2,400 research outputs found

    PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques

    Get PDF
    Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addresse

    Investigation of Radiation-Induced Toxicity in Head and Neck Cancer Patients through Radiomics and Machine Learning: A Systematic Review

    Get PDF
    Background. Radiation-induced toxicity represents a crucial concern in oncological treatments of patients affected by head and neck neoplasms, due to its impact on survivors' quality of life. Published reports suggested the potential of radiomics combined with machine learning methods in the prediction and assessment of radiation-induced toxicities, supporting a tailored radiation treatment management. In this paper, we present an update of the current knowledge concerning these modern approaches. Materials and Methods. A systematic review according to PICO-PRISMA methodology was conducted in MEDLINE/PubMed and EMBASE databases until June 2019. Studies assessing the use of radiomics combined with machine learning in predicting radiation-induced toxicity in head and neck cancer patients were specifically included. Four authors (two independently and two in concordance) assessed the methodological quality of the included studies using the Radiomic Quality Score (RQS). The overall score for each analyzed study was obtained by the sum of the single RQS items; the average and standard deviation values of the authors' RQS were calculated and reported. Results. Eight included papers, presenting data on parotid glands, cochlea, masticatory muscles, and white brain matter, were specifically analyzed in this review. Only one study had an average RQS was ≤ 30% (50%), while 3 studies obtained a RQS almost ≤ 25%. Potential variability in the interpretations of specific RQS items could have influenced the inter-rater agreement in specific cases. Conclusions. Published radiomic studies provide encouraging but still limited and preliminary data that require further validation to improve the decision-making processes in preventing and managing radiation-induced toxicities

    A case-based reasoning system for radiotherapy treatment planning for brain cancer

    Get PDF
    In this thesis, a novel case-based reasoning (CBR) approach to radiotherapy treatment planning for brain cancer patients is presented. In radiotherapy, tumour cells are destroyed using ionizing radiation. For each patient, a treatment plan is generated that describes how the radiation should be applied in order to deliver a tumouricidal radiation dose while avoiding irradiation of healthy tissue and organs at risk in the vicinity of the tumour. The traditional, manual trial and error approach is a time-consuming process that depends on the experience and intuitive knowledge of medical physicists. CBR is an artificial intelligence methodology, which attempts to solve new problems based on the solutions of previously solved similar problems. In this research work, CBR is used to generate the parameters of a treatment plan by capturing the subjective and intuitive knowledge of expert medical physicists stored intrinsically in the treatment plans of similar patients treated in the past. This work focusses on the retrieval stage of the CBR system, in which given a new patient case, the most similar case in the archived case base is retrieved along with its treatment plan. A number of research issues that arise from using CBR for radiotherapy treatment planning for brain cancer are addressed. Different approaches to similarity calculation between cases are investigated and compared, in particular, the weighted nearest neighbour similarity measure and a novel non-linear, fuzzy similarity measure designed for our CBR system. A local case attribute weighting scheme has been developed that uses rules to assign attribute weights based on the values of the attributes in the new case and is compared to global attribute weighting, where the attribute weights remain constant for all target cases. A multi-phase case retrieval approach is introduced in which each phase considers one part of the solution. In addition, a framework developed for the imputation of missing values in the case base is described. The research was carried out in collaboration with medical physicists at the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. The performance of the developed methodologies was tested using brain cancer patient cases obtained from the City Hospital. The results obtained show that the success rate of the retrieval mechanism provides a good starting point for adaptation, the next phase in development for the CBR system. The developed automated CBR system will assist medical physicists in quickly generating treatment plans and can also serve as a teaching and training aid for junior, inexperienced medical physicists. In addition, the developed methods are generic in nature and can be adapted to be used in other CBR or intelligent decision support systems for other complex, real world, problem domains that highly depend on subjective and intuitive knowledge

    Towards Integration of Artificial Intelligence into Medical Devices as a Real-Time Recommender System for Personalised Healthcare:State-of-the-Art and Future Prospects

    Get PDF
    In the era of big data, artificial intelligence (AI) algorithms have the potential to revolutionize healthcare by improving patient outcomes and reducing healthcare costs. AI algorithms have frequently been used in health care for predictive modelling, image analysis and drug discovery. Moreover, as a recommender system, these algorithms have shown promising impacts on personalized healthcare provision. A recommender system learns the behaviour of the user and predicts their current preferences (recommends) based on their previous preferences. Implementing AI as a recommender system improves this prediction accuracy and solves cold start and data sparsity problems. However, most of the methods and algorithms are tested in a simulated setting which cannot recapitulate the influencing factors of the real world. This review article systematically reviews prevailing methodologies in recommender systems and discusses the AI algorithms as recommender systems specifically in the field of healthcare. It also provides discussion around the most cutting-edge academic and practical contributions present in the literature, identifies performance evaluation matrices, challenges in the implementation of AI as a recommender system, and acceptance of AI-based recommender systems by clinicians. The findings of this article direct researchers and professionals to comprehend currently developed recommender systems and the future of medical devices integrated with real-time recommender systems for personalized healthcare

    Segment Anything Model (SAM) for Radiation Oncology

    Full text link
    In this study, we evaluate the performance of the Segment Anything Model (SAM) model in clinical radiotherapy. We collected real clinical cases from four regions at the Mayo Clinic: prostate, lung, gastrointestinal, and head \& neck, which are typical treatment sites in radiation oncology. For each case, we selected the OARs of concern in radiotherapy planning and compared the Dice and Jaccard outcomes between clinical manual delineation, automatic segmentation using SAM's "segment anything" mode, and automatic segmentation using SAM with box prompt. Our results indicate that SAM performs better in automatic segmentation for the prostate and lung regions, while its performance in the gastrointestinal and head \& neck regions was relatively inferior. When considering the size of the organ and the clarity of its boundary, SAM displays better performance for larger organs with clear boundaries, such as the lung and liver, and worse for smaller organs with unclear boundaries, like the parotid and cochlea. These findings align with the generally accepted variations in difficulty level associated with manual delineation of different organs at different sites in clinical radiotherapy. Given that SAM, a single trained model, could handle the delineation of OARs in four regions, these results also demonstrate SAM's robust generalization capabilities in automatic segmentation for radiotherapy, i.e., achieving delineation of different radiotherapy OARs using a generic automatic segmentation model. SAM's generalization capabilities across different regions make it technically feasible to develop a generic model for automatic segmentation in radiotherapy
    • …
    corecore