) = 0, Vwh in Hh, 
(2.2) B(uh, qh) = -(f, qh), Vqh in Lh(Q) 

Now by Lemma 2.1, B becomes a well-known bilinear form and we have the 
following inf-sup condition. 

LEMMA 2.3. There exists a positive constant /3 independent of h such that 

(2.3) sup B(Wh, qh) > 11qhjo 
Wh#O JWh H(div) 

Note that by the previous lemmas and the boundedness of A and B, the covolume 
method (2.1)-(2.2) is well posed. Next we show some crucial approximation properties 
Of -Yh. Let us first define a discrete seminorm for Wh = (Wh, Vh) c Hh: 

(2.4) lWh 1,h = IE IVWh IO,K + IJ O ,K 
KETh 

and the full norm 

| = lW hl 2 + lWh 1 1,h Wh~ 1 ? h 

We also use W lWh I l1,h;K for the corresponding restriction. Sinlce the bilinear form a(.,) 
of (1.6) involves only L2-functions, we can extend it accordingly. 

LEMMA 2.4. The transfer operator -Yh is bounded 

(2.5) 11YhWh 0 lWh 0lo, VWh C Hh- 

There exists a constant C independent of h such that 

(2.6) ||(I- Yh)WhIlO < ChIlWhIll,h, VWh C Hh, 

(2-7) 1(QYhUh,Wh) - (Uh,-YhWh) |< Ch (Uh H(div) jWhjlo + ? Uh 0 lWh H(div)) 

(2.8) a(uh, (I- Yh)Wh) < Chj Uhjj1,hjjWhj H(div)' VUh, Wh C Hh, 

(2.9) a(uh, (I- Yh)Wh) < Chj Uhj H(div) jWhj H(div)' VUh, Wh C Hh 

Proof. The relation (2.5) is easily proved by noting that the midpoint quadrature 
rule 

I dK II ow) 
3 =1 

where Pi are the midpoints of sides of K, is exact for quadratic polynomials. Now 
with K = A1A2A3 denoting a typical triangle (cf. Fig. 2), A\j = AAj+BAj, we 
have 

I 2 

(2.10) 1whYZh 112JX K ?Wh KR (Pj)K KR dx 
j=1 KL 
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A1 

P1/P~~~~3 

A2 \3 
P2 

FIG. 2. An element K and its dual subdivision. 

3 

<E S Wh,K (Pj) 12Area(AjQ ) 
K j=1 

S 
, 73 Wh,K(PI) 2Area(K) 
K j =_1 

_< IlWh llo 

The proof of (2.6) is straightforward by the Bramble-Hilbert lemma. 
To prove (2.7), let K = A1A2A3, (cf. Fig. 2), A\j = /.AA+BAj, and cj be the 

centroid of \J. Then 

(Uh,-YhWh)Aj - Yhuh,UWh)Aj 

J [Uh(X)Wh(Pj) -Uh(Pj)Wh(x)]dx 

[Uh(Cj)Wh(Pj) - Uh(Pj)wh(cj)]Area(Aj) 

[(Uh(Cj) - Uh(Pj)) * Wh(Pj) + Uh(Pj) * (wh(Pj) - wh(cj))]Area(A3\) 

[DUh(Cj - Pj) Wh(Pj) + Uh(Pj) * DWh(Pj - cj)]Area(Aj) 

- (divUh (cj - Pj) . Wh (Pj) + divWh (Pj - Cj) * Uh (Pj)) Area(Aj) 2 
< Ch (I divuh I Iwh (Pj) I + I diVWh I I Uh (Pj) 1) Area (Aj) 

<Ch (UhIH(div),zXj Wh IIK + IlUh K WhIH(diV),Aj ) 

Summing over all j and K, we obtain (2.7). 
To prove (2.8), observe 

a(uh, (I - -Yh)Wh) = a((I - -Yh)Uh, Wh) + [a(Yhuh, Wh) - a(uh,'YhWh)1 

= Si + S2. 

We shall show that S, and S2 are bounded by the right-hand side of (2.8). For 
S,, first note that by (2.6) 

I S, I I a(l (-'-Yh ) Uh , Wh ) I 

- (/C1(I- Yh)Uh,Wh)I 

- ((I-Yh)uh, k wh) I 
< C||K 1|hHIuhlI1,hflwhl.- 
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MIXED COVOLUME METHODS ON TRIANGULAR GRIDS 1857 

We next show how to bound S2. Write /C-' =diag(T1(x), T2(x)) with 0 < tmin < 
T1, T2 < tmax. We need to estimate 

3 

E S(/l1YhUhh Wh)Aj - (C_1Uh<YhWh)Aj- 
K j=1 

Now by (2.6), Lipschitz continuity of KC-1, and (2.7), we have 

3 

S2 = 5((K (X) - C1(Pj)>)yhUh, Wh)Aj - ((K 1(X) -A1(Pj))Uh(X))vYhWh(X))Aj 
K j=1 

3 

+ E E ? 1(Pi) [(YhUh, Wh)Aj - (Uh,-YhWh)Aj] 
K j=1 

implies 

S21 < MhllUhlJoflWhlIo + Chll /'llK [|Uh|H(div)|WhnO + HlUhWllWhKH(div)] 

where we also used the boundedness of -Yh in the L2-norm to estimate the first term 
on the right. Finally, (2.9) follows from (2.8), since I I Uh I I 1, h < I I Uh H(div) which is 
a direct consequence of (2.4). [ 

3. Error estimates. We now prove the main theorem of this paper. 
THEOREM 3.1. Let the triangulation of the domain Q be regular, and let 

{Uh,Ph} be the solution of the problem (2.1)-(2.2) and {u,p} of the problem (1.3). 
Then there exists a positive constant C independent of h but dependent on I Irt / 00 
Hlulli, Ildivulli, and llpII1 such that 

(3.1) flU - UhllH(div) + IIP - PhIlO < Ch 

provided that u E H1,divu E H1,p E H1. 
Proof. Introduce the auxiliary mixed formulation to (1.3): Find (flh, Ph) e Hh X 

Lh such that 

(3.2) a(fh,wh) + B(Wh,Ph) = 0, Vwh in Hh, 
(3.3) B(fh, qh) = -(f, qh), Vqh in Lh. 

This system has the following well-known convergence result [18]: 

(3.4) 11U-ih1H(div) + IIP -PhIO < Ch(Ifufl, + Ildivufli + |lp||1) 

provided that u E H1, divu E H1, p E H1. On the other hand, we have 

(3.5) a(Uh,<YhWh) + B(Wh,ph)= 0, VWh E Hh, 

(3.6) B(Uh, qh) = -(f, qh), Vqh E Lh. 

Since u - Uh = (u - Uh) + (flh - Uh), it suffices to estimate the second term on the 
right. Subtracting (3.6) from (3.3), we have 

(3.7) B(fh-Uh, qh) = 0, Vqh E Lh 

Subtracting (3.5) from (3.2) yields 

(3.8) a(flh - Uh, -YhWh) + a(flh, (I - -Yh)Wh) + B(Wh, Ph - Ph) = 0. 

This content downloaded from 129.1.62.221 on Tue, 05 Aug 2014 13:41:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1858 S.-H. CHOU, D. Y. KWAK, AND P. S. VASSILEVSKI 

Replace the Wh above by eh := Uh - Uh and use (3.7) to obtain 

a(6h, -Yh6h) = -a(flh, (I - -h)6h)- 

By Lemma 2.2, (2.9), and (3.4) 

aeh 112(div) <OChj eh1H(div)) 

where C is independent of h but dependent on 11&C-11l4 , Hlulli, ldivulli, and IlpHil. 
Hence 

11ehH(diV) < Ch. 

An application of the triangle inequality completes the proof for the velocity. The 
error in the pressure is estimated by invoking the inf-sup condition. [1 

4. Numerical experiments. First note that the error estimate in the main 
theorem is still valid in the case of the Dirichlet problem. Let us now present some 
numerical results that illustrate the error behavior of the studied mixed covolume 
method. The problem was 

(4.1) V .(-CVp) f(x, y), (x, y) E Q = (0, 1)2. 

The exact solution was chosen p = x(1 - x)y(I - y) and Dirichlet boundary conditions 
were imposed. The coefficients of the operator were IC = diag(kl, k2), k- = I + lOx2 + 
y2, k2 -1 + x + 1Oy2. 

For the flux variable u = (Ul,u2) we used the lowest-order Raviart-Thomas 
piecewise polynomial space Hh on isosceles right-angled triangles of size h, for h 
2-4, 2-5, 2-6, 2-7. The pressure variable p corresponded to piecewise constants on 
the same triangular elements. The space of piecewise constant is denoted by Lh. 

The stiffness matrix and right-hand sides were computed using the following 
quadrature formula: 

(4.2) 1K - K (fb(ml) + fb(m2) + ,b(m3)) 

Here K is either a primal or a dual triangle (cf. Fig. 2); IKI, its area; and m1, m2 
and M3, the midpoints of its edges. After the discretization one ends up with the 
following linear system of equations to be solved: 

U1 rhsu1 
(4.3) A U2 1 f rhsu2 

P rhsp 

with the saddle-point-like stiffness matrix 

(4.4) A [= BT 
[ B O 

We used the fact that A satisfies the inf-sup condition, 

(4.5) sup (Au, P; v, q) > 2[ I(div) + 1P12, Vu, Pe Hh x Lh, 

H~[ ~(div) 
+ 
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TABLE 1 
Error behavior and iteration counts for the covolume scheme. 

|________ || h= 1/16 | h= 1/32 [ h= 1/64 | h= 1/128 [ order 
6p 2.45e-4 6.17e-5 1.54e-5 3.86e-6 2 
8u1 5.21e-3 1.25e-3 3.07e-4 7.61e-5 2 
6U2 5.2le-3 1.25e-3 3.07e-4 7.6le-5 2 

61 int 3.03e-3 7.70e-4 1.93e-4 4.84e-5 2 

# unknowns 1312 5184 20 608 82 176 
#iterations 22 22 23 22 
# 0.37 0.37 0.39 0.38 

n 2.00 2.09 2.20 2.25 

which in matrix form reduces to the spectral equivalence relations: 

(4.6) (A TA-'Ax x) > A Vx) ) x__ = (U1, U2, P). 

Here, O [ AO ] where Ao corresponds to the stiffness matrix arising from 
the H(div)-bilinear form f /C-lu v + f divu divv, restricted to the Raviart-Thomas 
space for the velocity variable. 

Then from a general reason it is clear that any preconditioner M of optimal order 
for Ao will define an optimal order preconditioner M [ M I ] for A. Recall that 
A is nonsymmetric and indefinite. So one can either use M as a preconditioner in 
the GMRES or GCG-LS method for A or one can use M as a preconditioner to 
ATMi4-1A in the standard CG method. We have chosen in our experiments the first 
approach. We used a generalized conijugate gradient least squares method (GCG-LS) 
as derived in [2] (for a mathematically-equivalent-to-the-GMRES method, see Saad 
[21]). 

Choices of M, a preconditioner for the H(div)-bilinear form are found in [3, 22, 1]. 
We used in the experiments reported in Table 1 an algebraically stabilized version 
of the hierarchical method from [3]. Details on the algebraic stabilization of the HB 
methods are found, for example, in [23]. 

The stopping criterion in the GCG-LS method was 

IM-2Arll < 10-9I M-2rOl|, 

where flvI12 = vTv, and ro stands for the initial residual, r is the current one. The 
initial iterate was chosen as xo = M-1f, where f was the right-hand side of the 
discrete problem Ax= f. 

We show in Table 1, in addition to the error behavior of the covolume discretiza- 
tion method, also p, n and the number of iterations, where 

(4.7) (A,11A ) 1/# iterations 

I I.A4- 2ArollI 

was an average reduction factor, and n was the condition number of M1A4O. Recall 
that A0 [ A0O I ], where Ao stands for the matrix corresponding to the H(div)- 
bilinear form (/C- 1 u, v) + (divu, divv) computed from the triangular Raviart-Thomas 
velocity space. 

More specifically, denote xi = ihx, yj = jhy, i = O, 1, 2,..., nx, j =O 1, 2, ... ny, 
hx = hy = hi nx = ny = n = lh, for a given h = 2 26, 2-. In Table 1, we 
show 
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TABLE 2 
Error behavior and iteration counts for the standard mixed finite element scheme. 

|____||__ h= 1/16 h= 1/32 h= 1/64 h= 1/128 [ order fl 
6p 2.84e-4 7.14e-5 1.79e-5 4.47e-6 2 
6u1 5.21e-3 1.25e-3 3.07e-4 7.61e-5 2 
6U2 5.21e-3 1.25e-3 3.07e-4 7.61e-5 2 

61 int 3.03e-4 7.70e-4 1.93e-4 4.84e-5 2 

# unknowns 1312 5184 20 608 82 176 
iterations 22 22 23 22 

Q 0.37 0.38 0.39 0.38 
_ 2.00 2.09 2.20 2.25 

(i) 

8p jjIhP-Phjjh 

n 
_ 2yX2 j 

[Z hxhy XPji hx Y)Pyjf--hyYXiY)hjI E E tZ y (p(Xi2 h Yi2 hy)Ph (i2 XI 
Yi-'2hy))| 

i.e., a discrete L2-norm of the error p -Ph; 

(ii) 

6u1 |IhUl - Uh, Il||h 

= ZZhxhy Qul(xi,Yi - -hy) Uh, i(Xi,Yj -hy 

i.e., a discrete L2-norm of the error u1 -uh1; 

(iii) 

Ltt2 I ITI-i 2 - Uh, 2| h 

[ZZ hxhyQU2(Xi - 2hxYj Uh, 2(Xi-2h ) y- 

i.e., a discrete L2-norm of the error U2 -Uh, 2; 

(iv) 

8uint Ih - Uh)jjh 

nx~ ny /2 2 Uh~ 

hxhy ((u n) (xi - h y. -Y - hy)(Uh * n) xi) ) 2 

i.e., a discrete L2-norm of the error u n- n, where n is the unit normal 
vector to the edge (Xi-,, Yj- 1), (xi, yj); 

(v) the number of iterations of the preconditioned GCG-LS method; 
(vi) the average reduction factors p, (4.7); 
(vii) the condition number n of M1A4 o; 
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(viii) the total number of unknowns (for both U and P). 
It turns out that our experiments suggest second-order approximation in all vari- 

ables. Notice also the constant number of iterations (and corresponding average 
reduction factors p) in the preconditioned GCG-LS method. 

For comparison, in Table 2, we have included the same kind of results as reported 
in Table 1, now for the standard mixed finite element scheme. One can observe that 
the schemes differ very little; the covolume one admits slightly better error behavior 
for the pressure variable p. 
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