187,002 research outputs found

    A game-based approach to the teaching of object-oriented programming languages

    Get PDF
    Students often have difficulties when trying to understand the concepts of object-oriented programming (OOP). This paper presents a contribution to the teaching of OOP languages through a game-oriented approach based on the interaction with tangible user interfaces (TUIs). The use of a specific type of commercial distributed TUI (Sifteo cubes), in which several small physical devices have sensing, wireless communication and user-directed output capabilities, is applied to the teaching of the C# programming language, since the operation of these devices can be controlled by user programs written in C#. For our experiment, we selected a sample of students with a sufficient knowledge about procedural programming, which was divided into two groups: The first one had a standard introductory C# course, whereas the second one had an experimental C# course that included, in addition to the contents of the previous one, two demonstration programs that illustrated some OOP basic concepts using the TUI features. Finally, both groups completed two tests: a multiple-choice exam for evaluating the acquisition of basic OOP concepts and a C# programming exercise. The analysis of the results from the tests indicates that the group of students that attended the course including the TUI demos showed a higher interest level (i.e. they felt more motivated) during the course exposition than the one that attended the standard introductory C# course. Furthermore, the students from the experimental group achieved an overall better mark. Therefore, we can conclude that the technological contribution of Sifteo cubes – used as a distributed TUI by which OOP basic concepts are represented in a tangible and a visible way – to the teaching of the C# language has a positive influence on the learning of this language and such basic concepts

    Using Augmented Reality as a Medium to Assist Teaching in Higher Education

    Get PDF
    In this paper we describe the use of a high-level augmented reality (AR) interface for the construction of collaborative educational applications that can be used in practice to enhance current teaching methods. A combination of multimedia information including spatial three-dimensional models, images, textual information, video, animations and sound, can be superimposed in a student-friendly manner into the learning environment. In several case studies different learning scenarios have been carefully designed based on human-computer interaction principles so that meaningful virtual information is presented in an interactive and compelling way. Collaboration between the participants is achieved through use of a tangible AR interface that uses marker cards as well as an immersive AR environment which is based on software user interfaces (UIs) and hardware devices. The interactive AR interface has been piloted in the classroom at two UK universities in departments of Informatics and Information Science

    Enhancing Creativity in Interaction Design: Alternative Design Brief

    Get PDF
    This paper offers a critique of the design brief as it is currently used in teaching interaction design and proposes an alternative way of developing it. Such a design brief requires the exploration of alternative application domains for an already developed technology. The paper presents a case study where such a novel type of design brief has been offered to the students taking part in a collaborative design project and discusses how it supported divergent thinking and creativity as well as helped enhancing the learning objectives

    Bringing tabletop technologies to kindergarten children

    Get PDF
    Taking computer technology away from the desktop and into a more physical, manipulative space, is known that provide many benefits and is generally considered to result in a system that is easier to learn and more natural to use. This paper describes a design solution that allows kindergarten children to take the benefits of the new pedagogical possibilities that tangible interaction and tabletop technologies offer for manipulative learning. After analysis of children's cognitive and psychomotor skills, we have designed and tuned a prototype game that is suitable for children aged 3 to 4 years old. Our prototype uniquely combines low cost tangible interaction and tabletop technology with tutored learning. The design has been based on the observation of children using the technology, letting them freely play with the application during three play sessions. These observational sessions informed the design decisions for the game whilst also confirming the children's enjoyment of the prototype

    Learning computing heritage through gaming – whilst teaching digital development through history

    Get PDF
    This paper analyses the potential of computer games and interactive projects within the learning programmes for cultural heritage institutions through our experiences working in partnership between higher education and a museum. Gamification is cited as a key disruptive technology for the business and enterprise community, and developments in games technology are also driving the expansion of digital media into all different screen spaces, and various platforms. Our research aims to take these as beneficial indicators for pedagogic development, using gaming to support knowledge transfer related to a museum setting, and using the museum as a key scenario for our students to support the practice of game development. Thus gamification is applied as both a topic and a methodology for educational purposes

    Make and learn: A CS Principles course based on the Arduino platform

    Get PDF
    We present preliminary experiences in designing a Computer Science Principles undergraduate course for all majors that is based on physical computing with the Arduino microprocessor platform. The course goal is to introduce students to fundamental computing concepts in the context of developing concrete products. This physical computing approach is different from other existing CS Principles courses. Students use the Arduino platform to design tangible interactive systems that are personally and socially relevant to them, while learning computing concepts and reflecting on their experiences. In a previous publication [1], we reported on assessment results of using the Arduino platform in an Introduction to Digital Design course. We have introduced this platform in an introductory computing course at the University of Hartford in the past year as well as in a Systems Fundamentals Discovery Course at the University of New Hampshire to satisfy the general education requirements in the Environment, Technology, and Society category. Our goal is to align the current curriculum with the CS Principles framework to design a course that engages a broader audience through a creative making and contextualized learning experience

    Learning from experience, for experienced staff

    Get PDF
    Business needs in multinational corporations call for courses that involve problem solving and creating and sharing new knowledge based on workplace situations. The courses also need to be engaging for the participants. Blended learning at Shell International Exploration and Production involves these kinds of outcomes in courses designed around a workplace-learning model. Employees use a Web-based system to make contributions based on their own work experiences in preparation for a face-to-face session. These contributions then feed into classroom sessions that involve collaborative learning where the workplace problems and experiences of the participants are the focus. In this presentation one course is highlighted that demonstrates a number of game-type activities based on the participants' own workplace experiences. Implications for other courses outside of the Shell context are discussed

    Mental tactility: the ascendance of writing in online management education

    Full text link
    A qualitative study of online management education and the role of writing as an indicative measure of thinking and learning. Established educational models, such as Dale\u27s Cone of Experience, are expanded and redeveloped to illustrate the central role of writing as a critical thinking process which appears to be increasing, rather than decreasing, with the advent of online multimedia technology. In an environment of increasing reliance on audiovisual stimulus in online education, the authors contend that tertiary educators may witness an ascendance or re-emergence of writing as central to the academic experience. This may be both supply and demand driven. Drawing on a study of two undergraduate units in the Bachelor of Commerce and applying hermeneutics to develop challenging insights, the authors present a case for educators to remain conversant with the art of teaching writing, and to promote writing to improve educational outcomes. <br /

    Including Social Service Clients in the Organizational Decision Making Process

    Get PDF
    Empowerment of clients is a goal of many social service organizations and yet a concept that is hard to define and often complicated to implement. This professional project looks at the importance and practice of empowering parents in a teenage pregnancy prevention program through a case study. A survey of parents supported the idea of empowering practices leading to parents becoming partners with the organization in the education of the community. In a qualitative study, this researcher offers the practice of taking empowerment a step further in asking participants of the program to take part in the decision of what should be next for the program
    • …
    corecore