
Bowling Green State University Bowling Green State University 

ScholarWorks@BGSU ScholarWorks@BGSU 

Mathematics and Statistics Faculty 
Publications Mathematics and Statistics 

2000 

Conservative P1 Conforming and Nonconforming Galerkin Fems: Conservative P1 Conforming and Nonconforming Galerkin Fems: 

Effective Flux Evaluation via a Nonmixed Method Approach Effective Flux Evaluation via a Nonmixed Method Approach 

So-Hsiang Chou 
Bowling Green State University, chou@bgsu.edu 

Shengrong Tang 

Follow this and additional works at: https://scholarworks.bgsu.edu/math_stat_pub 

 Part of the Physical Sciences and Mathematics Commons 

Repository Citation Repository Citation 
Chou, So-Hsiang and Tang, Shengrong, "Conservative P1 Conforming and Nonconforming Galerkin Fems: 
Effective Flux Evaluation via a Nonmixed Method Approach" (2000). Mathematics and Statistics Faculty 
Publications. 9. 
https://scholarworks.bgsu.edu/math_stat_pub/9 

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@BGSU. 
It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized 
administrator of ScholarWorks@BGSU. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bowling Green State University: ScholarWorks@BGSU

https://core.ac.uk/display/234762439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.bgsu.edu/
https://scholarworks.bgsu.edu/math_stat_pub
https://scholarworks.bgsu.edu/math_stat_pub
https://scholarworks.bgsu.edu/math_stats
https://scholarworks.bgsu.edu/math_stat_pub?utm_source=scholarworks.bgsu.edu%2Fmath_stat_pub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarworks.bgsu.edu%2Fmath_stat_pub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.bgsu.edu/math_stat_pub/9?utm_source=scholarworks.bgsu.edu%2Fmath_stat_pub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages


CONSERVATIVE P1 CONFORMING AND NONCONFORMING
GALERKIN FEMS: EFFECTIVE FLUX EVALUATION VIA A

NONMIXED METHOD APPROACH∗

SO-HSIANG CHOU† AND SHENGRONG TANG†

SIAM J. NUMER. ANAL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 2, pp. 660–680

Abstract. Given a P1 conforming or nonconforming Galerkin finite element method (GFEM)
solution ph, which approximates the exact solution p of the diffusion-reaction equation −∇ · K∇p+
αp = f with full tensor variable coefficient K, we evaluate the approximate flux uh to the exact flux
u = −K∇p by a simple but physically intuitive formula over each finite element. The flux is sought in
the continuous (in normal component) or the discontinuous Raviart–Thomas space. A systematic way
of deriving such a formula is introduced. This direct method retains local conservation property at
the element level, typical of mixed methods (finite element or finite volume type), but avoids solving
an indefinite linear system. In short, the present method retains the best of the GFEM and the mixed
method but without their shortcomings. Thus we view our method as a conservative GFEM and
demonstrate its equivalence to a certain mixed finite volume box method. The equivalence theorems
explain how the pressure can decouple basically cost free from the mixed formulation. The accuracy
in the flux is of first order in the H(div; Ω) norm. Numerical results are provided to support the
theory.

Key words. P1 conforming or nonconforming, finite element, porous media, Darcy velocity,
displacement method, equilibrium method, finite volume, conservative scheme, mixed method

AMS subject classifications. 65F10, 65N20, 65N30

PII. S0036142999361517

1. Introduction. Consider the variable-coefficient diffusion-reaction equation
in a polygonal domain Ω ⊂ R

2

{ −∇ · K∇p+ αp = f in Ω,
p = 0 on ∂Ω,

(1.1)

where K = K(x) is a symmetric positive definite matrix function such that there exist
two positive constants β1 and β2 with

β1ξ
T ξ ≤ ξTK(x)ξ ≤ β2ξ

T ξ ∀ξ ∈ R
2,x ∈ Ω̄.(1.2)

For ease of exposition, the function α is assumed to be a nonnegative piecewise con-
stant function.

Introducing a flux variable u := −K∇p, we can write the above equation as the
system of first order partial differential equations


∇ · u+ αp = f in Ω,
u+K∇p = 0 in Ω,

p = 0 on ∂Ω.
(1.3)

The variable p, as a state variable, can be interpreted as concentration, displacement,
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or pressure, and the variable u, as a flux variable, can be interpreted as diffusive
flux, stress, Darcy velocity, respectively. In applications, the homogeneous Neumann
boundary condition is usually used since it represents the no-flow condition. However,
for expository purpose here, we use homogeneous Dirichlet boundary condition, but
our results below hold for the Neumann condition case as well. We will comment
about the latter case along the way.

In this paper we will interpret the system (1.3) as modeling an incompressible
single phase flow in a reservoir, ignoring gravitational effects. The matrix K is the
mobility κ/µ, the ratio of permeability tensor to viscosity of the fluid, u is the Darcy
velocity, and p the pressure. The second equation of (1.3) is the Darcy law and the
first represents conservation of mass with f standing for a source or sink term. It
is desirable to have an accurate approximate Darcy velocity. While the standard
Galerkin finite element method (GFEM) based on (1.1) results in “easy-to-solve”
symmetric positive definite finite element systems, it does not provide accurate flux
automatically and is nonconservative at the element level. On the other hand, the
mixed method approach based on (1.3), well known in the finite element circle [3, 1,
20], can provide accurate flux and is locally conservative. The same approach can be
applied in conjunction with the finite volume method (termed mixed finite volume
or covolume methods) as well [6, 11, 12, 20, 21, 22]. In the mixed approach, one
has to face solving an indefinite symmetric system resulting from the saddle point
formulation. Among many approaches to effectively solving such a system let us
mention the mixed hybrid Lagrange multiplier method [2] and its more recent variant
[8, 9] of finding an equivalent finite element method for the Lagrange multipliers.
A version of these techniques applied to finite volume methods can be found in [14].
However, in the process of finding effective iterative solvers, the physical interpretation
of the variables involved seems to be blurred.

Hence it is of practical value to pose the following question. Can one com-
pute the approximate pressure and Darcy velocity in two simple stages? First, an
approximate pressure ph is obtained via a standard conforming or nonconforming
P1 (linear) Galerkin finite element method applied to the second order elliptic prob-
lem (1.1). Then an approximate flux uh to the exact flux u ∈ H(div; Ω) := {w :
w ∈ L2(Ω),∇ · w ∈ L2(Ω)} is recovered by a generic formula such that over each
element K

uh = −K̄∇ph + a correction term,(1.4)

where K̄ is a smoothed or averaged version of the possibly discontinuous tensor K
over K. By “generic” we mean that the formula should be physically intuitive and
locally conservative. Thus, for instance, to be physically intuitive we can take K̄ =
1

|K|
∫
K
Kdx, and the relation (1.4) resembles the original Darcy law u = −K∇p. The

correction term is added to validate local conservation property at the element level,
typical of mixed methods. For simplicity let us illustrate that with the diffusion
equation (α = 0). Without the correction term, one would have ∇ · uh = 0 since the
divergence of the first term on the right is zero, whereas the exact flux has ∇ · u = f
or
∫
K
∇ · u =

∫
K
fdx over an element K.

There are many ways to derive a correction term in the above generic formula
without having to solve any large linear system. For example, one could use a finite
volume approach, as done in [13]. Here in the introduction, let us take a Taylor’s
expansion viewpoint. Again consider the pure diffusion case. Assume that over each
element K we want the approximate flux uh to be linear. Expanding it about B, the
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barycenter of K, we have

uh(x) = uh(B) +Duh(B)(x− xB), x ∈ K,(1.5)

where Duh is the Jacobian matrix of uh and xB is the position vector of the barycenter
B. Now if we seek uh in the lowest order Raviart–Thomas space restricted to a
triangular element K, i.e., uh = (a+ bx, c+ by)t on K, a, b ∈ R,x = (x, y)t, then we
have the important relation

Duh(B)(x− xB) = b(x− xB) =
1

2
∇ · uh(x− xB).(1.6)

Now let us further require that the local conservation property holds:∫
K

∇ · uhdx =

∫
K

fdx = |K|fK

or equivalently

∇ · uh = fK ,

where fK is the average of f over K and |K| is the area of K. Substituting these into
(1.5), we finally arrive at a computable formula:

uh(x) = −K̄∇ph +
fK
2

(x− xB), x = (x, y)t,(1.7)

where the first term on the right replaces uh(B) (a cell-centered value concept). This
formula was actually used in [13]. It is perhaps helpful here to see a one-dimensional
example where the above approach reproduces the exact flux.

Example 1.1. Consider

−p(x)′′ = 1, x ∈ (0, 1),

p(0) = p(1) = 0.

We use the standard P1 conforming elements on a uniform grid with step-size h.
Then it is easy to see using the Green’s function and orthogonality condition that the
finite element solution ph is nothing but the piecewise linear interpolant of p at the
grid points. The exact solution is p(x) = − 1

2x
2 + 1

2x and the exact flux is u = x− 1
2 .

In this context, over each K = [xi, xi+1] = [ih, (i+ 1)h]

uh = −p′h(x) + fK(x− xB),

where p′h(x) = [p(xi+1)−p(xi)]/(xi+1−xi), and it is easy to derive the result uh = u.
Thus it should be clear from this viewpoint that for the flux in R

d, d = 1, 2, or 3,
the natural starting point is on each K

uh = −K̄∇ph +
fK
d

(x− xB) +CK ,(1.8)

where CK is a small constant correction term, so that the local conservation relation
∇·uh = fK still holds. In general, CK = O(h), so that the last two terms of (1.8) both
tend to zero in the limit. Finally, we mention in passing that the three-dimensional
version of our scheme is very important for hydrology and petroleum problems, but
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for ease of presentation we will use one and two dimensions. All of our results below
hold for three dimensions as well.

In the next section we shall derive the generic formula from another viewpoint, i.e.,
whether the approximate flux has a continuous normal component across interelement
edges. It should be noted that in the Taylor’s expansion approach there is no guarantee
that the formula (1.8) produces a flux with continuous normal components across
edges. It turns out that in the nonconforming GFEM case in two dimensions, the
continuity can be achieved by choosing CK properly. This is done in section 2 via the
relation (2.14), which is also used in [18] where the diffusion tensor K is a piecewise
constant scalar function and the right-hand side f is piecewise constant. For the
conforming GFEM case, formula (1.8) produces a flux with discontinuous normal
components across edges, although the local conservation property holds. (However,
the one-dimensional conforming case still produces continuous fluxes.) In both cases,
it is shown in Theorem 4.4 that the approximate fluxes converge, but we do not
recommend using the conforming case to solve the Neumann problem since the no-
flow boundary condition will be violated—the flux being discontinuous across the
boundary edge. Theorems 3.2–3.4 show that each of our conservative GFEMs is also
equivalent to a simple mixed finite volume box method; this extends our results in
[13]. These theorems also shed some light on how easy the pressure equation can
decouple from the flux in the mixed finite volume method (cf. Remarks 3.1–3.6), a
feature not shared by the mixed finite element method.

After completion of this work, we learned that in the engineering circle, Gresho
and Sani [16] raised the issue of how to call a GFEM “conservative” and whether
finite volume method is better than FEM in the conservative properties (nodal or
element conservation). The equivalence theorems in section 3 clarify and answer
these questions.

We also provided numerical results to support our theory. The GFEM part of ob-
taining approximate pressure ph is done by preconditioned conjugate gradient method
although multigrid methods can be applied as well [4]. The flux is obtained basically
cost free using formula (1.8).

Throughout the rest of this paper, we use the standard notation W l,p for the
usual Sobolev spaces and | · |m,K , ‖ ·‖m,K for the semi- and full Hm norm, m = 0, 1, 2.
We omit the subscript K when K = Ω and sometimes use ‖ · ‖ when writing an L2

norm. Also | · |H(div;Ω) is the H(div; Ω) seminorm.

2. Construction of the flux formula. Let Th = {K} be the usual nonover-
lapping finite element triangulation of the domain Ω = ∪K∈Th

K. Furthermore Th is
assumed to be regular, that is, minK∈Th

d(K)/ρ(K) ≥ C for a constant C indepen-
dent of h. Here ρ(K) is the diameter of triangle K, d(K) the diameter of the inscribed
circle of K, and h = maxK∈Th

ρ(K). Define the lowest order continuous (in normal
component) Raviart–Thomas space [19]

Vh = {uh ∈ H(div; Ω) : uh|K ∈ RT0(K) ∀K ∈ Th},

where RT0(K) = {u = (u1, u2) : u1 = a+ bx, u2 = c+ by in K} and the standard P1
nonconforming finite element space

Yh = {ph|K ∈ P1(K) : ph continuous at the middle point of each e ∈ ∂K}.

With reference to Figure 2.1, let λS be the usual nodal linear basis function
associated with the vertex S of K = KL: λS is one at S and zero at the other two
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Fig. 2.1. Local elements based on an interior edge.

vertices. For any qh(x) ∈ Yh, we have the local representation on K

qh(x)|K =
∑
e∈∂K

peϕe(x),(2.1)

where ϕe(x) = 1 − 2λS(x) is the local basis function of the space Yh and S is the
vertex opposite to e in triangle K (e = e1 in Figure 2.1). It is easy to see ∇ϕe(x) =
|e|
|K|ne = const, where |e| is the length of edge e.

Given any triangular element K ∈ Th, we always orient K counterclockwise as
shown in Figure 2.1 (e.g., K = KL there). Then the three local basis functions of Vh

associated with the three edges are as follows. For example, for the edge e = e1 of
K = KL in Figure 2.1, we define

PK,e(x) :=
1

2|K|
[
x− xS
y − yS

]
∀ (x, y) ∈ K.(2.2)

Note that for the unit exterior normal n to the edge e,

PK,e(x) · n =




1/|e| ∀ x ∈ e = S′S′′,
0 ∀ x ∈ SS′,
0 ∀ x ∈ SS′′.

(2.3)

The other two basis functions PK,ei , i = 2, 3 are defined similarly.
For any uh(x) ∈ Vh, we have the local representation on K

uh(x)|K =
∑
e∈∂K

uePK,e(x),(2.4)

where ue =
∫
e
u · nds is the flux across edge e.
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From now on, let us assume that the function α in (1.1) is piecewise constant
with respect to Th. Suppose we already have an approximate pressure ph and let us
define the approximate Darcy velocity as

uh(x) = −AK∇ph + (fK − αKpK)PK(x) +CK ∀x ∈ K,(2.5)

where AK := 1
|K|
∫
K
Kdx, the average of the tensor K over K, fK := 1

|K|
∫
K
fdx, the

average of f over K, pK := 1
|K|
∫
K
phdx, the average of ph over K, αK = α|K is a

constant, and

PK(x) =
1

2

[
x− xB
y − yB

]
=

|K|
3

∑
e∈∂K

PK,e(x) ∀ (x, y) ∈ K(2.6)

with (xB , yB) being the coordinates of B. Here CK is a constant vector on K to be
determined by the continuity condition in the normal component and the first two
terms on the right of (2.5) were explained in the introduction. Hence one should
observe that ∇ · uh = fK − αKpK on K which is an analogue of (1.3)1.

We now turn to the determination of the constant CK by the continuity of the
normal component across any interelement. To do this we need to be more specific
about the approximate pressure ph. So consider the original problem (1.1) whose
weak formulation is to find p ∈ H1

0 such that

a(p, q) = (f, q) ∀q ∈ H1
0 ,(2.7)

where

a(p, q) :=

∫
Ω

(K∇p) · ∇qdx+

∫
Ω

αpqdx.(2.8)

A P1 nonconforming FEM discretization is to find ph ∈ Yh,0 such that

ah(ph, qh) = (f̃ , qh) ∀qh ∈ Yh,0,(2.9)

where

ah(ph, qh) :=
∑
K

∫
K

(K∇ph) · ∇qhdx+ αK

∫
K

phqh,(2.10)

and here

Yh,0 := {q ∈ Yh and vanishes at the midpoints of boundary edges}.
Note that we have set the right-hand side function as f̃ which is an L2 function that
approximates f in the sense that ∫

K

f̃ =

∫
K

f(2.11)

and

‖f̃ − f‖0,K ≤ Ch|f |1,K ∀K ∈ Th.(2.12)

The reason for doing so will be clear later. There are two common choices of such
f̃ : one is f̃ = f in the standard nonconforming FEM and one is f̃ = fK [13]. Other
possibilities arise from use of quadrature rules.
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Given an element K, let us observe that

(K∇qh,∇wh)K = (AK∇qh,∇wh)K(2.13)

for all linear polynomials qh, wh on K. Here (·, ·)K is the L2 inner product on K.
Now let KL and KR be two triangles with common edge e (cf. Figure 2.1) and let
ϕ ∈ Yh,0 be the global basis function such that ϕ = 1 at the midpoint of e and zero
at other nodes so that locally ϕ = 1 − 2λ, with λ being the Lagrange nodal basis
function (area coordinate function) corresponding to the opposite vertex of e. Thus
setting qh = ϕ in (2.9) and using (2.13) we have

(AK∇ph,∇ϕ)KL
+ (AK∇ph,∇ϕ)KR

+

∫
KL∪KR

αphϕdx =

∫
KL∪KR

f̃ϕdx.(2.14)

Now use Green’s formula or integration by parts and the property that ϕ vanishes at
the midpoints on the boundary of KL ∪KR to see that

|e|(AKL
∇p−h · nL +AKR

∇p+
h · nR) + ph(m)(αKL

|KL|+ αKR
|KR|)/3 =

∫
KL∪KR

f̃ϕdx,

where m is the midpoint of edge e. To avoid clustering of the notations we also use
g−(resp., g+) for the g value restricting to KL(resp., KR). By (2.5)

AKL
∇p−h · nL +AKR

∇p+
h · nR = [(fKL

− αKL
pKL

)PKL
(x) +CKL

− uh(x)] · nL

+ [(fKR
− αKR

pKR
)PKR

(x) +CKR
− uh(x)] · nR

and so at the midpoint m of the edge e

u−
h (m) · nL + u+

h (m) · nR(2.15)

= [(fKL
− αKL

pKL
)PKL

(m) +CKL
] · nL − 1

|e|
∫
KL

f̃ϕdx+
αKL

3|e| ph(m)|KL|

+ [(fKR
− αKR

pKR
)PKR

(m) +CKR
] · nR − 1

|e|
∫
KR

f̃ϕdx+
αKR

3|e| ph(m)|KR|.

We now enforce the continuity requirement at midpoint m of edge e

0 = u−
h (m) · nL + u+

h (m) · nR(2.16)

in the following way. In triangle K = KL let e = e1 with ϕ1 be the basis on e1,

|e1|[(fK − αKpK)PK(m1) +CK ] · n1 −
∫
K

f̃ϕ1dx+
αK

3
ph(m1)|K| = 0.(2.17)

Similarly, on e = e2 of K we set

|e2|[(fK − αKpK)PK(m2) +CK ] · n2 −
∫
K

f̃ϕ2dx+
αK

3
ph(m2)|K| = 0.(2.18)

From (2.6), we have the fact that PK ·n1 = |K|
3|e1| and PK ·n2 = |K|

3|e2| . Using this fact,

(2.17) and (2.18) become

|e1|n1 ·CK =

∫
K

f̃ϕ1 − |K|
3
fK − αK

|K|
3

(ph(m1)− pK),(2.19)

|e2|n2 ·CK =

∫
K

f̃ϕ2 − |K|
3
fK − αK

|K|
3

(ph(m2)− pK).(2.20)
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Remark 2.1. One can set up a similar equation on e3, but it is easy to see that
the equation can be obtained by summing the two above equations using

∑ |ei|ni = 0
and the assumption (2.11).

Let R(θ) be the rotation matrix through the angle θ, and noticing that R(π2 )ni =
ei/|ei|, we can solve for CK and obtain

CK = R(−π

2
)

[
eT1
eT2

]−1
[∫

K
f̃ϕ1 − |K|

3 fK − αK
|K|
3 (ph(m1)− pK)∫

K
f̃ϕ2 − |K|

3 fK − αK
|K|
3 (ph(m2)− pK)

]
.(2.21)

Clearly with the above construction the flux is continuous in the normal direction
at the midpoint of each interior side. Since uh · n = const on each edge of K if
uh ∈ (RT )0, the flux is continuous across interior edges in the normal direction. Also
it is easy to check that from (2.5) we have ∇ · uh = fK − αKpK , which means local
conservation of mass.

Remark 2.2. If the Neumann boundary condition u · n = 0 is imposed then our
choice of CK automatically enforces uh · n = 0.

To see this, just apply (2.5), with either KL or KR void, since the absence of the
Dirichlet condition enables us to use the global basis ϕ based at a boundary node.
Arguing as before, we see that our choice of CK then is equivalent to validating (2.16).
If the Dirichlet condition is imposed then this step is not applicable since the ϕ is not
available.

Remark 2.3. It should be clear that the above technique actually also works for
the one-dimensional conforming case and the flux thus produced is continuous. Let us
end this section by an example in one dimension where our flux formula reproduces
the exact flux exactly.

Example 2.1. Consider the variational problem corresponding to the discontinu-
ous coefficient boundary value problem

−(A(x)p′)′ = 1, x ∈ (0, 1),

p(0) = p(1) = 0,

where the coefficient A(x) is a step function

A(x) =

{
1 ∀x ∈ I1 = (0, 1

2 ),
1
2 ∀x ∈ I2 = ( 1

2 , 1).

The exact solution p(x) = − 1
2x

2 + 7
12x for x ∈ I1 and p(x) = −(x2 − 7

6x + 1
6 )

for x ∈ I2. This time the P1 conforming FE solution is still the interpolant since
the BVP’s Green’s function is still piecewise linear. Using ph one can calculate the
approximate flux uh by (2.5), and once again see that the exact flux u = −A(x)p′(x)
is exactly reproduced using only two elements I1 and I2. Also note that the interface
continuity condition 2p′|I1(x) = p′|I2(x) at x = 1/2 is correctly produced.

3. Equivalence between conservative GFEMs and mixed box methods.
Since our flux formula makes valid the local conservation property ∇·uh = fK−αKpK ,
the GFEM now can be considered conservative. So it makes sense to ask if the
conservative GFEM is equivalent to some mixed finite volume methods. It turns out,
as we will show below, that each of our conservative GFEMs is a mixed box method
in disguise.

On the other hand, it is very natural for a finite volume person in favor of local
conservation to use a mixed box method (see below) on the system (1.3) and then
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try to solve the resulting indefinite algebraic system using the mixed hybrid Lagrange
multiplier method. Knowing the above equivalence (or a change of viewpoint) leads
instead to the immediate decoupling of the pressure and flux. There is no need for the
mixed Lagrange multiplier method, a nice feature not shared by the standard mixed
FEM. We now elaborate on these points.

Let us introduce the lowest order discontinuous Raviart–Thomas space

Vd
h = {uh ∈ L2(Ω) : uh|K ∈ RT0(K) ∀K ∈ Th},

where RT0(K) = {u = (u1, u2) : u1 = a + bx, u2 = c + by in K}. Thus a function in
Vd

h doesn’t need continuous normal components.
Let C be a piecewise constant function with respect to Th and C|K = CK ∀K in

Th, let χK be the characteristic function of element K, and let XK be any constant
vector multiple of χK .

The following lemma will be used quite often in this section.
Lemma 3.1. Consider the mixed box method of finding (uh, ph) ∈ Vd

h × Yh,0

such that

(∇ · uh + αph − f, χK) = 0 ∀K ∈ Th,(3.1)

(uh +K∇ph − C,XK) = 0 ∀K ∈ Th(3.2)

along with the problem of finding (uh, ph) ∈ Vd
h × Yh,0 such that over each K in Th

uh = −AK∇ph + (fK − αKpK)PK + CK .(3.3)

Then the two above problems are equivalent.
Proof. We first show that (3.3) implies (3.1)–(3.2).
Take divergence on (3.3), recall (2.6), and integrate against the characteristic

function χK to see that (3.3) implies (3.1). Now integrate (3.3) against XK and use
the fact that (PK ,XK) = 0 (one point quadrature rule using the barycenter B) to
get (3.2).

Second, we prove that (3.1)–(3.2) implies (3.3).
From (3.1) we see that on K

∇ · uh = fK − αKpK .

Since uh ∈ Vd
h, by Taylor’s expansion

uh = uK +
1

2
∇ · uh(x− xB),

where uK = 1
|K|
∫
K
uhdx = −AK∇ph + CK by (3.2). So

uh = −AK∇ph + (fK − αKpK)PK + CK

which is (3.3).
Remark 3.1. Let us make two observations. First, the above two systems are

both underdetermined. Secondly, the system (3.1)–(3.2) consists of two first order
PDEs in weak form, while the problem (3.3) contains on the surface no second order
PDEs at all. So if one is inclined to think that, in a mixed formulation of a second
order PDE, one should obtain an equivalent system of two first order PDEs, the above
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lemma might appear strange. But formula (3.3) actually harbors or implies (but is
not implied by) the following “second order” PDE in weak form:∑

K

(K∇ph,∇qh)K +
∑
K

αK(pK , qh)K =
∑
K

(fK , qh)K

−
∑
K

((uh − C) · n, qh)∂K , qh ∈ Yh,0.
(3.4)

The reason why (3.4) does not imply (3.3) is that if qh ∈ Yh,0 satisfies XK = χKξ,
ξ = (0, 1)t or (1, 0)t, then qh must have a support larger than K.

Let us derive (3.4) from (3.3). By Lemma 3.1 it suffices to use (3.1)–(3.2) to show
the following. By (3.2), integration by parts, and (3.1)∑

K

(K∇ph,∇qh)K =
∑
K

(−uh + CK ,∇qh)K

=
∑
K

(∇ · uh, qh)K − (uh · n, qh)∂K + (CK · n, qh)∂K

=
∑
K

(fK − αKpK , qh)K − (uh · n, qh)∂K + (CK · n, qh)∂K ,

which is (3.4).
Remark 3.2. Now if uh−C ∈ Vd

h has continuous normal components (e.g., C = 0
and uh ∈ Vh), then ph can be determined without knowledge of uh:∑

K

(K∇ph,∇qh)K +
∑
K

αK(pK , qh)K =
∑
K

(fK , qh)K .(3.5)

Here we have used the fact that (·, ·)∂K terms cancel upon summation since (uh−C)·n
and qh are continuous at midpoints of edges.

Remark 3.3. Note that Lemma 3.1 and Remarks 3.1 and 3.2 are still valid if
we replace the nonconforming space Yh,0 by Xh,0, the corresponding P1 conforming
space vanishing on the boundary.

Now choosing the constant function C to be identically zero, we have the following
theorem.
Theorem 3.2. Consider the conservative GFEM: find (uh, ph) ∈ Vh × Yh,0

such that ∑
K

(K∇ph,∇qh)K +
∑
K

αK(pK , qh)K =
∑
K

(fK , qh)K(3.6)

and

uh = −AK∇ph + (fK − αKpK)PK .(3.7)

Also consider the mixed finite volume method: find (uh, ph) ∈ Vh × Yh,0 such that

(∇ · uh + αph − f, χK) = 0,(3.8)

(uh +K∇ph,XK) = 0.(3.9)

Then the two problems are equivalent.
Proof. By Lemma 3.1, (3.7) is equivalent to (3.8)–(3.9) with the appended con-

dition that uh ∈ Vh. Equation (3.7) with uh ∈ Vh and ph ∈ Yh,0 is of course
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equivalent to (3.7) itself and its dependent relation (3.6) by (3.4) (setting C = 0 and
using uh ∈ Vh).

Remark 3.4. Unlike the two underdetermined systems in Lemma 3.1, the above
conservative GFEM actually has a unique solution. In fact, the left side of (3.6) is
coercive and hence ph exists and is unique. So one can compute uh by (3.7). To see
that uh is actually in Vh we can proceed as in setting up the relation (2.14) and show
easily that uh · n is continuous across interelement edges. An alternative to check
that uh ∈ Vh is to observe that (3.8)–(3.9) is a square linear system and then use its
equivalence to (3.7) to see that the homogeneous system has only zero solution [13].

Remark 3.4.1. The reader will find a numerical example (Example 6, section 5.2)
for the method (3.6)–(3.7).

Comparing (3.6)–(3.7) with (3.4) (setting C = 0), we conclude that∑
K

(uh · n, qh)∂K = 0.(3.10)

In the nonconforming case, this equation is not surprising since one can also derive
it quite easily noting that the normal component is continuous and that qh is linear
on e. However, the same equation becomes the appended constraint (3.15) in the
counterpart of Theorem 3.2 for the conforming case.
Theorem 3.3. Consider the conservative GFEM: find (uh, ph) ∈ Vd

h × Xh,0

such that ∑
K

(K∇ph,∇qh)K +
∑
K

αK(pK , qh)K =
∑
K

(fK , qh)K(3.11)

and

uh = −AK∇ph + (fK − αKpK)PK .(3.12)

Also consider the mixed finite volume method: find (uh, ph) ∈ Vd
h ×Xh,0 such that

(∇ · uh + αph − f, χK) = 0 ∀K ∈ Th,(3.13)

(uh +K∇ph,XK) = 0 ∀K ∈ Th,(3.14) ∑
K

(uh · n, qh)∂K = 0 ∀qh ∈ Xh,0,(3.15)

where n is the unit exterior normal to ∂K. Then the two problems are equivalent.
Proof. Recall Remark 3.2 and the theorem can be easily proved along the same

line as in Theorem 3.2.
Remark 3.5. Due to the presence of the constraint (3.15), the Galerkin finite ele-

ment method (3.11)–(3.12) is equivalent to a nontraditional finite volume box method.
More importantly, the solution uh of the GFEM may not have continuous normal
components, but it does obey some kind of jump condition across interelements. To
see this, let qh in (3.15) be the global (pyramid) basis function based at O, then we
see that ∑

e

[uh · n]|e = 0,(3.16)

where [·] stands for the jump across the edge e, n is a unit normal to e, and the
summation is over all edges e from those K ∈ Th having O as a common vertex.
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Remark 3.6. A remark on the correct coupling of spaces is in order here. From
Theorems 3.2 and 3.3, we see that the right combination of the pressure and velocity
spaces is either the nonconforming pressure space with continuous Raviart–Thomas
velocity space or the conforming pressure space with the discontinuous Raviart–
Thomas space.

Remark 3.7. Returning to Theorem 3.2, one notes that the mixed finite vol-
ume method is equivalent to the standard nonconforming method when there is no
absorption term (α = 0). In the presence of the absorption term, it is not obvi-
ous (Theorem 3.2 not applicable) that the usual nonconforming method, which has∑

K(αph, qh)K term instead of
∑

K(αKpK , qh)K as in (3.6), will produce continu-
ous normal fluxes unless α = 0. For this reason we now return to developing the
equivalence results along the above line for the conservative GFEM considered in the
previous section.
Theorem 3.4. Consider the conservative GFEM: find (uh, ph) ∈ Vh × Yh,0

such that ∑
K

(K∇ph,∇qh)K +
∑
K

(αph, qh)K =
∑
K

(f̃ , qh)K(3.17)

and

uh = −AK∇ph + (fK − αKpK)PK +CK ,(3.18)

where CK is defined in (2.21). Also consider the mixed finite volume method: (uh, ph)
∈ Vh × Yh,0 such that

(∇ · uh + αph − f, χK) = 0 in Ω,(3.19)

(uh +K∇ph −C,XK) = 0 in Ω,(3.20)

where C is the piecewise constant function such that C|K = CK . Then the two above
problems are equivalent.

Proof. Using Lemma 3.1 we immediately deduce the fact that (3.18) is equivalent
to (3.19)–(3.20). Recall that (3.18) implies (3.4). So we need to show that (3.17) is
the same equation as (3.4). Comparing the two equations and noting that

∑
K(uh ·

n, qh)∂K = 0, we see that it suffices to show ∀qh ∈ Yh,0∑
K

(αKpK , qh)K − (αph, qh)K =
∑
K

(fK − f̃ , qh)K −
∑
K

(CK · n, qh)∂K .(3.21)

To show this we can check its validity on each global basis function ϕ associated with
edge e as in setting up relation (2.14). With the notations there we can easily verify
the left-hand side of (3.21) is

αKL
pKL

1

3
|KL|+ αKR

pKR

1

3
|KR| − αKL

ph(m)
1

3
|KL| − αKR

ph(m)
1

3
|KR|,(3.22)

where m is the midpoint of e. Writing (2.19) in the present context, we have

|e|ni ·CKi =

∫
Ki

f̃ϕ− |Ki|
3

fKi − αKi

|Ki|
3

(ph(m)− pKi), i = R,L.(3.23)

Using this to compute the right-hand side of (3.21) and compare with its left-hand
side (3.22), we see (3.21) holds. This completes the proof.
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4. Error estimates. In this section we show the general error estimate for f̃
that satisfies assumption (2.11) and (2.12) under flux formula (2.5).

We first present the error estimate for the pressure variable p. Define the seminorm

|q|h :=

( ∑
K∈Th

|q|21,K
)1/2

∀q ∈ H1
0 ⊕ Yh,0.(4.1)

It is clear | · |h is a full norm on space Yh,0 in the Dirichlet case. It is well known
[7, 4, 5] that the solution ph of system (2.9) converges to the solution p of

a(p̃, q) = (f̃ , q) ∀q ∈ H1
0 ,(4.2)

that is, there exists a constant C independent of h such that

‖p̃− ph‖0 + h|p̃− ph|h ≤ Ch2‖p̃‖2(4.3)

provided that the problem data is smooth enough so that the solution p̃ is in H2 and
the elliptic regularity estimate ||p̃||2 ≤ C||f̃ ||0 holds. For example, if f̃ ∈ L2 and
K ∈ C1(Ω̄) on a convex domain Ω, then p̃ ∈ H2 is guaranteed (p. 4 of [4], [17]). Now
we need only to measure the error ‖p− p̃‖0 and ‖p− p̃‖h.
Lemma 4.1. Assume f ∈ L2 and locally f ∈ H1(K) ∀K ∈ Th; then there exists

a constant C independent of h such that

|p− p̃|h ≤ Ch2|f |h,(4.4)

‖p− p̃‖0 ≤ Ch2|f |h.(4.5)

Proof. Subtracting bilinear form (2.7) from (4.2), we get

a(p− p̃, q) = (f − f̃ , q) ∀q ∈ H1
0 .

We notice that
∫
K
f − f̃ = 0, so (f − f̃ , q)K = (f − f̃ , q−qK)K where qK = 1

|K|
∫
K
q is

a constant function on each K. Then by Cauchy–Schwarz inequality, the assumption
(2.12), and the interpolation theorem, we have

|(f − f̃ , q)| ≤ Ch2|f |h|q|h
and so

|a(p− p̃, q)| ≤ Ch2|f |h|q|h.
Taking q = p− p̃, we have by the coercivity of a(·, ·),

|p− p̃|2h ≤ Ch2|f |h|p− p̃|h.
Therefore

|p− p̃|h ≤ Ch2|f |h.
By Poincare inequality, we also get

‖p− p̃‖0 ≤ Ch2|f |h.(4.6)

Remark 4.1. We note that in the case of f̃ = f , we don’t need the assumption
f ∈ H1 locally for this lemma to hold. So in all the results that follow, the assumption
f ∈ H1(K) can be removed for the f̃ = f case. Thus in all the results below one can
drop the ‖f‖h term on the right-hand side of the estimate if dealing with f̃ = f case.
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Combining Lemma 4.1 and (4.3) we have the following error estimate for the
pressure p.
Theorem 4.2. There exists a constant C independent of h such that

‖p− ph‖0 + h|p− ph|h ≤ Ch2(‖f‖0 + |f |h)(4.7)

provided that the solution p is in H2, and the L2 function f is locally in H1(K)
∀K ∈ Th.

Before we prove the main error estimate theorem for u, a remark is in order.
Remark 4.2. The flux formula uh = −AK∇ph + (fK − αKpK)PK +CK will be

intuitively convergent in some sense to the exact flux if one observes PK and CK are
both O(hK). We set up these relations in the next lemma.
Lemma 4.3. There exists a constant C independent of h such that

‖CK‖0,K ≤ ChK(‖f̃‖0,K + ‖ph‖0,K),(4.8)

‖PK‖0,K ≤ h2
K ,(4.9)

|fK | ≤ h−1
K ‖f‖0,K ,(4.10)

|pK | ≤ h−1
K ‖ph‖0,K .(4.11)

Proof. We prove only the first inequality. The remaining ones are trivial. Note
that

‖CK‖0,K ≤
(∫

K

‖CK‖2
2dx

)1/2

≤ hK‖CK‖2.

From (2.21), the minimum angle property of partition Th, and Cauchy–Schwarz in-
equality, we have

‖CK‖2 ≤
∥∥∥∥∥
[
eT1
eT2

]−1
∥∥∥∥∥
(∥∥∥∥∥
[∫

K
f̃ϕ1 − |K|

3 fK∫
K
f̃ϕ2 − |K|

3 fK

]∥∥∥∥∥
2

+ αK

∥∥∥∥∥
[∫

K
phϕ1 − |K|

3 pK∫
K
phϕ2 − |K|

3 pK

]∥∥∥∥∥
2

)

≤ C/hK

(∥∥∥∥∥
[∫

K
f̃ϕ1 − |K|

3 fK∫
K
f̃ϕ2 − |K|

3 fK

]∥∥∥∥∥
2

+ αK

∥∥∥∥∥
[∫

K
phϕ1 − |K|

3 pK∫
K
phϕ2 − |K|

3 pK

]∥∥∥∥∥
2

)

= C/hK

(∥∥∥∥
[∫

K
f̃(ϕ1 − 1/3)∫

K
f̃(ϕ2 − 1/3)

]∥∥∥∥
2

+ αK

∥∥∥∥
[∫

K
ph(ϕ1 − 1/3)∫

K
ph(ϕ2 − 1/3)

]∥∥∥∥
2

)

≤ C/hK

(√
‖f̃‖2

0,K‖ϕ1 − 1/3‖2
0,K + ‖f̃‖2

0,K‖ϕ2 − 1/3‖2
0,K

+αK

√
‖ph‖2

0,K‖ϕ1 − 1/3‖2
0,K + ‖ph‖2

0,K‖ϕ2 − 1/3‖2
0,K

)
=

√
2C/hK(‖f̃‖0,K‖ϕ1 − 1/3‖0,K + αK‖ph‖0,K‖ϕ1 − 1/3‖0,K)

=
2

3
C
√
|K|/hK(‖f̃‖0,K + αK‖ph‖0,K)

≤ C(‖f̃‖0,K + ‖ph‖0,K).

Therefore

‖CK‖0,K ≤ ChK(‖f̃‖0,K + ‖ph‖0,K).
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Remark 4.3. Observe that

f̃K =
1

|K|
∫
K

f̃ =
1

|K|
∫
K

f = fK ,

and

|f̃K | ≤ h−1
K ‖f̃‖0,K .

Now we are ready to show the following error estimates for the flux u.
Theorem 4.4. There exists a constant C independent of h such that

‖u− uh‖0 ≤ Ch(‖f‖0,Ω + ‖p‖0,Ω + |p|1,Ω + |f |h),(4.12)

|u− uh|H(div) ≤ Ch(|f |h + |p|1 + h‖f‖0,Ω)(4.13)

provided that the solution p is in H2, and the L2 function f is locally in H1(K)
∀K ∈ Th.

Proof. From (2.5) we have

uh(x)− u(x)|K = −AK∇ph +K∇p+ (fK − αKpK)PK(x) +CK .

So

‖uh − u‖0,K ≤ ‖AK∇ph −K∇p‖0,K + |fK − αKpK |‖PK‖0,K + ‖CK‖0,K .

By the last lemma, the remark below it, and the boundedness assumption on α,
we know

|fK − αKpK |‖PK‖0,K + ‖CK‖0,K ≤ (|fK |+ αK |pK |)h2
K + ChK(‖f̃‖0,K + ‖ph‖0,K)

≤ ChK(‖f̃‖0,K + ‖ph‖0,K),(4.14)

whereas by the triangle inequality, boundedness of K, the interpolation theorem, and
the triangle inequality again

‖AK∇ph − K∇p‖0,K ≤ ‖AK∇ph −K∇ph‖0,K + ‖K∇ph −K∇p‖0,K

= (∇pTh
∫
K

(AK −K)2dx∇ph)1/2 +

(∫
K

|K(∇ph −∇p)|2dx
)1/2

≤ ChK |ph|1,K |K|1,∞,K + ChK |ph − p|1,K
≤ ChK(|ph|1,K + |ph − p|1,K)

≤ ChK(|p|1,K + |ph − p|1,K).

Now combining this with (4.14), using the triangle inequality, and assumption (2.12),
we have

‖uh − u‖0,K ≤ ChK(‖f̃‖0,K + ‖ph‖0,K + |p|1,K + |ph − p|1,K)

≤ ChK(‖f̃ − f‖0,K + ‖f‖0,K + ‖ph‖0,K + |p|1,K + |ph − p|1,K)

≤ ChK(hK |f |1,K + ‖f‖0,K + ‖ph‖0,K + |p|1,K + |ph − p|1,K).

Summing over K, we have

‖uh − u‖0,Ω ≤ Ch(h|f |h + ‖f‖0,Ω + ‖ph‖0,Ω + |p|1,Ω + |ph − p|h).
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Using the triangle inequality and Theorem 4.2, we get

‖uh − u‖0,Ω ≤ Ch(h|f |h + ‖f‖0,Ω + ‖ph − p‖0,Ω + ‖p‖0,Ω + |p|1,Ω + |ph − p|h)
≤ Ch(‖f‖0,Ω + ‖p‖0,Ω + |p|1,Ω + |f |h).

Next we estimate the H(div) norm error:

‖∇ · u−∇ · uh‖0,K = ‖(f − αKp)− (fK − αKpK)‖0,K

≤ ‖f̃ − fK‖0,K + αK‖p− pK‖0,K

≤ ‖f̃ − fK‖0,K + αK(‖p− ph‖0,K + ‖ph − pK‖0,K).

Hence

‖∇ · u−∇ · uh‖0,K ≤ C(hK |f |1,K + ‖p− ph‖0,K + hK |ph|1,K).(4.15)

Summing over K, using the triangle inequality and Theorem 4.2, we have

‖uh − u‖H(div),Ω ≤ C(h|f |h + ‖p− ph‖0,Ω + h|ph|1)
≤ C(h|f |h + ‖p− ph‖0,Ω + h|p|1 + h|ph − p|1)
≤ Ch(|f |h + |p|1 + h‖f‖0,Ω + h|f |h).

Remark 4.4. In the conforming case, we know that uh is not in H(div; Ω). So we
define a piecewise H(div) norm by

|u− uh|2h,H(div) :=
∑
K

‖∇ · u−∇ · uh‖2
0,K .(4.16)

Then we argue as before and consequently by (4.15) we still have

|u− uh|h,H(div) ≤ Ch(|f |h + |p|1 + h‖f‖0,Ω).(4.17)

5. Numerical examples: Nonconforming case. In this section we give nu-
merical results for the case f̃ = f which is the standard P1 nonconforming case. The
case f̃ = fK , α = 0 was reported in [13].

Notice that the error estimate theorem is valid for both Dirichlet and Neumann
problems and we present numerical results for both cases. We partition the unit
square [0, 1]× [0, 1] into squares evenly in both directions with the diagonals running
from the upper-left corner of each triangle to its lower-right corner. The integral of f
over element K is computed by the midpoint rule using the three edges of a triangle.
Our experiments suggest a superconvergence property in a discrete L2 norm of the
flux uh. The discrete norms in which the errors are estimated are as follows.

5.1. Choice of discrete norms. In the error estimate section we predicted first
order convergence in the L2 norm for flux u and second order convergence in the L2

norm for the pressure p. For computational reasons, we need to choose more conve-
nient discrete norms to measure the error between the true and computed solutions.

Let (xi, yj) be the center of square (i, j) with xi = (i − 1/2)h, yj = (j − 1/2)h,
h = 1/n, i, j = 1, 2, . . . , n. Let pij be the computed pressure at (xi, yj). We define

pErr L2 :=


 n∑
i,j=1

h2(p(xi, yj)− pij)
2




1
2

,
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i.e., a discrete L2 norm of the error p − ph. Also we compute the l2 error of flux u
across each edge in the normal direction.

uErr nml :=

{∑
e∈A

[∫
e

(u− uh) · nds
]2}1/2

,

where the edge integrals are evaluated by the midpoint rule and n is a prefixed normal
direction on corresponding edge. This discrete norm is similar to the ones defined in
[12] and is actually the sum of three discrete L2 norms defined there. This includes
horizontal, vertical, and diagonal sweeps. On the other hand, it is also a discrete
H(div) norm, which is equivalent to a discrete L2 norm due to the local conservation
property [6].

5.2. Dirichlet problems. We consider the following Dirichlet problem:{
−∇ · K∇p+ αp = f in Ω,

p = 0 on ∂Ω.
(5.1)

Let the true pressure be p = (x2 − x)(y2 − y) on the unit square in subsection 5.2.
Note that the solution is a polynomial.

Below there is a table corresponding to each example. For instance, Table 1
corresponds to Example 1. In each table the corresponding example number is in the
upper left corner.

Table 1
Dirichlet problem: K = diag(1 + 10x2 + y2, 1 + x2 + 10y2), α = 0.

Example 1 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 8.7872e-5 2.2256e-5 5.5828e-6 1.3969e-6 ≈ 2
uErr nml 0.0095 0.0024 5.9932e-4 1.5006e-4 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

Table 2
Dirichlet problem: K = diag(104, 1), α = 0.

Example 2 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 3.3867e-5 8.4986e-6 2.1158e-6 5.2599e-7 ≈ 2
uErr nml 4.5246 1.1407 0.2862 0.0716 ≈ 2
uErr rel 0.0032 7.8357e-4 1.9424e-4 4.8339e-5 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

Example 1. The mobility tensor K = diag(1 + 10x2 + y2, 1 + x2 + 10y2), α = 0.
Note that the entries of K are of moderate size and continuous. The solutions are
well behaved.

Example 2. The mobility tensor K = diag(104, 1), α = 0. We also report the
relative errors due to the large magnitude of one entry in K.

Example 3. In this example, we study the effect of discontinuous mobility matrix
K. Let K = [ 10000 0

0 1 ] on the left half unit square, and K = [ 1 0
0 2 ] on the right half unit

square, α = 0. Note that the grid conforms with the interface.
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Table 3
Dirichlet problem: K is discontinuous and α = 0.

Example 3 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 1.0255e-4 2.6039e-5 6.5410e-6 1.6373e-6 ≈ 2
pErr rel 0.0031 7.8117e-4 1.9623e-4 4.9120e-5 ≈ 2
uErr nml 3.1981 0.8062 0.2022 0.0506 ≈ 2
uErr rel 0.0032 7.8319e-4 1.9413e-4 4.8311e-5 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

Table 4
Dirichlet problem: K = full tensor, α = 0.

Example 4 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 1.6297e-4 4.1601e-5 1.0458e-5 2.6183e-6 ≈ 2
uErr nml 0.0140 0.0036 9.0996e-4 2.3042e-4 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

Example 4. Let K =
[

1+10x2+y2 1/2+x2+y2

1/2+x2+y2 1+x2+10y2

]
, α = 0.

Example 5. The mobility tensor K = diag(1 + 10x2 + y2, 1 + x2 + 10y2), α = 1.
Example 6. The mobility tensor K = diag(1 + 10x2 + y2, 1 + x2 + 10y2), α = 1.

CK = 0 (cf. Remark 3.4.1 and Theorem 3.2).
In the beginning of this paper, we assume that α is nonnegative. In fact, we still

can get good approximation when α is a small negative number.
Example 7. The mobility tensor K = diag(1+10x2 +y2, 1+x2 +10y2), α = −1.

5.3. Neumann problems.{ −∇ · K∇p+ αp = f in Ω,
K∇p · n = 0 on ∂Ω.

(5.2)

In this subsection, we take the true pressure p = cos(2πx) cos(2πy).
Example 8. K = diag(cos(2πy) + 2, cos(2πx) + 2), α = 1.

Table 5
Dirichlet problem: K = diag(1 + 10x2 + y2, 1 + x2 + 10y2), α = 1.

Example 5 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 8.7619e-5 2.2195e-5 5.5677e-6 1.3931e-6 ≈ 2
uErr nml 0.0095 0.0024 5.9903e-4 1.4998e-4 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

6. Numerical examples: Conforming case. Recall that the P1 conforming
finite element space is

Xh,0 := {q ∈ L2(Ω) : q|K ∈ P1(K) ∀K ∈ Th; q is continuous on

interior edges and vanishes at the boundary edges}.
The standard P1 conforming FEM discretization is to find ph ∈ Xh,0 such that

ah(ph, qh) = (f̃ , qh) ∀qh ∈ Xh,0,(6.1)
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Table 6
Dirichlet problem: K = diag(1+ 10x2 + y2, 1+ x2 +10y2), α = 1, CK = 0 (box method); check

Theorem 3.2.

Example 6 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 8.7291e-5 2.2204e-5 5.5757e-6 1.3955e-6 ≈ 2
uErr nml 0.0113 0.0029 7.1905e-4 1.8023e-4 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

Table 7
Dirichlet problem: K = diag(1 + 10x2 + y2, 1 + x2 + 10y2), α = −1.

Example 7 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 8.8132e-5 2.2319e-5 5.5984e-6 1.4008e-6 ≈ 2
uErr nml 0.0095 0.0024 5.9967e-4 1.5016e-4 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

where

ah(ph, qh) :=
∑
K

∫
K

(K∇ph) · ∇qhdx+ αK

∫
K

phqh.(6.2)

We can still apply the formula (2.5) to obtain flux approximation after we have
computed the pressure. The error estimates in Theorem 4.4 hold for the conforming
case too (cf. Remarks 4.2 and 4.4), although we will not see the superconvergence
property in the numerical example for flux variable u in the normal direction n . In
fact, unlike in the nonconforming case, the flux across interior edge in the normal
direction may not even be continuous. Nevertheless we still have local conservation
of mass – ∇·uh = fK −αKpK . We will demonstrate only for the Dirichlet case, since
the Neumann boundary condition is not valid for the conforming case, as mentioned
earlier. Also we run two cases: one in which CK is defined by (2.21) and one in which
CK = 0.

Table 8
Neumann problem: K = diag(cos(2πy) + 2, cos(2πx) + 2), α = 1.

Example 8 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 0.0025 6.2201e-4 1.5475e-4 3.8610e-5 ≈ 2
uErr nml 0.0988 0.0250 0.0063 0.0016 ≈ 2

Length of P 800 3,136 12,416 49,408
Length of U 800 3,136 12,416 49,408

6.1. Numerical examples for conforming method. We first choose proper
discrete norms to measure the error between true solution and computed solution.

Let (xi, yj) be interior vertexes of unit square with xi = ih, yj = jh, h =
1/n, i, j = 1, . . . , n− 1. Let pij be the computed pressure at (xi, yj). We define

pErr L2 = ‖p− ph‖ :=


 n−1∑
i,j=1

h2(p(xi, yj)− pij)
2




1
2

,

i.e., a discrete L2 norm of the error p− ph. uErr nml are defined in the same way as
the nonconforming case.
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Table 9
Dirichlet problem: K = diag(1 + 10x2 + y2, 1 + x2 + 10y2), α = 1, conforming method.

Example 9 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 6.5500e-5 1.6505e-5 4.1340e-6 1.0340e-6 ≈ 2
uErr nml 0.1697 0.0877 0.0445 0.0224 ≈ 1

Length of P 225 961 4,225 16,129
Length of U 736 3,008 12,160 48,896

Table 10
Dirichlet problem: K = diag(1+ 10x2 + y2, 1+ x2 +10y2), α = 1, conforming method, CK = 0

for K ∈ Th.

Example 10 h = 1/16 h = 1/32 h = 1/64 h = 1/128 Order

pErr L2 6.5500e-5 1.6505e-5 4.1340e-6 1.0340e-6 ≈ 2
uErr nml 0.2529 0.1287 0.0649 0.0326 ≈ 1

Length of P 225 961 4,225 16,129
Length of U 736 3,008 12,160 48,896

We take true pressure to be p = (x2 − x)(y2 − y) on the unit square.
Example 9. The mobility tensor K = diag(1 + 10x2 + y2, 1 + x2 + 10y2), α = 1.
Example 10. The mobility tensor K = diag(1 + 10x2 + y2, 1 + x2 + 10y2), α = 1,

but CK = 0 in formula (2.5).
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