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SIAM J. NUMER. ANAL. ? 2000 Society for Industrial and Applied Mathematics 
Vol. 37, No. 3, pp. 758-771 

MIXED COVOLUME METHODS ON RECTANGULAR GRIDS FOR 
ELLIPTIC PROBLEMS* 

SO-HSIANG CHOUt AND DO Y. KWAKt 

Abstract. We consider a covolume method for a system of first order PDEs resulting from 
the mixed formulation of the variable-coefficient-matrix Poisson equation with the Neumann bound- 
ary condition. The system may be used to represent the Darcy law and the mass conservation 
law in anisotropic porous media flow. The velocity and pressure are approximated by the lowest 
order Raviart-Thomas space on rectangles. The method was introduced by Russell [Rigorous Block- 
centered Discretizations on Irregular Grids: Improved Simulation of Complex Reservoir Systems, 
Reservoir Simulation Research Corporation, Denver, CO, 1995] as a control-volume mixed method 
and has been extensively tested by Jones [A Mixed Finite Volume Elementary Method for Accurate 
Computation of Fluid Velocities in Porous Media, University of Colorado at Denver, 1995] and Cai 
et al. [Computational Geosciences, 1 (1997), pp. 289-345]. We reformulate it as a covolume method 
and prove its first order optimal rate of convergence for the approximate velocities as well as for the 
approximate pressures. 

Key words. covolume method, mixed method, finite volume element, error estimate, porous 
media 

AMS subject classifications. 65N30, 65N22, 65F10 

PII. S0036142996305534 

1. Introduction. Consider the Poisson equation in an axiparallel domain Q C 
R2 

f-V -ICVp = f in Q, 
(1.1) ICVp- n 0 on OQ, 

where 1C =C(x) =diag(Tj l(x), T2 1(x)) is a positive definite diagonal matrix function 
and its entries are bounded from below and above by positive constants. Furthermore, 
we shall assume that TI, T2 are locally Lipschitz. 

Let us introduce a new variable u = -ICVp and write the above equation as the 
system of first order partial differential equations 

(1.2) f dVu p- P in Q, 
divu = f in Q, 

with the boundary condition u n = 0 on OQ. This system can be interpreted as 
modeling an incompressible single phase flow in a reservoir, ignoring gravitational 
effects. The matrix IC is the mobility l/p, the ratio of permeability tensor to viscosity 
of the fluid, u is the Darcy velocity, and p is the pressure. The first equation is the 
Darcy law and the second represents conservation of mass with f standing for a source 
or sink term. Since K is in general discontinuous due to different rock formations, 
separating the Darcy law from the second order equation and discretizing it directly 
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MIXED COVOLUME METHODS FOR ELLIPTIC PROBLEMS 759 
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FIG. 1.1. Primal and dual domains 

together with the mass conservation may lead to a better numerical treatment on the 
velocity than just computing it from the pressure via the Darcy law [1, 12]. 

The associated weak formulation of our first order system is the following: Find 
(u,p) c Ho x Lo such that 

(1.3) (K-1u,v) (p,divv) V v E Ho, 
(divu, q) (f,q) V qCEL 2, 

where Ho := H(div; Q) n {u. n = O} and L2 := {q c L2(Q) fW qdx= O}. The space 
H(div; Q) is the set of all vector-valued functions w c L2(Q)2 such that div w c L2 (Q). 

We will adapt a covolume methodology for the generalized Stokes problem [3] 
to approximate this system. The basic idea of creating a covolume method is to 
find a good combination of the finite volume method and the MAC (marker and 
cell) [11] placements of flow variables. (A balanced survey of the covolume method 
literature up to 1995 is in Nicolaides, Porsching, and Hall [13].) In the MAC scheme, 
the pressure variable is assigned to the centers of the rectangular volumes, and the 
normal components of the velocity or fluxes are assigned to the edges of the rectangular 
volumes. 

More specifically, let Qh= {Qij } be a partition of the domain Q into a union of 
rectangles Qi,j with centers cij (see Figure 1.1). The subindices {i + 1, j}, {i-1, j}, 
{ i, Ij + 1}, and {i, j - 1} are assigned to the eastern, western, northern, and southern 
adjacent rectangles, respectively, if they exist. Given Qij, the two midpoints of its 
vertical edges are denoted as Ci?1/2,j and the two midpoints of its horizontal edges as 
Ci,j?i/2. Let cij = (xi, yj) and Ci+1/2,j = (Xi+l/2,yj) etc., define 

Qi+a/2nd ([Xi-, i+1] x [Yj-112,Yj+112) nQ, 
QiXJ+1/2 :=([Xi-112, Xi+1121 X [yj, yj+11 n Q, 

and 
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760 SO-HSIANG CHOU AND DO Y. KWAK 

Since the approximate pressure is assigned at the center of Qjj, it is natural to assume 
that as a function on Q it is piecewise constant with respect to the primal partition 
{ Qj }. The unknown approximate pressure Ph at the center of Qij can then be 
determined by integrating the mass conservation equation over Qjj. 

The normal approximate velocity is assumed to be constant along any edge. There 
are several ways [1, 4, 6, 10] to exactly or nearly accomplish this; here we will use 
the one proposed in [1, 12], i.e., use the lowest order Raviart-Thomas spaces for the 
approximate velocity field. Within each Qjj the horizontal component of the velocity 
is linear in x and constant in y, whereas the vertical component is linear in y and 
constant in x. Thus we have four degrees of freedom assigned at midpoints of edges. 
For example, with the eastern vertical edge of Qij, we associate one unknown, the 
horizontal velocity component (normal flux); the accompanying equation is taken by 
integrating the first component of the vector equation (1.2)> over Qi+1/2,j. Similarly, 
to determine the unknown at a nonborder northern edge, we integrate (1.2)2 over 
Qi,j+1/2- In other words, if we write the velocity field Uh = (Uh, Vh), then Qi,j+1/2 is 
for the determination of Vh and Qi+1/2,j is for Uh. We will sometimes call Qi+1/2,j 

(Qi,j+1/2) a u-volume (v-volume). These volumes are also called the covolumes of 
Qij in the literature [13]. 

Throughout this paper the primal partition Qh {Qij} is quasi-regular, i.e., 
there exist positive constants Ci and C2 independent of h such that 

(1.4) C1h2 < area{Qjj } < C2h2 V Qij C Qh, 

where h := maxij {h-Tj) hyj}, h) hj) j are, respectively, the width and height of Qj. 
Now define the following two spaces: 

Yh := {(Uh, Vh) : Uh c L2(Q) is piecewise constant on u-volumes, 
Vh c L2(Q) is piecewise constant on v-volumes} 

nf {(Uh, Vh) : Uh = 0 on border u-volumes, Vh = 0 on border v-volumes}, 

and 

Hh := {(uh, Vh) c Ho: uh(X, y) -a + bx, 
Vh(X, y) = c + dy on Qjj C Qh}. 

The trial space Hh is the lowest order Raviart-Thomas space, and Yh is the test space 
used to pick out the control volumes in engineering applications. For the pressure 
space, define 

Lh := {qh E Lo: qh is constant over Qij C Qh}. 

We now describe the above processes more abstractly, since our purpose is to prove 
convergence. For computational results and more applications see [1, 12]. The stan- 
dard mixed finite element method for (1.1) deals with the primal grid only: Find 
(ilh,1Ph) C Hh X Lh such that 

(1.5) (1C-lh, vh) - (divvh,1Ph) 0 V Vh C Hh, 
(diviih,qh) = (f,qh) V qh c Lh. 

In contrast, the present method deals with three grids. First, we define an analogue 
of -(divvh,Ph) in (1.5). Note that for smooth v = (v1,v2) and p 
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MIXED COVOLUME METHODS FOR ELLIPTIC PROBLEMS 761 

-(divv, p) -(0v 1/x, p) - (0V2/y, p) 

V f 6Th1~ dxdy - zJ V2dxdy 
ij /Qi+1/2j OJx P Y ,J ay 

(1.6) - (v1, 0)t np ds - Zf (0, V2)t. npds. 
i)j aQi+1/2,j i)j aQi,j+1/2 

With this in mind we define the bilinear form b: Yh x Lh -t R: 

(1.7) b(Vh,Ph) = (Vh(Ci+1/2,j),j )t . fnPhds 
i)j aQi+i/2,j 

-E 7 (0, Vh(Ci,j+l/2))t * nPhds 
iXj aQi,j+1/2 

and the bilinear forms a: Hh X Yh -t R, C: Hh x Lh L R: 

(1.8) a(uh,Vh) f= X Uh Vhdxdy 

(1.9) c(uh,qh) EZ qh(Ciij) divuhdx dy 

=-X jqhdiVUhdx dy. 

Note that the form a(., ) can be extended to L2(Q) x L2(Q) and will be also used as 
such later. In addition, define the transfer operator ah: Hh -t Yh: 

aYhWh (yhUh, yhVh), Wh = (Uh, Vh) 

(1. 10) :(E Uh(Ci+1/2,j)Xi+1/2,j, EVh(Ci,j+1/2)Xi,j+1/2 ) 
iXj iXj 

where Xi+1/2,j and Xi,j+1/2 are the characteristic functions of Qi+1/2,j and Qi,j+1/2, 
respectively. Note that we used the same notation ah in the componentwise definition 
and that ah is onto. Now let Xj(Y) and xi(x) be the characteristic functions of the 
intervals [Yj-1/2,Yj+1/21 and [Xi-1/2,Xi+l/2], respectively. Recall that the space Hh 
is spanned by the functions { (Qi;+1/2,j (x)x X(y), 0) } and { (0, bi) ,+1/2 (Y)Xi (x) } where 
O$i+1/2,j and 'Oi,j+1/2 are the usual hat functions associated with midpoints of the 
interior vertical and horizontal edges, respectively. In Figure 1.2, we show a typical 
action of the transfer operator on the basis functions. The top figure is the basis 
function Wh = (i+1/22,j(X)Xi(y),0) based at the common edge with center point 
Ci+1/2,j- The bottom figure is the image of Wh under ah, whose x-component is the 
characteristic function of the dotted covolume and whose y-component is zero. The 
action on (0, Vi,j+1l/2(Y)Xi(i)) can be shown similarly. 

REMARK 1.1. A remark is in order here concerning the bilinear form b. Although 
we motivated its definition using (1.6) with smooth functions, notice that b has in its 
first argument a nonsmooth test function in Yh. We shall show in Lemma 2.1 that 
b(yhwh,ph) =-C(Wh,ph). In other words, it is b(-yh, ), not b(., .), that is related to 
the divergence term in (1.5). 
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762 SO-HSIANG CHOU AND DO Y. KWAK 

_ _ _~ow ------_ ~ _ 

r ,_- - - - - - - -_ - - - - - - - - - -.............. 

_ _~_____ _ i n_____ 

FIG. 1.2. The action of the transfer operator Yh: Hh -> Yh on a basis function. The top 
figure is the basis vector function with the support in the two primal volumes. It is constant in the 
y-direction and has value one along the common edge, zero along the boundary edges, and linear in 
between. The bottom figure is its image in Yh, which has constant value (1, 0) throughout the dotted 
covolume and zero elsewhere. 

Thus, the covolume method we consider is this: Find {Uh,Ph} C Hh X Lh such 
that 

(1.11) a(Uh,yhWh)-b(-hwh,ph) = 0 V WhC Hh, 
-C(Uh, qh) = (f, qh) V qh C Lh. 

Here the substitution of -YhWh for a test function Vh C Yh is due to the surjectiveness 
of the operator aYh. This simple observation turns the original Petrov-Galerkin state- 
ment into a standard Galerkin one. It can be easily checked that this formulation 
reduces to that of Cai et al. [1] once the characteristic functions of u- and v-volumes 
are chosen as basis functions in representing it as a linear system. We can reformulate 
(1.11) into a standard saddle point problem by further introducing 

A(u, v) := a(u,7yhv) = (K; 1u, yhv) u,v C Hh 

and 

B(wh, qh) b(QYhwh, qh) 

so that problem (1.11) becomes 

(1.12) A(Uh,Wh)- B(Wh,Ph) 0 V Wh E Hh, 
-C(Uh, qh) = (f, qh) V qh C Lh. 

In Lemma 2.1, we show that B = -c and hence 

(1.13) A(Uh,Wh)-B(Wh,Ph) = V V WhC Hh, 

(1.14) B(uh, qh) = (f, qh) V qh C Lh. 

Note that the above system is in standard form. Nevertheless, the standard mixed 
method analysis cannot be used here. This is so because the original PDE cannot be 
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MIXED COVOLUME METHODS FOR ELLIPTIC PROBLEMS 763 

put into the same form the transfer operator ah in the definition of the bilinear form 
A cannot be extended to the space H(div; Q). However, on closer examination we see 
that the standard mixed method (1.5) for the Poisson equation (1.2) differs from the 
mixed covolume method (1.13)-(1.14) only in the bilinear form A. Thus we can treat 
the covolume method as one resulting from a "variational crime" of the standard mixed 
method. A careful analysis of the transfer operator aYh in connection to this deviation 
then leads to our error estimate in Theorem 3.1 which demonstrates the first order er- 
ror estimates in both the velocity and the pressure. The starting point of the proof is a 
good error equation (cf. (3.9) below) that plays the role of Cea's lemma in the standard 
finite element analysis. This methodology was initiated in Chou [3] for the generalized 
Stokes problem on triangular grids, in Chou and Kwak [6] for the same problem on 
rectangular grids, and in Chou and Li [5] for the "point-centered" or vertex-centered 
schemes for the variable-coefficient Poisson equation. A general framework for con- 
structing and analyzing mixed covolume methods for convection-diffusion equations is 
Chou and Vassilevski [7]. The present paper also introduces some new techniques to 
overcome difficulties in dealing with the space H(div; Q) and the variable-coefficient 
(mobility) matrix in the covolumne setting. Other methodology of proving convergence 
for the finite volume element method can be found in Cai and McCormick [2]. 

2. Saddle point formulation. In this section we prove some preliminary lem- 
mas. Let I - I Ij, j = 0, 1 denote the usual L2 and H1 norms, respectively, and let 

I IUI 12(iv := I IUI1lo + I Idivul 12 UH(div): u0 diu 

We also use I for the L2 norm when there is no confusion. The symbol C will be 
used as a generic positive constant independent of h aild may have different values at 
different places. 

LEMMA 2.1. The following holds: 

B(Wh, qh) = b(yhWh, qh) = -C(wh, qh) V Wh c Hh, qh C Lh. 

Proof. Since B is bilinear it suffices to show the relation holds when wh is a basis 
function of the Raviart-Thomas space. We shall only demonstrate the relation for 
the vertical-edge based basis functions. The basis function wh associated with the 
vertical edge whose midpoint is Ci+l/2,j is supported over Qi,j and Qi+,,j. It is zero 
in the second component and its first component is the familiar hat function with zero 
value on the left and right vertical edges of its support and value one on the common 
edge of the two rectangles above. Thus 

-B(wh,qh) = (1, 0)f qhnds 
aQi+1/2, j 

=-qh(Ci,j)h2 + qh(cj+l,j)h2, 

where h2 is the height of the two rectangles involved. On the other hand, 

C(Wh, q)=-q(ci,j)X (1?0) dxdy - q(ci+l,j) ' (j + 0) dxdy 
QiSij '13i+l S i+l,j 

=-q(ci,j)h2 + q(cji+,j)h2. 

The other cases can be handled the same way. [ 
We next show the coerciveness of A on the divergence free subspace of Hh. 
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764 SO-HSIANG CHOU AND DO Y. KWAK 

LEMMA 2.2. There exists a positive constant C independent of h and wh such 
that for all Wh C Hh with div Wh = 0, 

A(wh,Wh) > Cl wh. H(div) 

holds. 
Proof. Write Wh = (Uh, Vh) C Hh. Then 

a(Wh, -YhWh) = Uhh(Ci+1/2,j) ' I T (x, Y)Uh(X, y)dxdy 
i,j Qi+1/2,j 

+ >3 Vh(Ci,j?+/2) T2(X, Y)Vh(X, y)dxdy 
i,j+1/2 

=+II. 

It suffices to show that I > CIUh 112, as II can be handled similarly. Let Q-: 
Qi-1/2,j nQij and Q0+Qi+1/2,j nQij. Then 

I = 3 uh(Ci-1/2,j) T_ (X, y)Uh(X, y)dxdy 
Qtj 

+ > Uh(Ci+1/2,j) I TI (X, Y)Uh (X, y)dxdy 

-III + IV, 

where 

III = Uh (Ci -/2,j ) (TI(x,y) -Tl(Cij))Uh(X,y)dxdy 

+ >3 Uh (Ci-I/2,j)T1 (Ci ) Uh (X, y)dxdy 
Qt 

= V + VI, 

IV = E uh(Ci+1/2,j) - T (Cij))Uh(X, y)dxdy 
Q+j 

+ 3 Uh (Ci+1/2,j)T1 (Ci) j Uh (x, y)dxdy 

-VII + VIII. 

Using the linearity of Uh in x and constant in y, we can easily derive by direct com- 
putation that 

VI+ VIII >_ C'uh 0. 

On the other hand, by Lipschitz continuity of Ti and the Simpson's rule (or (2.5) 
below), 

V+ VIII < Mh j Uh(Ci-l/2,j)Uh(X,) )dxdy 

+ | tUh(Ci+1/2,j)Uh(X, y)|dxdy 
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MIXED COVOLUME METHODS FOR ELLIPTIC PROBLEMS 765 

? 
MhEjjUh(Ci-1/2_j)|Q- I|Uh||Q- + I|Uh(Ci+1/2,j)IIQ+? I?Uh4Q+ 

< 6MhZ , Uh Qii 

6MhIUh Ho. 

Thus we have 

I > C|uh 12 
- 6MhjjUh 1o 

and so 

I > C IUhl 2 

for h sufficiently small. O 
Now by Lemma 2.1, problem (1.11) becomes 

(2.1) A(uh, wh)-B(wh, ph) 0 V Wh e Hh, 
B(Uh, qh) (f , qh) V qh e Lh. 

The bilinear form B is well known, and the following inf-sup condition associated with 
the lowest order Raviart-Thomas space can be found in [14]. 

LEMMA 2.3. There exists a positive constant 3 independent of h such that 

(2.2) sup B(wh, qh) > 3 qhllo V qh e Lh- 
0OWhEHh, lWh IIH(div) 

Thus Lemmas 2.1-2.3 imply the uniqueness and existence of the solution of the 
system (1.13)-(1.14). Next we show that -h is a self-adjoint operator with respect to 
the L2 inner product on Hh, and it is bounded also. 

LEMMA 2.4. The following relations hold: 

(2.3) (yhUh,Wh) = (Uh,yhwh) V Uh,Wh e Hh, 

and there exists a positive constant C independent of h such that 

(2.4) 11/YhUhIo <? C||UhIlo V Uh C Hh 

Proof. Let uh = (Uh, Vh) and wh = (Wh, Xh). We first show that -h is self-adjoint. 
Writing out ('yhUh, Wh) as the sum of two integrals, we see that it suffices to examine 
the action of -h on the first components (or second components). Let Uh = a + bx, 
Wh = c + dx on the standard reference rectangle Q = [0, hl] x [0, h2] and let (, )Q 
denote the restriction of (,.) on Q and 11 IIQ its induced norm. Then 

rhl/2 rhi 
(uh, Yhwh)Q = h2 (a + bx)cdx + h2j (a + bx)(c + dhi )dx, 

O hl ~~~~~~/2 
shl/2 rhi 

(yhUh, Wh)Q = h2 a(c + dx)dx + h2 / (a + bhl)(c + dx)dx. 
1 h1 /2 

Now their difference divided by h2 is 

rhi /2 shi chi 
- (bc-ad)xdx + (ad- bc)hidx + j (bc - ad)xdx 

O hl ~ ~ ~~/2 1l/2 

h (bc-ad) h+(ad-bc) 21 +(b d3h) 
~(bc -ad)j1 ?(ad - bc)-? (bc -ad) ~ 0. 

8 2 8 
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766 SO-HSIANG CHOU AND DO Y. KWAK 

Thus, (uh,'yhwh) = ('yhuh,wh). 

The boundedness of -Yh can be proved by direct computation, but let us prove 
it indirectly to show a principle that will be used later. We want to show that for 
E = 0,h1 

rh2 phi 

(2.5) Jhj Uh (E,Y) 12dxdy < C| Uh 12 
O,Q) 

ph2 rhi 

(2.6) J 11 Vh(E,y) 2dxdy < C| Vhl 2Q 
o o~~~~~~~~, 

In fact by Simpson's rule for any linear f 

f2 (x)dx fh (2(0) + 4f2 (h) + f2(h)) 

and hence 
h 

(2.7) 6 f2(x)dx > hf2(E), E = 0 or h. 

Thus for Uh = a + bx, 

h2 hi h2 hi 

1h2 1h1 uJUh(0,y) 2dxdy < j (h hi IUh(0,y)2dx) hp1dy 

h2 phi 

<6j JU uh(X,y) 2dxdy 

61 Uh 2 OQ 

Similar results hold for Vh. With these it is easy to see the boundedness of ah. ? 

Next we show a crucial approximation property of -Yh. Let us first define a discrete 
seminorm for Wh = (wh, Xh) e Hh, 

(2.8) lWhil,h l VWh O,Q + |lVXh lO,Q 
QEQh 

and the full norm 

IlWh Wh h = + l Wh 1,h- 

We also use lWh I1,h;Q for the corresponding restriction. 
LEMMA 2.5. There exists a constant C independent of h such that 

(2.9) || (I -Yh)Wh ||o < Ch lWh I I 1,h, 

(2.10) la(uh, (I -Yh)Wh)I < Chl Uh I1,h IWh I0 V Uh, Wh C Hh, 

(2.11) la(u,(I-yh)Wh)I < Ch ul u Wh I0 V Wh C Hh,u C H1(Q). 

Proof. Using the notation in the proof of Lemma 2.4 and letting wh = (Uh, vh), 
we have 

hi /2 phi 

Uh - YhUhQ2 =h2 (a+bx - a)2dx + h2 (a + bx -a- bhl)2dx 

=h2 b2x2dx + h2 b2(x - hl)2dx 12b 
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Likewise, for Vh c + dx, 

|lVh--YhVh 12Q 2d 2d 

So summing over Qi,j yields 

|| (I - tYh)Wh 1o?< Chl lWh ll,h- 

To prove (2.10), observe 

a(uh, (I-yh)Wh) = a((I -yh)Uh, Wh) + [a(yhUh, Wh)- a(Uh, 'hWh)] 

= SI + S2* 

We shall show that SI and S2 are bounded by the right-hand side of (2.10). First, 

|SI la((I-[Yh)Uh,Wh)I 

I (IC (I - -Yh)Uh,Wh) 

I |(G1- -h) Uh, ICK Wh)l 

< CI K< ||hl o Uh |hl,h llWh 0lo- 

We next show how to bound S2. Write C -1 = diag(TI (x), T2(x)) with 0 < tmin < 
T1,T2 < tmax. With uh = (u1,u2) and Vh = (v1,v2), we need to estimate 

(K 7uh I yhvh ) Q - (K yhUh, Vh)Q = '1 + '2, 

where 

'1 ('T(X)U ,IyhVI)Q - (TI(X)'yhU,V1)Q, 

'2 (T2(X)U 2,7hV2)Q - (T2(X)YhU2, V2)Q. 

Let c C Q. Now we have 

'1 = (T1(X)uI,yhVI)Q - (TI(X)7hU,VI1)Q 

= ((Ti (X) -T1 (C))U hV1)Q - ((T1 (X) -T1 (C))Yh U ,V )Q 

+T (C)[(U1 hVI)Q - (yhUl, V1)Q] 

= ((Ti(X) -T1(C))U ,IhV1)Q - ((T1(X) -T1(C))>h 1,V )Q, 

where we have used Lemma 2.4 (or the scalar version which was proved in that lemma) 
in deriving the last equality. Hence by the Lipschitz continuity of TI and (2.4), we 
have 

I1hI < MhllUllIQ Ivl llQ 

A similar estimate holds for '2. Summing over Q and using the Cauchy-Schwarz 
inequality, we obtain 

IS21 < Ch lUh 0 lloVh ll0 

We are now ready to show the last assertion of our lemma. Let Eh be the familiar 
interpolation operator from H1(Q) to Hh with fe q nds, flux across edge, as its 
degrees of freedom [14, pp. 550-554]. Then 

(2.12) l q-Shq|lO < Chlq1 V q e H1(Q). 
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Now 

a(u, (I - -Yh)Wh) a (u - thU, (I -Yh)Wh) + a(EhU, (I -Yh)Wh) 

< C| JU- hUl l0 I I (I- h)wh I l0 + ja(ShU, (I- h)Wh) I 
< Chl |uI I 1 lWh 0 |o + la(hU, (I-yh)Wh) I - 

It remains to estimate a(Ehu, (I - 'yh)wh). By (2. 10), 

ja(-hu, (I - -Yh)Wh)I < Chj IhU |1,h jWh lo- 

Hence we will be done if we can show that 

II-EhUJ 1,h < C |U I|. 

Note that on any vertical edge e of Q, 

u. n(x,y)dy-j(-hU)(X,y) ndy =h2(-hU) * n(x). 

Using this and the divergence theorem, we have the partial derivative of the first 
component of thU, 

(h U)- = (ShU)1(hl) - (ShU)1(0) 

dxdy. hi h2 11 Ox 

Thus 

1(-hu))I < Ch-lllu 

and likewise 

I (EhU) 2 1 < Ch-1 IjU2 11 . 

Since Ehu has the form (a + bx, c + dy) over Qij, we have 

WhUII,h,Qjj < Ch [IV(-hU) 12 + IV(ShU)212]1/2 

- Oh ([(6hu)1]2 + [(6hU)2]2) < Cj UjI ,Qij 

where we have used the quasi-regularity condition (1.4) and the fact that the partial 
derivatives involved are constant. Summing over Qij now completes the proof. [ 

3. Error estimates. We now prove the main theorem of this paper. 
THEOREM 3.1. Let the rectangular partition family {Qij} of the domain Q be 

quasi-regular satisfying (1.4), and let {uh,ph} be the solution of problem (1.12) and 
{u, p} the solution of problem (1.3). Then there exists a positive constant C indepen- 
dent of h but dependent on 11K-111o, Ilull1, ldivull1, and llpl1 such that 

(3.1) UUIIh H(div) +IIP PhIO h 

provided that u C H1, divu C H1,p c H1. 
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Proof. Introduce the auxiliary mixed formulation to (1.3): Find (ilh, Ph) C Hh X 

Lh such that 

(3.2) a(lh, Wh)-B(Wh,Ph) = V V WhcHh, 

(3.3) B(f1h, qh) = (f,qh) V qh Lh. 

This system has the following well-known convergence result [14]: 

(3.4) U -ih Ih11H(div) + IIP-1Ph o< Ch(I| u 1?+ divull 1+ p lll) 

provided that u e H1, divu e H1, p e H1. On the other hand, we have 

(3.5) a(Uh,'YhWh)-B(Wh,Ph) = V V Whe Hh, 

(3.6) B(Uh,qh) = (f,qh) V qh e Lh. 

Define eh := (u - Ulh) + (flh - Uh). Thus it suffices to estimate the second term on 
the right. Subtracting (3.6) from (3.3), we have 

(3.7) B(f1h-Uh, qh) = V qhe Lh- 

Subtracting (3.5) from (3.2) yields 

(3.8) a(flh - Uh, yhWh) + a(flh, (I - -yh)wh)- B(Wh, Ph -Ph) = 0. 

Replace the wh above by eh := lh - Uh and use (3.7) to obtain 

a(eh, Yh6h) = -a(1h, (I-'yh)eh)- 

Now observe by (3.7) and (3.2) that a(iih, h) 0 and by (1.3) that a(u, h) 
B(6h,p) to obtain 

a(ilh, (I - 'yh)eh) = a(ilh, -'heh) 

= a(flh, --Yheh) + a(u, eh)- B(eh, P) 
= a(flh, -Yheh) + a(u, eh)- B(eh, P - Ph) 
= a(u, 7hh) + a(ilh, -Yheh) + a(u, (I - -Yh)6h) 

- B(eh,p - Ph) 

- a(u - Uh, -heh) + a(u, (I - -h)6h) 
- B(eh,p - Ph) 

Hence, we have the error equation 

(3.9) a(eh, -Yh6h) = -a(u-fUh, yheh)- a(u, (I- ,h) h) + B(eh, P-Ph) 

By Lemma 2.2, (2.11), the boundedness of B, and (3.4), 

alli|H(l1v) < C|uUhj0jj6ehjj0 + Chjjeh||0 |u||l+ Chjjeh11H(div) 

=C |-Uh |0j j6eh 11H(div) + Chjjeh 1H(div)U 1u11 

+Chjjeh 1H(div)) 

where C is independent of h but dependent on IIK,-111o, Ilull1, ldivulli, and llplil. 
Note that we have used (3.4) to estimate the last term. The first term can be further 
estimated by (3.4) to extract a power of h and hence 

Jeh H(div) < Ch. 
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An application of the triangle inequality completes the proof for the velocity. The 
error in the pressure is estimated by invoking the inf-sup condition. [ 

It should be clear that Theorem 3.1 still holds in three dimensions. The reader is 
referred to Duncan and Jones [9] for computational results of the Dirichlet problem 
in three dimensions with identity mobility matrix. In actual computation, one needs 
quadratures to evaluate the bilinear forms in the above theorem. Hence the actual 
forms are perturbations of the exact forms. This type of analysis has been done in 
the finite element literature by Shen [16], and we will not repeat it here. We have 
also obtained the convergence results for the lowest order Raviart-Thomas space on 
triangular grids in Chou, Kwak, and Vassilevski [8]. 

REMARK 3.1. Our results in this paper do not cover the cases of nonrectangular 
quadrilateral grids (logically rectangular grids) and nondiagonal tensor permeability 
coefficients, which are of importance in some applications, particularly subsurface 
reservoir flow. (The analysis in [8] carries over to the nondiagonal tensor case, but 
it is only for triangular elements.) We are currently pursuing these topics. 

Acknowledgment. The authors are grateful to Prof. T. F. Russell for helpful 
comments on the original manuscript. 

REFERENCES 

[1] Z. CAI, J. E. JONES, S. F. MCCORMICK, AND T. F. RUSSELL, Control-volume mixed finite 
element methods, Computational Geosciences, 1 (1997), pp. 289-315. 

[2] Z. CAI AND S. MCCORMICK, On the accuracy of the finite volume element method for diffusion 
equations on composite grids, SIAM J. Numer. Anal., 27 (1990), pp. 636-656. 

[3] S. H. CHOU, Analysis and convergence of a covolume method for the generalized Stokes problem, 
Math. Comp., 66 (1997), pp. 85-104. 

[4] S. H. CHOU AND D. Y. KWAK, Analysis and convergence of a MAC-like scheme for the gen- 
eralized Stokes problem, Numer. Methods Partial Differential Equations, 13 (1997), pp. 
1-16. 

[5] S. H. CHOU AND Q. LI, Error estimates in L2, H' and L? in covolume methods for elliptic 
and parabolic problems: A unified approach, Math. Comp., 69 (2000), pp. 103-120. 

[6] S. H. CHOU AND D. Y. KWAK, A covolume method based on rotated bilinears for the generalized 
Stokes problem, SIAM J. Numer. Anal., 35 (1998), pp. 494-507. 

[7] S. H. CHOU AND P. S. VASSILEVSKI, A general mixed covolume framework for constructing 
conservative schemes for elliptic problems, Math. Comp. 68 (1999), pp. 991-1011. 

[8] S. H. CHOU, D. Y. KWAK, AND P. S. VASSILEVSKI, Mixed covolume methods for the elliptic 
problems on triangular grids, SIAM J. Numer. Anal., 35 (1998), pp. 1850-1861. 

[9] C. DUNCAN AND J. JONES, A mixed method Poisson solver for three-dimensional self-gravitating 
astrophysical fluid dynamical systems, in Sixth Copper Mountain Conference on Multigrid 
Methods, CP3324, N. D. Melson, T. A. Manteuffel, and S. F. McCormick, eds., NASA, 
Hampton, VA, 1993, pp. 159-173. 

[10] C. A. HALL, T. A. PORSCHING, AND P. Hu, Covolume-dual variable method for thermally 
expandable flow on unstructured triangular grids, Comp. Fluid Dynamics 2 (1994), pp. 
111-139. 

[11] F. H. HARLOW AND F. E. WELCH, Numerical calculations of time dependent viscous incom- 
pressible flow of fluid with a free surface, Phys. Fluids, 8 (1965), pp. 2182-2189. 

[12] J. E. JONES, A Mixed Finite Volume Element Method for Accurate Computation of Fluid 
Velocities in Porous Media, Ph.D. thesis, University of Colorado at Denver, Denver, CO, 
1995. 

[13] R. A. NICOLAIDES, T. A. PORSCHING, AND C. A. HALL, Covolume methods in computational 
fluid dynamics, in Computational Fluid Dynamics Review, M. Hafez and K. Oshma, eds., 
John Wiley and Sons, New York, London, 1995, pp. 279-299. 

[14] J. ROBERTS AND J. THOMAS, Mixed and hybrid methods, in Handbook of Numerical Analysis, 
Vol II, P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam, 1991, Ch. 4. 

This content downloaded from 129.1.62.221 on Tue, 05 Aug 2014 13:46:23 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MIXED COVOLUME METHODS FOR ELLIPTIC PROBLEMS 771 

[15] T. F. RUSSELL, Rigorous Block-centered Discretizations on Irregular Grids: Improved Simu- 
lation of Complex Reservoir Systems, Technical Report No. 3, Project Report, Reservoir 
Simulation Research Corporation, Denver, CO, 1995. 

[16] J. SHEN, A block finite difference scheme for second-order elliptic problems with discontinuous 
coefficients, SIAM J. Numer. Anal, 33 (1996), pp. 688-706. 

This content downloaded from 129.1.62.221 on Tue, 05 Aug 2014 13:46:23 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Mixed Covolume Methods on Rectangular Grids for Elliptic Problems
	Repository Citation


