3,030 research outputs found

    Preserving attribute values on simplified meshes by re-sampling detail textures

    Get PDF
    Many sophisticated solutions have been proposed to reduce the geometric complexity of 3D meshes. A slightly less studied problem is how to preserve attribute detail on simplified meshes (e.g., color, high-frequency shape details, scalar fields, etc.).We present a general approach that is completely independent of the simplification technique adopted to reduce the mesh size. We use resampled textures (rgb, bump, displacement or shade maps) to decouple attribute detail representation from geometry simplification. The original contribution is that preservation is performed after simplification by building a set of triangular texture patches that are then packed into a single texture map. This general solution can be applied to the output of any topology-preserving simplification code and it allows any attribute value defined on the high-resolution mesh to be recovered. Moreover, decoupling shape simplification from detail preservation (and encoding the latter with texture maps) leads to high simplification rates and highly efficient rendering. We also describe an alternative application: the conversion of 3D models with 3D procedural textures (which generally force the use of software renderers) into standard 3D models with 2D bitmap textures

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    von Neumann Stability Analysis of Globally Constraint-Preserving DGTD and PNPM Schemes for the Maxwell Equations using Multidimensional Riemann Solvers

    Full text link
    The time-dependent equations of computational electrodynamics (CED) are evolved consistent with the divergence constraints. As a result, there has been a recent effort to design finite volume time domain (FVTD) and discontinuous Galerkin time domain (DGTD) schemes that satisfy the same constraints and, nevertheless, draw on recent advances in higher order Godunov methods. This paper catalogues the first step in the design of globally constraint-preserving DGTD schemes. The algorithms presented here are based on a novel DG-like method that is applied to a Yee-type staggering of the electromagnetic field variables in the faces of the mesh. The other two novel building blocks of the method include constraint-preserving reconstruction of the electromagnetic fields and multidimensional Riemann solvers; both of which have been developed in recent years by the first author. We carry out a von Neumann stability analysis of the entire suite of DGTD schemes for CED at orders of accuracy ranging from second to fourth. A von Neumann stability analysis gives us the maximal CFL numbers that can be sustained by the DGTD schemes presented here at all orders. It also enables us to understand the wave propagation characteristics of the schemes in various directions on a Cartesian mesh. We find that the CFL of DGTD schemes decreases with increasing order. To counteract that, we also present constraint-preserving PNPM schemes for CED. We find that the third and fourth order constraint-preserving DGTD and P1PM schemes have some extremely attractive properties when it comes to low-dispersion, low-dissipation propagation of electromagnetic waves in multidimensions. Numerical accuracy tests are also provided to support the von Neumann stability analysis

    Simulation of Free Surface Compressible Flows Via a Two Fluid Model

    Get PDF
    The purpose of this communication is to discuss the simulation of a free surface compressible flow between two fluids, typically air and water. We use a two fluid model with the same velocity, pressure and temperature for both phases. In such a numerical model, the free surface becomes a thin three dimensional zone. The present method has at least three advantages: (i) the free-surface treatment is completely implicit; (ii) it can naturally handle wave breaking and other topological changes in the flow; (iii) one can easily vary the Equation of States (EOS) of each fluid (in principle, one can even consider tabulated EOS). Moreover, our model is unconditionally hyperbolic for reasonable EOS.Comment: 8 pages, 10 figures; OMAE2008, 27th International Conference on Offshore Mechanics and Arctic Engineering. Other authors papers and animations related to this work can be downloaded from: http://www.cmla.ens-cachan.fr/fileadmin/Membres/dutykh/ The paper was slightly modified according to referees comment

    The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and inundation

    Get PDF
    A novel tool for tsunami wave modelling is presented. This tool has the potential of being used for operational purposes: indeed, the numerical code \VOLNA is able to handle the complete life-cycle of a tsunami (generation, propagation and run-up along the coast). The algorithm works on unstructured triangular meshes and thus can be run in arbitrary complex domains. This paper contains the detailed description of the finite volume scheme implemented in the code. The numerical treatment of the wet/dry transition is explained. This point is crucial for accurate run-up/run-down computations. Most existing tsunami codes use semi-empirical techniques at this stage, which are not always sufficient for tsunami hazard mitigation. Indeed the decision to evacuate inhabitants is based on inundation maps which are produced with this type of numerical tools. We present several realistic test cases that partially validate our algorithm. Comparisons with analytical solutions and experimental data are performed. Finally the main conclusions are outlined and the perspectives for future research presented.Comment: 47 pages, 27 figures. Other author's papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh
    • …
    corecore