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Abstract 

Geometrical uncertainties in radiotherapy such as differences in patient set-up positioning, 

and organ motion/deformations can cause the target to be underdosed or organs at risk to 

be overdosed. The aim of this thesis was to understand geometrical uncertainties in head 

and neck (H&N) radiotherapy; how to model them, how to evaluate their impact and how 

to make plans that are robust against them. 

One way of modelling anatomical deformations is by using principal component 

analysis (PCA). In this thesis, a method for evaluating how well PCA models represent 

unseen deformations within a patient or population was first developed. This evaluation 

scheme was demonstrated in H&N cancer patients for both patient specific and population-

based models. In the studied cohorts, the largest residual errors were found around the 

oropharynx. 

Next, we developed a population-based time-dependent model for anatomical 

deformations in H&N using data from 30 H&N patients. This involved creating a PCA model 

for the systematic components of the deformations and weekly models for the random 

components. These models were then used to simulate many treatments and the effect of 

deformations on the delivered dose to the patient was evaluated alone and in combination 

with set-up uncertainties. The effect of anatomical deformations was found to be similar 

to or smaller than that of set-up uncertainties for all organs considered except the larynx 

and the primary clinical target volume (CTV). 

Considering this finding, we then investigated whether plans could be created using 

tools to account for set-up uncertainties that were robust to anatomical deformations. We 

compared plans created using margin, robust and probabilistic approaches for different 

uncertainty settings. Our results show that margin-based plans were the most robust to 

anatomical deformations using only methods to account for set-up uncertainties. 

Finally, we investigated whether the shape of the target affects the robustness of plans 

for set-up uncertainties. We compared margin, robust and probabilistic plans for different 

target shapes and found that as the CTV was less spherical, the plan robustness decreased. 

Margin-based plans were seen to be over-robust to set-up uncertainties and both robust 

and probabilistic planning approaches were seen to underdose voxels on the ‘corners’ of 

more complex CTV shapes. 

Collectively, these results show that while in many cases plans can be created that are 

robust to geometrical uncertainties, including deformations, robust and probabilistic 

planning approaches should be used with care to ensure adequate target coverage. 
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Chapter 1 

Introduction 
Cancer is one of the leading causes of premature death (deaths occurring between the ages 

of 30-70) in the world [1], with almost 10.0 million deaths and an estimated 19.3 million 

new cases in 2020 [2]. The number of new cases is predicted to almost double to 28.4 

million in 2040 [2]. Radiotherapy is an important modality for treating cancer, with over 

half of all patients receiving it as part of their treatment [3], increasing to roughly 80% of 

patients with head and neck (H&N) cancer [4]. 

The intention of radiotherapy is to deliver high energy radiation to the cancerous cells in 

order to kill them by causing damage to their DNA. Generally, the higher the radiation dose 

delivered to the tumour, the higher the chance of killing all its cells. However, the radiation 

causes damage to the DNA of all cells it passes through and not just the cancerous cells. 

Damage to the surrounding normal tissue and organs at risk (OARs) can cause side effects 

for the patient, some of which can be quite severe. For example, possible side effects in 

H&N radiotherapy can include xerostomia (dry mouth) and dysphagia (difficulty 

swallowing), both of which can have a large impact on the quality of life for the patient [5]–

[7]. This means that one of the main challenges of radiotherapy is getting the balance 

between depositing a large enough dose to the tumour to kill all the cancer cells while 

simultaneously limiting the damage to the healthy tissue and keeping the risk of side effects 

as low as possible. Because of this, radiotherapy is normally delivered over multiple 

sessions, called fractions, over the course of several days or weeks as cancer cells are less 

able to repair their DNA than healthy tissue. This provides a better therapeutic ratio, i.e., 

killing more cancer cells than healthy cells for the same dose. 

The planning process typically begins with a computed tomography scan (CT) where the 

anatomy of the patient can be visualised. There, the tumour and other surrounding OARs 

are delineated. The visible tumour volume on the scan is extended to a clinical target 

volume (CTV) to account for surrounding microscopic tumour deposits not visible on the 

CT. The CTV is then considered the target for the high radiation dose. Depending on the 

site and stage of the tumour, a set of clinical goals are decided upon, including minimum 
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levels of dose to the target and maximum levels of dose to the different OARs and healthy 

tissue. These clinical goals are weighted to determine the priority of the different objectives 

and then input into a planning system which optimises the dose distribution to ensure it 

hits all the goals, or as many as possible if they cannot all be achieved simultaneously. This 

plan is then used to treat the patient. 

However, there are numerous uncertainties associated with the radiotherapy planning and 

treatment process, including geometrical uncertainties. Geometrical uncertainties arise 

from things such as differences in patient set-up positioning or movement/deformation of 

organs within the patient. For example, H&N patients often experience weight loss 

throughout the treatment [8], the parotids can shrink [9]–[18] and the neck and shoulders 

can change position and shape on a day-to-day basis [19]–[21]. These changes in the 

patient’s anatomy cause the actual dose delivered to the patient to be different from the 

planned dose [22], [23]. This can make the treatment less effective by underdosing the 

target and can also overdose OARs, increasing the risk of side-effects. Currently there are 

limited options to predict such errors and their impact for an individual patient prior to 

treatment. These uncertainties can be categorised as inter-fraction, meaning the changes 

happen between one fraction and the next, and intra-fraction where the changes happen 

within a given fraction. This thesis focuses on inter-fraction uncertainties. 

In order to limit the effect of geometrical changes, plans need to be created that are robust 

to the uncertainties present in the radiotherapy process. In practical terms, the uncertainty 

in question needs to first be measured, and then modelled such that the effect of the 

uncertainty on the delivered dose can be investigated. Ideally, treatment plans should take 

the uncertainty in question into account. Conventionally, uncertainties are accounted for 

by using margins, where the CTV is expanded to create a larger planning target volume 

(PTV) which is then treated with a high dose. However, other planning approaches have 

been developed where the planning system enforces robustness algorithmically rather 

than by using margins. In robust planning, the optimiser samples a number of scenarios 

with different errors and the worst-case out of the sampled scenarios is optimised. This 

method is commonly used in proton therapy [24]–[31] but has also been considered for 

photon therapy [32]–[35]. Another method, probabilistic planning, directly takes the 

probability of many sampled scenarios into account when optimising the plan. While 
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probabilistic planning is not yet used clinically, there have been a few studies investigating 

its effectiveness in different situations [36]–[41]. Many of these studies have shown that 

robust and probabilistic planning can improve OAR sparing when compared to margin-

based plans for the same or improved level of target coverage. However, since multiple 

scenarios are sampled at each iteration of the optimisation, robust and probabilistic 

planning are more computationally expensive and take longer to run than conventional 

margin-based planning. 

Most treatment planning systems have built-in methods for robust planning and some also 

have a research interface allowing for the implementation of new methods that have been 

used to provide prototypes of probabilistic planning [42].  

1.1 Uncertainties 

Some uncertainties arise from physical limitations such as the accuracy of the dose 

calculation algorithms or the quality of the scan used for planning. The quality of the scan 

will affect the ability of the clinicians to correctly delineate the target and OARs, called 

delineation uncertainties. Scan quality can also affect the estimate of tissue density which 

affects how much dose is absorbed and so adds uncertainty to the delivered dose. This 

latter effect is considered to be small in photons [43] but is a larger concern in proton 

therapy [39], [44], [45]. 

However, a large cause of uncertainty is through differences in the positioning of patient 

anatomy between planning and actually delivering the treatment. Planning is generally 

done on a single scan, the planning CT (pCT), days or sometimes weeks before the actual 

treatment starts. This pCT is just a ‘snapshot’ of the patient’s anatomy at a specific moment 

in time and will not represent exactly what the patient’s anatomy will look like ‘on average’ 

during treatment. 

These uncertainties can be split into systematic uncertainties and random uncertainties 

(Figure 1.1). Random uncertainties are day-to-day variations and are different for each 

treatment fraction. For standard fractionations, they can be considered to cause an overall 

blurring of the dose distribution as seen by the CTV. Systematic errors are the same 

throughout the whole treatment course and typically arise from a difference in the pCT 

with the average position throughout treatment delivery. They generally manifest as an 
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overall shift or deformation of the delivered dose compared to the planned dose. The effect 

of systematic uncertainties tends to be larger than that of random uncertainties. 

 

Figure 1.1: An example of a) random uncertainties only and b) systematic and random uncertainties. The yellow circle 
shows the organ position at planning and the purple circles show the organ position during the different treatment 

fractions. 

Ideally, uncertainties should be reduced as much as possible. Immobilisation devices such 

as masks can help limit movement and reduce differences in patient set-up position. 

However, these masks do not affect motion or deformation of organs within the patient 

and can become ‘loose’ if the patient loses weight. 

Currently, image guided radiotherapy is used for most patients. This is where the patient is 

imaged before treatment and adjustments to the couch positioning are used to line up the 

target as much as possible with the position on the pCT. This approach cannot account for 

any deformations of the body and its organs. 

If during treatment it is seen that the patient anatomy has changed too much from the 

planning anatomy, it is possible to re-plan the patient based on a new scan taken part way 

through the treatment. However, this only partly reduces the systematic errors, and there 

will still be day-to-day variations that are not accounted for.  

Online planning could be used where a patient is imaged before treatment and a full plan 

is then created and delivered while the patient is still on the treatment bed. This assumes 

that the patient remains still while they are waiting for the plan to be created, and can only 

be used to account for inter-fraction motion. This is very time consuming for both patient 
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and clinicians so is less practical for regular use in clinic. However, it is being pioneered on 

MR-Linacs [46], [47]. 

The next sections will describe the two main sources of geometrical uncertainty in more 

detail. 

1.1.1 Set-up uncertainties and organ motion 

Uncertainties due to patient set-up position and inter-fraction organ motion are often 

treated in the same way. Set-up uncertainties occur when the patient is positioned 

differently on the couch and organ motion occurs when the organ has been displaced 

within the body, relative to the bony anatomy. Both manifest as a difference in target or 

OAR position with respect to their planned position. These uncertainties are generally 

treated as rigid body translations, although some studies have also considered rotations. 

The effect of random rotations can be approximated as a local translation around the 

centre of mass [36].  

Models for set-up uncertainties and organ motion generally assume dose-shift invariance, 

which means that it is assumed the dose distribution will remain unchanged within the 

patient in the face of positional errors. This assumption is not valid in proton therapy as the 

dose distribution strongly depends on the density of the tissue the beam travels through, 

meaning a small set-up displacement could alter the dose distribution considerably. As 

such, for proton treatments, the dose distribution should be recalculated every time a set-

up error is simulated. However, for photon radiotherapy, the dose-shift invariance 

assumption has shown to be fairly accurate in most cases [43]. This assumption mainly 

breaks down when there are large changes in tissue density, or at air-tissue interfaces. If 

the organ is close to the surface of the patient, the dose distribution must be extended 

outside the patient as the dose is only calculated within the patient body and not in the air 

[41], [48].  

Set-up uncertainties and organ motion can be modelled for the patient as a whole, or for 

each organ individually. They are the simplest uncertainties to model as they are assumed 

to follow a Gaussian distribution. The standard deviation of the Gaussian distribution can 

be different in each of the cardinal directions, creating an ellipsoidal error kernel. Random 

and systematic uncertainties have to be considered separately and may have different 
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standard deviations, σ and Σ respectively, although they are often similar [49]. The effect 

of random set-up uncertainties and inter-fraction organ motion can be approximated by 

convolving the dose distribution with the random error kernel [50]–[52]. In most cases, this 

is a good approximation, however it relies on the assumption of a large number of fractions, 

and so is less accurate for treatments with a small number of fractions [53]. Systematic 

uncertainties are modelled by translating the blurred dose distribution with shifts sampled 

from the systematic error kernel. 

The size of these uncertainties will vary from site to site. Van Kranen et al. [54] measured 

an overall Σ of 1.1-1.2 mm in the different cardinal directions and σ to be 1.4-1.5 mm in 

their cohort of H&N cancer patients. However, when considering different OARs 

separately, they found quite different error distributions for the different OARs, which is 

evidence of deformations.  

1.1.2 Anatomical deformations 

In addition to rigid translations, organs can also change their shape, i.e., deform. In H&N, 

this includes both progressive changes throughout the treatment course and day-to-day 

variations. Weight loss and parotid shrinking are some of the most common examples of 

progressive changes, with an average parotid volume decrease of 26 ± 11% [55] seen 

throughout treatment. Day-to-day variations include changes to the flexion of the neck and 

spine, with an average angular change in the yaw (rotation around the anterior-posterior 

axis) of 0.97 ± 5.57° at the C2 vertebra [19]. 

Note that even though planning systems can deal with translational errors, e.g., by using 

robust planning, there are currently no planning systems explicitly dealing with anatomical 

deformations.  

1.1.2.1 Deformable image registration  

In order to create a model for the deformations present, the actual deformations seen in 

the patient or population must first be extracted. This is generally done by using 

deformable image registration (DIR) to map each point on a repeat scan to the 

corresponding point on the reference scan. Generally, the reference scan, R,  is the scan 

used for planning, the pCT, and the repeat scan is one of the scans taken at the time of 

treatment, known as the floating image, F. The DIR outputs the transformation, T, that best 
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transforms F into R. This transformation describes a vector for each voxel showing how it 

deforms from one scan to the other. This set of vectors is known as a displacement vector 

field (DVF). 

There are three main components to DIR [56]: the transformation model, the objective 

function and the optimisation. The transformation model describes how the floating image 

can be changed to match it to the reference image. It defines the degrees of freedom and 

the parameters which can be altered to optimise the similarity between the transformed 

floating image, F’, and the reference image. Throughout this thesis, the transformation 

model that has been used for DIR is a type of free-form deformation (meaning each voxel 

can move independently), specifically a B-spline model [57]. This method fits B-spline (a 

type of polynomial function used for curve fitting) curves at each point in a grid of control 

points, and optimises the coefficients of each B-spline to ensure the best possible matching 

between the images [58].  

The objective function is optimised to ensure the best match between the transformed 

floating image and the reference image. It consists of two parts – the similarity metric which 

gives a measure of how well the two images match, and the penalty terms which can be 

used to ensure smoother or perhaps more realistic deformations. These two parts are 

combined to make a single objective function as shown in the following equation: 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  (1 − 𝛼) × 𝑆𝑀 − 𝛼 × 𝑃𝑇, (1.1) 

where SM is the similarity metric, PT is the penalty term and 0 ≤ α ≤ 1 is the penalty term 

parameter. 

Several similarity measures have been proposed [59]. The similarity measure used in this 

thesis is the local normalised cross correlation (LNCC), which aims to maximise the product 

of the intensities in the two images, over a local region. This product is normalised to 

account for the fact that the intensities in the two images may not be the same, and just 

assumes a linear relationship between the intensities in the two images [59]. To calculate 

the LNCC, for each voxel, the normalised cross correlation (NCC) is calculated within a small 

Gaussian window surrounding the voxel. The NCC value within the window is then summed 

over each voxel in the reference scan [60]. The NCC is calculated using the following 

equation: 
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 𝑁𝐶𝐶 =
∑ (𝑅(𝒙)−�̅�)⋅(𝐹′(𝒙)−𝐹′̅̅ ̅)𝒙

𝑈√∑ (𝑅(𝒙)−�̅�)2 ∑ (𝐹′(𝒙)−𝐹′̅̅ ̅)2
𝒙𝒙

, 
(1.2) 

where U is the number of voxels in the reference scan.  

The bending energy, which is the sum of the second derivatives of the transform [61], is 

used in all DIR in this thesis as a penalty term. Having a low α allows the optimiser more 

freedom to match the intensities of the images, however if this parameter is too low it can 

cause un realistic deformations (see Figure 1.2). 

 

Figure 1.2: An example of DIR with different penalty term parameters for the bending energy 

1.1.2.2 Principal component analysis 

There have been various studies looking into modelling anatomical deformations. For 

example, Mageras et al. [62] mapped rectum contours from a population database onto a 

new patient’s pCT.  Hoogeman et al. [63] varied the shape of the rectum slice-by-slice using 

probability distributions from a population of similar patients, considering only the area, 

and difference in area and position compared to neighbouring slices. However, the most 

common way of modelling anatomical deformations is by using a statistical method called 

principal component analysis (PCA) [64]–[72], which isolates the main modes of 

deformation present in the input data [73].  

PCA is a statistical method that makes use of the correlation between the different 

dimensions to reduce high dimensional data to a set of principal modes of variation, called 

components. The output of PCA contains the mean of the input data points and a set of 

orthogonal principal components, consisting of eigenvectors and the corresponding 

eigenvalue. Each eigenvector is made up of a linear combination of each of the original 

dimensions and each data point can then be described by the set of principal components, 

instead of the original dimensions [73]. This is the mathematical equivalent of transforming 
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the coordinate system to a new basis. The eigenvalue gives the variance of the data along 

that eigenvector, and so gives an indication of the size of the variations in that direction. 

The principal components are ordered by variance, from largest to smallest, so the first 

component is the one with the most variance. This statistical method operates under the 

assumption that the data in each dimension is normally distributed about a mean point and 

that any point in the dataset can be created by summing linear combinations of the 

different components. A simple example of PCA in 2-dimensions is shown in Figure 1.3.  

 
Figure 1.3: A simple 2-dimensional example of PCA. The ‘x’s represent the data points and the arrows show the 

principal components. The direction of the arrow shows the eigenvector, and the length of the arrow is scaled by the 
eigenvalue, or variance, of that component. Note that PC1 describes the axis of largest variation on the dataset, and the 
two components are orthogonal. After PCA, each data point can be described in terms of (PC1, PC2) instead of (x1, x2). 

PCA is useful for modelling anatomical deformations from DVFs. Each DVF contains the 

displacement in each of the 3 spatial dimensions for each point within the patient and 

indirectly describes their correlations. This means each DVF has 3U dimensions, where 3 

corresponds to the spatial directions and the U is the number of voxels. PCA then reduces 

this large amount of information to give the main modes of deformation present within the 

set of input DVFs. This is commonly done in one of two ways: looking at each voxel within 

a scan or each point on the surface of a specific organ or set of organs. As is typically the 

case when modelling anatomical deformations, if the number of dimensions, N, is much 



22 
 

larger than the number of input scans, n, n-1 components are produced from the model 

[65]. 

PCA models can be used to investigate the main modes of deformation present in the set 

of input scans. One can just look at the eigenvectors of the first few components to 

investigate how each voxel in the model is displaced, and the eigenvalue will give an 

estimate of the size of the variation in that direction. Alternatively, simulated DVFs can be 

produced from a PCA model by taking a linear combination of the components, each 

multiplied by a scaling factor sampled from a Gaussian distribution, using the following 

equation:  

 𝒗𝑠𝑖𝑚 =  𝒗 +  ∑ 𝑢𝑙𝒆𝑙

𝑙

 (1.3) 

where 𝒗𝑠𝑖𝑚 is a simulated DVF, 𝒗 is the mean from the model and 𝒆𝑙 is the eigenvector for 

component l. 𝑢𝑙  is a scaling factor, randomly sampled from a Gaussian distribution with a 

variance equal to the eigenvalue of component l. These simulated DVFs can then be used 

to run treatment simulations or create coverage probability maps. 

PCA is commonly run using multiple input DVFs produced from repeat scans of the same 

patient. However, this can only be done once the patient has a large number of repeat 

scans, which is not the case at the beginning of treatment where modelling anatomical 

deformations is likely to be most useful. One way to get around this and be able to use 

these models a priori is by running PCA on DVFs from multiple patients to get a population-

based model of deformation. Budiarto et al. [69], Vile [70] and Tsiamas et al. [71] all created 

population-based PCA models where the deformations within each patient were mapped 

to a ‘standard’ or average organ shape in order to get a common reference point for all the 

patients. DVFs in this average geometry from multiple patients were then used as inputs 

for the PCA models. Vile [70] used a population-based model in order to explicitly split out 

the systematic and random components to the anatomical deformations, which would not 

be possible for a single patient model. 

Most PCA-based studies assume that anatomical deformations remain the same 

throughout treatment and do not account for time trends that may affect organ shape. Li 

et al. [74] incorporated a time-varying element into their lung based PCA models, but this 
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was just based on the periodic lung motion and not on any longer term changes that may 

occur as the treatment progresses. Currently, there are no studies that have explicitly 

incorporated time trends into their PCA models for anatomical deformations, something 

that is particularly important in H&N.  

1.2 Margin-based planning 

Once the uncertainties have been identified and modelled, they should ideally be 

accounted for in the planning process. Conventionally, this is done by expanding the CTV 

to a PTV following a set margin recipe, with the aim of delivering the high dose 

homogenously to the PTV. Margin recipes are designed to account for all the uncertainties 

in the radiotherapy process and ensure that there is a certain probability of achieving 

correct target coverage across all possible scenarios. They are calculated based on the 

standard deviations of the systematic and random uncertainties, Σ and σ respectively. Σ and 

σ can contain components from various sources of uncertainty, e.g., set-up uncertainties 

and organ motion, added in quadrature. 

Stroom et al. [75] used the criteria that at least 99% of the CTV received at least 95% of the 

prescribed dose, and estimated that the required margin, m, would be 

 𝑚 =  2Σ + 0.7𝜎. (1.4) 

Alternatively, van Herk et al. [76] used the aim of ensuring that at least 90% of patients 

received a minimum dose to the CTV of at least 95% of the prescribed dose. They calculated 

that the required margin would be 

 𝑚 =  2.5Σ + 0.7𝜎, (1.5) 

assuming a standard beam width of 3.2 mm. These recipes are very similar, with the 

difference being what was defined as an acceptable level of coverage in each case. Both 

margin recipes are based on a number of assumptions, such as: a large number of fractions, 

dose-shift invariance, homogeneous tissue density and perfect conformity, i.e., the 95% 

isodose contour perfectly follows the PTV. 

While margins are mainly used for the CTV to PTV expansion, similar margin recipes have 

been derived for OARs to produce a planning organ at risk volume (PRV) [77]. 
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1.2.1 Limitations to margin-based planning 

There are several limitations to the margin concept. In some cases, OARs may be very close 

to, or inside, the PTV margin. Generally, the optimisation process is designed to prioritise 

PTV coverage, so this leads to a high dose being delivered to the nearby OAR. While it would 

be possible to increase the priority of limiting the dose to that OAR, this can cause an 

underdose to the edge of the PTV. Using this margin concept, it is challenging to find the 

optimal balance between overdosing the OAR and underdosing the PTV. It may be that the 

CTV is unlikely to be found in the volume of the overlap of the PTV and OAR, and so 

underdosing that edge of the PTV could be preferable to overdosing the OAR in that 

instance. This information is lost, however, when using PTV margins. 

In some situations, the CTV is close to the skin and extending it with a margin could cause 

the PTV to extend outside of the patient’s body. This is clearly not physical and causes 

problems for the plan optimiser as most systems cannot compute dose delivered to the air.  

The size of the PTV necessary can also depend on how steep the dose gradient is around 

the CTV. If the dose gradient is very steep, the delivered dose to the CTV will be much more 

sensitive to variations due to uncertainties than a shallower dose gradient. This means that 

in cases where there is a shallow dose gradient surrounding the CTV, the necessary PTV 

margins to ensure adequate CTV coverage will be smaller. This is generally not taken into 

account in the generation of the PTV margins. 

PTV margins are derived assuming dose-shift invariance and a large number of fractions, 

which is not always the case, as explained in Section 1.1.1. This means that in some 

circumstances, where these assumptions do not hold true, these margin recipes may not 

be accurate. 

Margin recipes were derived on spherical, homogeneous PTVs, much larger than the set-

up uncertainties, meaning they have low curvature. However, this is not true of all CTVs in 

actual patients. Witte et al. [78] showed that the density and size of the CTV would actually 

affect the size of margin required to account for the random uncertainties. Zheng et al. [79] 

also considered cylindrical CTVs and CTVs with concave regions of varying sizes, and 

concluded that along with different sizes, different shape CTVs would also need different 

margins to account for the random component of the uncertainties.  
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Margin recipes were also derived for ideal dose distributions, assuming that the 95% 

isodose contour would perfectly follow the PTV, without considering whether this was 

realistic or deliverable. In actuality, this assumption is not met, and the dose distribution is 

not conformal, and there is effectively an additional margin beyond the PTV [80]. This 

means that margin-based plans are actually often more robust to uncertainties than 

expected [49], [81] and are more conservative than intended. While this can be seen as a 

good thing in terms of target coverage, it does mean that there may be a higher than 

necessary dose to the OARs, increasing the risk of possible side effects. 

Some radiotherapy schedules include features such as boosts, which means a higher dose 

is prescribed to a subset of the tumour volume [82], which create non-homogenous 

prescriptions. Non-homogenous dose distributions go against the assumptions made in the 

original margin recipe derivation and so margin recipes would need to be adjusted in these 

cases [36]. 

1.3 Robust planning 

Robust planning, sometimes called worst-case optimisation, samples a set of discrete error 

scenarios and optimises based on the worst-case of these scenarios. The most common 

implementation of robust planning, known as composite worst-case optimisation, just 

looks at the total cost for each error scenario, and optimises on the worst-case for the 

scenario as a whole. An alternative approach is to determine the worst-case scenario on a 

voxel-by-voxel basis, called voxel-wise worst-case optimisation. For this implementation, 

the worst-case dose distribution is calculated by taking the minimum dose value across the 

sampled scenarios for voxels inside the target and the maximum for any voxel outside the 

target. It is then this worst-case dose distribution that is optimised. Consequently, the plan 

may be overly conservative and is a lower bound for the absolute worst-case situation as 

the worst-case for voxel i may occur for a different scenario than the worst-case for voxel j 

[83]. An objective-wise worst-case optimisation approach has also been used, where the 

worst-case scenario for each individual objective is considered and optimised [24]. 

Fredriksson and Bokrantz [84] compared composite-wise, objective-wise and voxel-wise 

worst-case methods in one prostate case. They found that the voxel-wise worst-case 

method is much more conservative than the other two as it takes into account situations 
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that are not going to happen and so compromises on unfeasible situations. This can result 

in higher target doses but also higher OAR doses than are strictly necessary. In this thesis, 

the composite worst-case implementation is used for robust planning. 

For set-up uncertainties in photon radiotherapy, there are generally seven scenarios 

sampled in robust planning: the nominal scenario (assuming zero error) and the maximum 

error in each of the cardinal directions. This assumes that any smaller set-up errors in a 

given direction will have smaller dosimetric errors [85] and will not contribute to the worst-

case scenario. However, as the expected range of the uncertainty increases, it may be 

necessary to include more scenarios [45]. In RayStation for example, as the robustness 

setting increases above 5 mm, more scenarios are sampled, including some which combine 

the three spatial directions (i.e., along the diagonals). While this may lead to a more 

accurate worst-case situation, it increases the computational time, so a balance has to be 

struck. 

1.4 Probabilistic methods 

As well as just taking different error scenarios into account during the optimisation process, 

probabilistic planning considers the probability distribution of the error scenarios. This 

means that error scenarios that are more likely to occur are given more consideration, 

while situations that only occasionally happen have a much lower impact on the overall 

solution. There are multiple ways of doing this, including coverage probability optimisation 

(CP) [86], conditional value at risk optimization (CVaR) [87] and stochastic optimisation 

[36]. In CP, coverage probability maps for the target and OARs are created and, for each 

voxel, the different objective functions are weighted by the probability of the 

corresponding target or OAR occurring in that voxel. This approach is particularly useful for 

areas where an OAR overlaps the PTV. CVaR is a method initially used in investment 

managing [88], and optimises the expected value of a specified percentage, e.g., 10%, of 

the worst-case scenarios. It is essentially a mix between worst-case optimisation and 

stochastic optimisation. Stochastic optimisation looks at optimising the expectation value 

of the objective function by combining the value of the cost function for each scenario with 

the probability of that scenario occurring. At each iteration of the optimisation, the dose 

distribution is first blurred by convolving it with the random error kernel. Then, the 
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different systematic errors are sampled by shifting the dose distribution and assuming 

dose-shift invariance. Some implementations also make use of a confidence level, and only 

optimise based on scenarios up to a certain level of probability. In these implementations, 

the objective function for each of S error scenarios is calculated and then sorted into 

ascending order of cost. The weighted sum only sums the first s of the sampled scenarios, 

until the cumulative probability of those scenarios is greater than or equal to the specified 

confidence level [36]. 

Probabilistic methods heavily depend on the model and parameters of the uncertainties 

used in the optimisation process. If the uncertainties are underestimated in the planning 

process, or the model used is not very realistic, this can have implications on the 

effectiveness of the probabilistic approach. It can also become challenging to incorporate 

all possible geometrical variations into one probabilistic model [36].  

This thesis focuses on the stochastic optimisation approach, henceforth simply referred to 

as ‘probabilistic planning’.  

1.5 Evaluating with uncertainties 

Once a plan has been created, it should be assessed to see how well it performs and how 

robust it is to the considered uncertainties. Generally, in clinical settings, radiotherapy 

plans are just assessed by looking at the planned dose distribution and specific dose metrics 

for the targets and OARs. However, this just gives an idea of how good the plan is in the 

nominal scenario and does not explicitly take uncertainties into account. Just because a 

plan looks good in the nominal scenario, does not mean it will remain a good plan under 

uncertainties. Generally PTV coverage is still used to report plan quality and comparisons 

[89] as this is assumed to account for the uncertainties present. However, the PTV is not an 

exact representation of the dose delivered to the CTV under uncertainties. Both robust and 

probabilistic planning do not use the PTV and optimise directly on the CTV, and so PTV 

coverage is often lower than on margin-based plans which were optimised on the PTV. This 

does not necessarily mean the plan is worse, just that the uncertainties have been included 

differently and PTV coverage is not always a good measure for CTV coverage under 

uncertainties. Ideally, target coverage should be assessed on the CTV and uncertainties 

should be explicitly considered in the plan evaluation, to see how robust the plan is. 
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The most common way to evaluate and compare how well different plans account for 

uncertainties is by simulating a set of treatments. These generally simulate each individual 

fraction of a treatment course and accumulate the dose to each voxel across all fractions. 

For the simulations, only one systematic error is sampled throughout the whole treatment, 

and different random errors are sampled for each fraction. This is then repeated multiple 

times to simulate, for example, 1000 treatments. For each treatment, specific dose metrics 

can be calculated and the distribution of these across the different simulated treatments 

can be used to evaluate the plan.  

There are two main things to consider when evaluating the plan under uncertainties: the 

‘specified’ value and the variation on that value. The mean or a specific percentile (e.g., 

90th percentile) is commonly used as the ‘specified’ value, to give an idea of how much dose 

would be delivered in a general treatment. The range or standard deviation of the dose 

values for the simulated treatments can also be used to give an idea of how much the 

delivered dose could change from this ‘specified’ value. However, running 1000 treatment 

simulations is computationally expensive and can take a long time. 

There is no standard way of defining whether a plan is robust or not. Albertini et al. [90] 

define a plan to be robust if “even in the case of uncertainties (e.g. range and spatial 

uncertainties), the agreement between the calculated and the delivered dose is good in the 

planned clinical volume”. This statement is rather vague, and so different groups have 

devised different ways of categorising the robustness, or lack of, for a plan. For their 

robustness evaluator tool, Loebner et al. [91] defined the Robustness Index of a plan to be 

the fraction (either weighted or un-weighted, depending on the situation) of the sampled 

scenarios that achieve a specific dose criteria. Similarly, other groups have specified a 

particular percentage of simulated treatments that must achieve a given dose objective for 

a plan to be considered robust. For example, Van der Voort et al. [92] considered a plan 

robust if 98% of the CTV received at least 95% of the prescribed dose in at least 98% of the 

simulated treatments.  

In this thesis, plan robustness is quantified by considering the 90th percentile of the 

distribution of the minimum (or near minimum) dose to the target for a set of simulated 

treatments. A plan is considered ‘robust’ if 90% of the simulated treatments reach at least 
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95% of the prescribed target dose. If the 90th percentile is much higher than this dose 

threshold of 95% of the prescribed dose, a plan is considered over-robust. 

Currently, no commercial treatment planning systems include simple methods for directly 

comparing and evaluating plan robustness under uncertainties [93]. 

1.6 Critical evaluation of literature 

A major part of the work presented in this thesis is creating anatomical deformation models 

for H&N cancer patients using PCA. PCA anatomical deformation models has previously 

been used in H&N cancer patients by Tsiamas et al. [71] and Chetvertkov et al. [72]. 

Tsiamas et al. [71] used data from 18 H&N cancer patients to create a set of different PCA 

models. They created both individual patient and population-based models, and compared 

models made focussing on just single organs to a models made using all organs. For each 

model, they used only the first ten components and looked at the percentage predicted 

spatial displacement, calculated for each component from the RMS of the eigenvector. 

For each patient, individual models were created for each organ, and one model using all 

organs. For the population-based model, only the first 30 fractions were used as different 

patients were treated with a different number of fractions. If there was no repeat scan 

available for a given fraction, the previous scan was used. For each organ, the DVFs from 

each of the first 30 fractions for each patient was input. Similar to the individual patient 

models, one model was created for each individual organ, and then a multi-organ model 

was also created. 

They found that between 3 and 4 principal components were needed for each of the 

individual patient models to reach a cumulative 95% predicted spatial displacement, 

however in the population-based model, 4 components only reached between 80-89% 

predicted spatial displacement. For the individual patient models, on average the parotids 

had the largest predicted spatial displacement in the first 4 components out of all the 

different organ models, but for the population-based model it was the pharyngeal 

constrictor muscles. 

The work in this study compares the percentage predicted spatial displacement for a 

number of different models, looking at the difference between individual patient models 
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and population-based models and also between models focussing on specific organs with 

those considering all organs at once. In this thesis, we followed a similar approach for 

modelling anatomical deformations in H&N. However, no models were created that focus 

on just one specific organ as the aim of the models was to simulate anatomical deformation 

across the whole head and neck region and see what effect this has on the delivered dose.  

Tsiamas et al. make no mention of a ‘reference’ or ‘average’ patient geometry for their 

population-based models and there is no mention of mapping the individual patient DVFs 

into a common reference frame. One can assume that this means that the DVFs remained 

in the individual patient reference frame when used as the inputs for the population-based 

model. In this thesis, we propose to use a common reference frame, as it is needed for 

population-based models to accommodate differences in patient geometries. 

Chetvertkov et al. [72] used data from 10 H&N cancer patients to create models of 

anatomical deformation using standard PCA and regularised PCA which includes a 

smoothness term and a sparseness term. For the regularised PCA, the smoothness and 

sparseness parameters were chosen empirically through experimentation, under the 

assumption that DVFs describing anatomical deformation should be intrinsically smooth. 

Models were created from DVFs from both synthetic CTs and the clinical CBCTs. For both 

the synthetic and the clinical DVFs, models were created using just the first 5 DVFs, roughly 

half the DVFs, and all but the last DVF. 

For the clinical CBCTs, the DVFs for each fraction were extracted using deformable image 

registration. Additionally, a differential DVF was also computed, which was the difference 

between the DVF for that fraction with the DVF from the previous fraction. 

The synthetic CTs were created by considering just a single mode of progressive change as 

seen in the real patient scans, e.g., parotid shrinking. This synthetic CT was considered the 

final fraction treatment and the progressive changes for the other fractions were calculated 

by scaling this final fraction DVF. This was either done linearly, or by modelling early or late 

response by using a quadratic scaling. These scaled DVFs described the progressive changes 

for each fraction, and day-to-day changes were added to each fraction by summing linear 

combinations of the differential DVFs from all clinical CBCTs from previous fractions. The 
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day-to-day portion of the synthetic DVF was scaled to model small, medium and large 

random variations. 

For each model, the weighting factor of the first couple of components was calculated by 

taking the inner product of the eigenvector with the input DVF with the PCA mean 

subtracted. This was done for each input DVF to the model, and a linear regression was 

done between these weights, and the line of best fit was extrapolated beyond the fractions 

input into the model. This regression line was then compared to the regression line 

calculated when the weighting factor for all available DVFs for that patient in that 

treatment course (either clinical or synthetic), to see how well the model can predict the 

weighting factor of later treatments. 

They found that the regularised PCA performed better than standard PCA as standard PCA 

seemed to produce more noise in each component. As such, regularised PCA was better at 

extracting the progressive changes in just the first couple of components. In both the 

synthetic models and the clinical models, regularised PCA was seen to get a good linear 

prediction of the progressive changes when half/almost all DVFs were used for model 

creation, but struggled when just using the first 5 fractions as the input. 

Chetverkov et al. found that using regularised PCA produced DVFs that were better able to 

capture the progressive changes in the synthetic DVFs in the first few components of the 

model. Standard PCA was used throughout this thesis as regularised PCA is more complex 

as it also includes a smoothness and sparseness term. Each of these terms needs a 

parameter and the choice of parameter value will affect the output of the PCA. The 

challenge then comes in determining what the optimum parameter values should be and 

indeed whether there is an overall ‘best’ set of parameters. Rather than trying to optimise 

these parameters and enforce a certain level of smoothness on the DVFs, I chose to use 

standard PCA for the models in this thesis.  

This study looks at whether PCA models can be used to predict the progressive changes in 

a patient later on in the treatment. However, their method requires some kind of fitting for 

the weighting factors. They demonstrate a linear fitting method in their results, but suggest 

that a quadratic fit to describe either early or late response could also be used. This means 

that the prediction of the long-term progressive changes will heavily depend on the model 
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chosen. To counter this need for fitting to predict progressive changes, the anatomical 

deformation models in this thesis actually include separate weekly models to capture the 

long-term time trends, so fitting from just the early fractions is not required. However, this 

method only works as the models presented in this thesis are population-based and so data 

throughout the whole treatment course for a new patient being predicted is not required. 

In their work, Chetvertkov et al. only look at individual patient models where this would 

not be feasible.  

To the best of the author’s knowledge, there have not been any studies in H&N that use 

anatomical deformation models created from PCA to run treatment simulations or account 

for the uncertainties directly in the planning process. However, this has been done in other 

sites.  

Vile [70] used data from 19 prostate cancer patients to create a set of PCA models and then 

used them to run a virtual clinical trial, comparing conventional margin-based plans with 

plans created using the PCA models. In their Ph.D. thesis, they created both individual 

patient and a population-based PCA model and explicitly split out the systematic and 

random components of the anatomical deformation by creating a separate model for each. 

For each patient, a systematic DVF was created by taking a mean of all the DVFs produced 

from the repeat scans of that patient. Random error DVFs were calculated by taking the 

residual DVF for each scan – the DVF from the deformable image registrations with the 

patient mean DVF subtracted.  

For the individual patient models, only a model of the random DVFs was produced as there 

was just one systematic DVF per patient so this would be constant. For the population-

based models, all DVFs were mapped into an average patient anatomy and then a 

systematic PCA model was created using the systematic DVF from each patient and a 

separate random model was created using the random DVFs from all patients. For their 

models, they only kept the first L components that made up 95% of the total variance of 

the model. 

To evaluate their models, they looked at the difference between the input DVFs and the 

reconstruction of those DVFs (calculated using the inner product of the components with 

the input DVF) using just the first L components from the model. They also ran a leave one 
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out analysis, where they recreated the population-based model using only the DVFs from 

18 patients and calculated the residual error between the DVFs from the remaining patient 

and the reconstruction of those DVFs from the model. This was repeated, leaving each 

patient out in turn. 

They then used their models to run a virtual clinical trial, comparing plans made using 

conventional margins to plans created using patient-specific margins derived using the 

population-based model. The patient-specific margins were derived by sampling 1000 DVFs 

from the models, with each DVF being a sum of a DVF from the systematic model and one 

from the random model. These were then mapped back into the patient geometry and  

used to create coverage probability maps for the organs. The patient-specific margins were 

then derived by using the 95% iso-probability contour of the CTV. Plans were created using 

these patient-specific margins and compared to plans created using the clinical 

margins/margins derived using the van Herk margin formula. In order to compare the plans, 

the individual patient models were used to sample a random DVF for each fraction of 

treatment which was summed to the systematic DVF of that patient. For each plan, the 

dose was accumulated across each of these fractions sampled form the individual patient 

model, and specific end points were compared. 

They found that the margins derived from the coverage probability aps were smaller than 

the clinical margins/those from the van Herk margin formula, but the plans still gave 

adequate target coverage while reducing OAR dose in over 75% of the patients. 

In this work, Vile explicitly split out the random and systematic components of the 

anatomical deformation, and this was also done for the models in this thesis. However, in 

this thesis, the random component of the deformations were further split into different 

treatment weeks to account for any long-term time trends. This is important in H&N as 

there are known to be progressive changes throughout treatment. However, there are no 

specific long-term trends in prostate patients and so this further splitting would likely have 

little effect on the work done by Vile. 

Vile used the inner product between the eigenvectors of the components and the 

systematic/random DVFs to evaluate their model. They performed this evaluation on DVFs 

used to create the model, to see what the residual error when only using the first L 
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components of their model would be. They also used a leave one out analysis to evaluate 

the models against DVFs from a patient not included in the model. In this thesis, this 

evaluation method was extended to not only evaluate against input DVFs, but also other 

DVFs from the same patient that had not previously seen by the model. This extension 

allowed us to evaluate how well the model can represent unseen changes that also occur 

in the patient.  

When running their virtual clinical trial, Vile mapped the simulated DVFs form the 

population-based model back into the patient geometry to create the coverage probability 

maps. In this thesis, this extra step was not done for sake of simplicity and to avoid any 

possible additional uncertainties that may arise from mapping the DVFs back into the 

patient geometry. As such, all simulated treatment courses, analysis and evaluations for 

the population-based model in this thesis were performed in the average patient space, 

rather than the individual patient geometry.  

When sampling from the PCA models to simulated DVFs used to create the coverage 

probability maps, Vile sampled one DVF from the systematic model and one from the 

random model and summed them together. However, for each simulated DVF, a different 

systematic DVF was sampled. This effectively assumes that each treatment was a single 

fraction. In this thesis, full treatment courses were sampled where the systematic DVF 

remained constant for all fractions in the treatment and just the random component of the 

DVF changed. 

Another major part of the work presented in this thesis is to create H&N plans that directly 

account for the uncertainties present by using robust or probabilistic planning. Wagenaar 

et al. [34] and Fontanarosa et al. [41] used robust and probabilistic planning respectively 

to account for set-up uncertainties in their cohorts of H&N patients. 

Wagenaar et al. [34] compared margin-based plans with robustly-optimised plans for 10 

H&N cancer patients, accounting for set-up uncertainties. They used a 5 mm PTV margin 

and a robustness setting of 5 mm, sampling 7 scenarios at each iteration. Once optimised, 

both the margin and the robust plans for each patient were renormalised to ensure that 

the D99 of the CTV reached 95% of the prescribed dose. For each plan, the dose was 

recalculated on the CBCTs available for that patient and then the CBCT dose was mapped 
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onto the pCT and accumulated. This dose accumulation was also done using the weekly 

verification CTs rather than CBCTs to see if there was any difference in recalculating the 

dose on the two types of scan. 

If required, plan adaptation was performed after week 3, reoptimizing both robust and 

margin plans on the verification CT from that week. The dose accumulation for the adapted 

plans was then done assuming the original plan for the first 15 fractions, and the adapted 

plan for all remaining fractions. 

They found there was little difference between the dose accumulation done using the CTs 

and the CBCTs, suggesting that recalculating on the CBCTs is good enough if no CTs are 

available. The robust plans were seen to have a higher target dose and lower OAR doses, 

especially in regions such as near the bones or the oesophagus where there were high 

density gradients. 

For their dose accumulation, Wagenaar et al. recalculated the dose at each fraction on the 

CT or CBCT before accumulating it. This was not done in this thesis for simplicity reasons as 

the static dose cloud approximation was assumed, meaning that changes in the patient 

anatomy were assumed to have minimal difference to the dose distribution. 

In this study, Wagenaar et al. renormalised all their plans to ensure a specific level of target 

coverage. This was not done for any plans created in this thesis. The plan optimiser aims to 

minimise the objective function for the plan. While renormalising the plan will ensure that 

the desired level of target coverage is reached, the renormalised plan will no longer be the 

optimum plan based on the set of specified objectives. Perhaps a better way to ensure a 

specific level of coverage while still having the optimum plan for the specified objectives 

would be to adjust the weight of each objective. However, this means that when comparing 

the robust and margin plans, either the weights of the objectives will be different, or they 

will not both reach the specified level of target coverage. 

Fontanarosa et al. [41] created probabilistic plans for 20 H&N cancer patients accounting 

for set-up uncertainties and compared them to the clinical margin-based plans, using 

stochastic probabilistic planning. The values of Σ and σ used in the probabilistic plans were 

taken from values found at their institution but rescaled to ensure the equivalent margin 

was as close to 5 mm as possible, which was the margin used in the clinical PTV plans. To 
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create the probabilistic plan, the clinical plan was copied and any ring structures on the PTV 

were discarded, and the minimum dose objective for the PTV was changed to the CTV. Just 

one target objective was kept to avoid possible correlation issues stemming from the fact 

that each objective function is evaluated separately by the planning algorithm and so 

different sampled scenarios may be included in different objectives. 

At each run of the optimisation, 10,000 35 fraction treatments were simulated using the Σ 

and σ values and the dose to each point was calculated for that treatment. The 90th 

percentile of the distribution of the specific CTV endpoints (D99, D98, D2 and mean dose) 

were calculated. If these endpoints matched that of the clinical plan, the optimisation was 

stopped. If not, the weights of the objectives were adjusted, and this was repeated until 

the CTV end points of the two plans were roughly the same. The planned dose distribution 

was first expanded outside of the body to account for any potential shifts of the target that 

would take it outside the skin, where the dose is not routinely calculated in planning 

systems. The dose-shift approximation was assumed and so the dose was not recalculated 

for each simulated geometry. 

They found that in general, the probabilistic plans saw increased OAR sparing when 

compared to the clinical plan for the same level of target coverage. However, the difference 

between the plans was larger for some patients rather than others, with the biggest 

differences occurring in case where an OAR overlapped the PTV but not the CTV.  

The probabilistic treatment planning algorithm used in this work by Fontanarosa et al. is 

the same one as used throughout this thesis. In this thesis, the dose-cloud approximation 

was also used, and the planned dose distribution was first extended outside the body of 

the patient to account for potential movement of the CTV outside the skin. However, only 

1,000 simulated treatment courses were run in this thesis as opposed to the 10,000 run by 

Fontanarosa et al., simply to save on time and computational power. 

Fontanarosa et al. adjusted the weights of the probabilistic plan to ensure the same level 

of target coverage, whereas this was not done in this thesis in order to compare the two 

plans directly without using different weights between the two. Also, Fontanarosa et al. 

used just one probabilistic objective to avoid possible correlation problems. However, the 
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probabilistic plans created in this thesis used multiple probabilistic target objectives, to 

keep them in line with the clinical plan. 

1.7 Aims and structure of thesis 

In summary, geometrical uncertainties play a large part in radiotherapy planning which, 

when not accounted for, can cause differences between the planned and delivered dose. 

This in turn can lead to a decreased efficacy of the treatment and increased risk of side-

effects for the patient. The size of both set-up uncertainties and organ motion have been 

studied in H&N cancer patients [9], [54] and conventional margin plans have been shown 

to be more conservative than expected to these errors [49]. The use of both robust 

planning and probabilistic planning have been studied as an alternative way to account for 

these uncertainties in H&N [34], [41]. Both methods have been shown to decrease OAR 

dose in H&N while maintaining or improving target coverage when compared to 

conventional margin plans. However, to the best of the author’s knowledge, the efficacy of 

robust vs probabilistic planning for H&N has not been directly compared. In addition, 

anatomical deformations have been seen to have an impact on the dose delivered to H&N 

patients [11]–[15], and models of these deformations have been created [71], [72]. 

However, the robustness of plans to these anatomical deformations has not been assessed. 

Additionally, uncertainties due to time trends in the anatomical deformations such as 

tumour shrinkage, weight loss or parotid shrinking have not as of yet been explicitly 

incorporated into plan optimisations [94].  

The general aim of this thesis was to understand geometrical uncertainties in H&N 

radiotherapy; how to model them, how to evaluate their impact and how to make plans 

that are robust against them. This thesis is presented in journal format and consists of a 

number of studies, presented as publications, that link together to achieve this overall aim. 

Each chapter addresses one or more of the following specific aims:  

1. Create and evaluate a time-dependent H&N anatomical deformation model 

including random and systematic components. 

2. Evaluate the impact of set-up uncertainties and anatomical deformations on the 

target and OAR doses. 
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3. Compare different planning approaches to deal with set-up uncertainties and 

anatomical deformations. 

4. Evaluate the impact of target shape on plan robustness. 

Chapter 2 presents a method for evaluating how well anatomical deformation models 

created using PCA can represent real unseen anatomical changes in a patient, working 

towards addressing aim 1. The use of this methodology is demonstrated for both patient-

specific and a population-based model for H&N cancer patients. 

Chapter 3 develops a time-varying anatomical deformation model for H&N cancer patients 

and uses it to investigate the effect of these deformations on the clinical plans. This effect 

is then compared to that of set-up uncertainties and a combination of the two 

uncertainties, addressing aims 1 and 2. 

Chapter 4 investigates whether anatomical deformations in H&N cancer patients can be 

accounted for by treating them as set-up uncertainties. This is done by creating margin, 

robust and probabilistic plans accounting for different sizes of set-up uncertainties and 

evaluating the effect of anatomical deformations on each plan. This addresses aims 2 and 

3 of this thesis.  

Chapter 5 evaluates the robustness of margin, robust and probabilistic plans to set-up 

uncertainties for different target shapes. This is used to evaluate the impact that target 

shape has on plan robustness, addressing aims 3 and 4.  

Finally, Chapter 6 presents a general discussion, showing how the previous chapters link 

together to address the overall aim, as well as identifying future work to continue 

improving radiotherapy planning for H&N cancer patients.  
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Chapter 2 

Evaluating principal component analysis models 
for representing anatomical changes in head 
and neck radiotherapy 
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Abstract 

Background: Anatomical changes during radiotherapy pose a challenge to robustness of 

plans. Principal component analysis (PCA) is commonly used to model such changes. We 

propose a toolbox to evaluate how closely a given PCA model can represent actual 

deformations seen in the patient and highlight regions where the model struggles to 

capture these changes. 

Methods: We propose to calculate a residual error map from the difference between an 

actual displacement vector field (DVF) and the closest DVF that the PCA model can produce. 

This was done by taking the inner product of the DVF with the PCA components from the 

model. As a global measure of error, the 90th percentile of the residual errors (𝑀𝑟𝑒𝑠
90) 

across the whole scan was used. As proof of principle, we demonstrated this approach on 

both patient-specific cases and a population-based PCA in head and neck (H&N) cancer 

patients. These models were created using deformation data from deformable 

registrations between the planning computed tomography and cone-beam computed 

tomography (CBCTs) and were evaluated against DVFs from registrations of CBCTs not used 

to create the model. 

Results: For our example cases, the oropharyngeal and the nasal cavity regions showed the 

largest local residual error, indicating the PCA models struggle to predict deformations seen 

in these regions.  𝑀𝑟𝑒𝑠
90 ranged from 0.4 mm to 6.3 mm across the different models. 

Conclusions: A method to quantitatively evaluate how well PCA models represent observed 

anatomical changes was proposed. We demonstrated our approach on H&N PCA models, 

but it can be applied to other sites. 

2.1 Introduction 

Throughout radiotherapy, geometrical uncertainties such as set-up errors or anatomical 

changes may lead to underdosing the target or overdosing organs at risk. Margins or robust 

optimisation techniques can deal with these uncertainties, but their applicability is limited 

for complex changes. Therefore, adaptive strategies are often used for larger anatomical 

changes [95], [96]. However, current adaptation strategies represent a significant workload 

and can create bottlenecks in workflows [97], [98]. 
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An alternative is to predict anatomical changes using mathematical models to increase plan 

robustness. Such models could be used to predict which patients may benefit from plan 

adaptation, or to identify regions where large anatomical changes are expected.  

Deformation models could also simulate anatomical changes during planning to increase 

robustness, e.g. using robust or probabilistic planning [99]. Principal component analysis 

(PCA) is widely used for creating such models, for instance in lung [68], [100]–[102], 

prostate [65]–[67], [69], [103], cervix [99] and head and neck (H&N) [71], [72]. The 

usefulness of such models depends on their ability to accurately simulate future changes 

in the patient. 

In this study, we propose a toolbox to evaluate how well a given PCA model can represent 

anatomical changes that were not used to generate the model. These tools can be used to 

evaluate the model robustness, estimate global residual errors within the boundaries of 

the scan and highlight regions where the model struggles to capture anatomical changes. 

The aim of this study was to present a proof-of-principle for this method in H&N cancer 

using both patient-specific and population-based deformation models. 

2.2 Materials and methods 

PCA models can be created from a set of displacement vector fields (DVFs) to simulate 

anatomical changes. These DVFs use non-rigid registrations to describe the deformations 

between two images, e.g., the planning CT (pCT) and a cone-beam CT (CBCT). 

The resulting model consists of the eigenvectors for each of the principal components of 

deformation, 𝒆𝑙, the corresponding variance for each component, 𝜆𝑙, and the mean of the 

input DVFs, 𝒗. These can then be used to simulate plausible DVFs (𝒗𝑠𝑖𝑚), following Equation 

2.1, where the weights, 𝑢𝑙, are randomly selected from a Gaussian distribution centred at 

zero with variance 𝜆𝑙. 

 𝒗𝑠𝑖𝑚 =  𝒗 +  ∑ 𝑢𝑙𝒆𝑙

𝑙

 (2.1) 

2.2.1 Evaluation strategy for PCA-based deformation models 

The proposed method presented here can be used to determine to what degree a PCA 

model can represent a DVF that was not used to generate the model. We refer to this DVF 
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as the ‘reference DVF’, 𝒗𝑟𝑒𝑓. The closest vector field to the reference DVF, 𝒗𝑐𝑙𝑜𝑠𝑒𝑠𝑡, was 

generated using the model with an optimal set of weights, 𝑤𝑙, found using Equation 2.2. 

 𝑤𝑙 = 𝒆𝑙  ⋅  (𝒗𝑟𝑒𝑓 −  𝒗)
𝑇

 (2.2) 

The closest simulated DVF the model can produce, 𝒗𝑐𝑙𝑜𝑠𝑒𝑠𝑡, was found by substituting  𝑤𝑙 

from Equation 2.2 into Equation 2.1. A measure of the likelihood of this closest DVF being 

produced by the model, the Z-score, is presented in Supplement 2.A.1. 

To quantify how close the closest DVF is to the reference DVF, we defined the residual DVF, 

𝒗𝑟𝑒𝑠, as 

 𝒗𝑟𝑒𝑠 = 𝒗𝑟𝑒𝑓 − 𝒗𝑐𝑙𝑜𝑠𝑒𝑠𝑡 (2.3) 

By taking the magnitude of each vector within 𝒗𝑟𝑒𝑠, 𝑀𝑟𝑒𝑠, we can identify local regions with 

larger errors. As a measure of the global model performance, we calculated the 90th 

percentile of 𝑀𝑟𝑒𝑠, 𝑀𝑟𝑒𝑠
90. The 90th percentile is commonly used in the literature [9], but 

the mean or a different percentile could be selected depending on the intended 

application.    

2.2.2 Evaluation toolbox 

Our evaluation scheme can be used in different ways to evaluate how well PCA-models 

perform. E.g., we can evaluate the robustness and stability of the model, the sensitivity of 

the model to random noise, and the general ability of the model to simulate anatomical 

changes within the patient. 

Model robustness: To determine how robust a PCA model is to the input DVFs, a leave-

one-out cross validation (LOOCV) analysis can be performed by running PCA with one of 

the input DVFs left out. The DVF that is left out can then be used as 𝒗𝑟𝑒𝑓 for that iteration. 

Model sensitivity: The sensitivity of the model to random noise and the number of 

components used for the evaluation can be assessed using simulated DVFs, to which 

Gaussian noise was added (Supplement 2.A.2). 

Model generalisability: To evaluate whether a deformation model describes real 

anatomical changes, the PCA model can be evaluated against unseen DVFs from the 

patient.  
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2.2.3 PCA models examples 

To test our proposed method in different settings, we created both patient-specific models 

(datasets 1 and 2) and a population-based model (dataset 3). The datasets are summarized 

in Table 2.1 and detailed in Supplement 2.A.3. 

Data for Patient-specific PCA models 
Population-based PCA models 

Training Validation 

Dataset 1 2 3a 3b 

Nr of patients 24 20 20 20 

Site Sinonasal Oropharyngeal Oropharyngeal Oropharyngeal 

Treatment 

technique 
All IMRT 

10 IMRT,  

10 VMAT 
All VMAT All VMAT 

Treatment 

period 
2009-2017 2008-2018 2016-2018 2016-2018 

Dose 

prescription 

66-68 Gy, 

(n=16), 

60-66 Gy (n=8) 

66-68 Gy 

(n=17), 

76 Gy (n=3). 

60-66 Gy 60-66 Gy 

Number of 

CBCTs per 

patient 

30 - 34 33-34 or 56 8 - 31 9 - 24 

Table 2.1: Summary of patient datasets. 

Dataset 1 includes 24 sinonasal cancer patients collected from the DAHANCA database with 

30-34 daily CBCTs per patient, under approval by the Danish Data Protection Agency (1-16-

02-676-18).  

Dataset 2 includes 20 oropharyngeal cancer patients collected from a single institution with 

33-56 CBCTs per patient, under internal approval (in accordance with Danish guidelines).  

Dataset 3 includes 40 oropharyngeal patients collected from a single institution with 8-31 

CBCTs per patients, under ethics approval from the UK North West - Haydock Research 

Ethics Committee, (17/NW/0060, local ref. 2018-018). 20 patients were selected as training 

patients, dataset 3a. The remaining 20 patients were used for validation, dataset 3b.  
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Figure 2.1: Flow chart showing the method for generating PCA models. For the patient-specific models, all CBCTs are 

from the same patient and are registered to the same pCT for that patient. For the population-based model, each CBCT 

is from a different patient and is registered to the corresponding pCT. 
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To generate the DVFs for PCA creation, each CBCT was first rigidly registered to the pCT 

based on bony anatomy, obtaining the starting point for deformation. The pCT and aligned 

CBCTs were then cropped to a bounding box to reduce computation time. Then, 

deformable registration was performed from each CBCT to the pCT, using either NiftyReg 

[61] (datasets 2 and 3) or Anaconda in RayStation [104] (dataset 1). A scheme summarising 

our approach is presented in Figure 2.1. 

For the patient-specific models, DVFs from the first five days of treatment were used to 

create each PCA model. The bounding box covered an area including the brainstem, 

parotids, primary CTV and the nodal CTV (if present) with a 5 cm margin in each direction 

excluding the shoulders. To investigate the effect of the number of input scans, models 

were created for two of the patients (dataset 2) using the ten DVFs corresponding to the 

first two weeks of treatment.  

For the population-based model, DVFs mapping one CBCT from each of the six weeks of 

treatment from each of the 20 training patients were used. To standardise the DVFs 

between different patients, an average patient geometry was created using a groupwise 

registration [105] of the pCTs of these patients. The bounding box covered an area 

including the brainstem, parotids, oral cavity, larynx and primary CTV with a 1.5 cm margin 

in each direction. All DVFs were then mapped to the average geometry using SimpleITK 

[106] and were used to create a single PCA model.  

The authors visually inspected all deformed CTs and fine-tuned sub-optimal registrations. 

We generated all PCA models using Scikit-learn in Python [107]. We report the cumulative 

variance for each component for the PCA models in Supplement 2.A.4.  

2.2.4 Model Evaluation 

For all models, we evaluated the robustness with the LOOCV method. We ran an 

investigation into the model sensitivity for the population-based model and one of the 

patient-specific models (Supplement 2.A.2). 

As test data for the model generalisability method, we used the DVFs from the first CBCT 

of each of the subsequent five weeks of treatment for patient-specific cases. For the 

population-based case, we used all remaining DVFs of the training patients (dataset 3a) and 
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DVFs from all CBCTs of the validation patients (dataset 3b). In each case, we created heat 

maps of 𝑀𝑟𝑒𝑠 to evaluate the local model quality and 𝑀𝑟𝑒𝑠
90 to evaluate the global model 

quality. 

A pass/fail threshold for 𝑀𝑟𝑒𝑠
90 can be set depending on the specific application. As an 

example, we selected 4 mm. 

We used all components available for evaluating the PCA models, but in practice one could 

restrict the number of components, e.g., many PCA models only include components that 

cover the largest 90% of the total variance of the model. 

2.3 Results 

2.3.1 Model robustness (LOOCV)  

 

Figure 2.2: 𝑀𝑟𝑒𝑠
90  for the LOOCV for each of patient-specific model in a) dataset 1 and b) dataset 2, and for c) the 

population-based model (dataset 3a). 

Figure 2.2 shows 𝑀𝑟𝑒𝑠
90 for the LOOCV for all models. For the patient-specific study, all 

𝑀𝑟𝑒𝑠
90  were well below the 4 mm threshold for dataset 1 (sinonasal cancer), while for 

dataset 2 (oropharyngeal cancer), models for 4 out of 20 patients had 𝑀𝑟𝑒𝑠
90 > 4 mm. In 

the population-based study (dataset 3a), all 𝑀𝑟𝑒𝑠
90 were below 4 mm. 
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The largest 𝑀𝑟𝑒𝑠  were observed in the regions around the oropharynx for all datasets. 

Additionally, for dataset 1, the region around the nasal cavities had high 𝑀𝑟𝑒𝑠.  

2.3.2 Model generalisability 

The ability of the patient-specific models created with the DVFs from week 1 to adequately 

describe deformations present later during treatment is shown in Figure 2.3. Most of the 

patients passed the 4 mm threshold in subsequent weeks. As expected, a tendency for 

𝑀𝑟𝑒𝑠
90 to increase over time during the treatment course was observed. Using DVFs from 

the first two weeks resulted in slightly decreased numbers, but with the same trend over 

time (see data in Supplement 2.A.5). It should be noted that two of the patients who failed 

the generalisability evaluation also failed the LOOCV (patients 10 and 18). A heat map of 

the mean 𝑀𝑟𝑒𝑠 (across all DVFs used for investigating the model generalisability) for patient 

1 of dataset 1 is shown in Figure 2.4. The largest 𝑀𝑟𝑒𝑠 values were found in the oropharynx 

region for all patients, and additionally in the nasal cavities for dataset 1 patients.  

 

Figure 2.3: The 90th percentile of 𝑀𝑟𝑒𝑠 calculated on one DVF from each of weeks 2-6 of treatment for each patient for 

the patient-specific models created using a) dataset 1, b) dataset 2, and for the population-based model calculated on 

all DVFs not used for model creation from each of weeks 1-6 using the c) training patients (dataset 3a), d) validation 

patients (dataset 3b). 



49 
 

 

Figure 2.4: Identifying areas with a high 𝑀𝑟𝑒𝑠 for the patient-specific model (patient 1, dataset 1). The panels show a) 

the pCT for a patient in two different slices (top showing nasal cavity region and bottom showing the oropharyngeal 

region), b) the mean of 𝑀𝑟𝑒𝑠 from LOOCV and c) the mean of 𝑀𝑟𝑒𝑠 from the following weeks. Contours of the brain, 

brainstem and spinal cord are shown in green. 

For the population-based model, there was little difference in performance between 

different treatment weeks, but the model performed worse for validation patients than 

training patients. Three of the validation patients were above the 4 mm threshold for all 

DVFs evaluated (Figure 2.3). For the training patients, two DVFs from the first week of 

treatment for a single patient failed to reach the threshold (who also had the second 

highest value for the LOOCV in week 1). 𝑀𝑟𝑒𝑠  was largest around the oropharynx, 

consistent with the patient-specific results (Figure 2.5). The mean 𝑀𝑟𝑒𝑠 values (across all 

available DVFs) were higher for the validation patients in this and surrounding regions. 

Around the brainstem and within the skull, 𝑀𝑟𝑒𝑠 was consistently low for both the training 

and validation patients. 

 

Figure 2.5: Identifying trends in areas with a high 𝑀𝑟𝑒𝑠 for the population-based model for both training and validation 

patients. The panels show a) the average pCT, b) the mean of 𝑀𝑟𝑒𝑠 from the LOOCV (120 DVFs), c) the mean of 𝑀𝑟𝑒𝑠 

from all the DVFs not used to create the PCA model of the training patients (217 DVFs) and d) the mean of 𝑀𝑟𝑒𝑠 from all 

the DVFs of the validation patients (254 DVFs). The region with a consistently high 𝑀𝑟𝑒𝑠 is outlined in red. The external 

contour and the brainstem and spinal cord are shown in green for context. 
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A scatter plot linking the mean 𝑀𝑟𝑒𝑠
90  for the LOOCV with the mean 𝑀𝑟𝑒𝑠

90  for the 

generalisability is presented in Supplement 2.A.6. 

2.4 Discussion 

We have presented a toolbox to evaluate how well anatomical changes in unseen data can 

be described by PCA models and tested it for H&N cancer patients in both patient-specific 

and population-based contexts. Our evaluation strategy can be used to easily determine 

patients where PCA modelling could be used (e.g., by applying LOOCV and setting up a 

threshold of acceptable error) and highlight anatomical regions where the PCA model 

struggles.  

To the best of our knowledge, no other study has proposed such a method. Similar 

evaluation strategies have focussed on either determining the required number of 

components to use in a PCA model [65], [68], [69], [100] or the optimal number of input 

scans needed to create the model [68]. Generally, these strategies tend to evaluate the 

PCA model against input DVFs, whereas our method compares the model to unseen DVFs. 

However, Badawi et al. [68] evaluated the residual error on unseen scans for PCA models 

created using a subset of the input scans, but this was mainly used to assess how many 

weeks’ worth of input scans was needed for the residual errors to stabilise. Budiarto et al. 

[69] also evaluated the residual error on three patients not previously seen by their 

population-based model, but did not evaluate on any unseen DVFs from their training 

patients. For our population-based model, the validation patients performed worse in the 

evaluation than the training patients (see Supplement 2.A.7). 

Some studies using PCA looked at deformations to the surface contour of specific organs 

as inputs to the model [65], [68], [69] while others considered each image voxel [67], [74], 

[101]. Here we have used the voxel-based approach as this allows us to model changes on 

the entire scan and include multiple organs and their interactions, as well as other 

surrounding tissue.  

Our scheme focuses on computing the magnitude difference between the reference and 

closest DVF and does not differentiate between differences in magnitude and direction for 

each vector. Of course, one could also evaluate each of the x, y and z directions separately. 
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While the method only evaluates individual instantiations of a DVF, by combining multiple 

results, the toolbox can be used to assess the quality of the model. E.g., by computing 𝑀𝑟𝑒𝑠 

for multiple known DVFs, this can give an idea of what modes of deformations are/are not 

captured by the model. In addition, our method also calculates the Z-score for each 

component, providing an idea of the magnitude of the deformations captured. Providing 

the Z-scores across all sampled DVFs follow a normal distribution, the model accurately 

captures the size of the deformations sampled and will correctly describe expected 

changes.  

This work relies on PCA, so all limitations related to this method will apply. A vital part of 

PCA modelling and the evaluation toolbox are the deformable registrations. Although the 

registrations were visually inspected to ensure quality, they will still introduce uncertainties 

into both the PCA model and residual DVFs. For this study, a quantitative assessment of 

registration uncertainties was not done, but we would recommend this for specific 

applications depending on the required accuracy. To give an idea of the possible size of 

these uncertainties, Veiga et al. [108] found the mean distance transform between manual 

and deformed surfaces for H&N registrations using NiftyReg to be 0.3±0.4 mm. We 

assumed that any uncertainties associated with imperfect registrations would be smaller 

than the anatomical changes we aim to capture in the model – e.g., Barker et al. [9] found 

the median medial shift of the centre of mass of the parotid throughout treatment to be 

3.1 mm. 

Previous studies have investigated the generation of PCA models in H&N cancer patients 

and their evaluation. For example, Tsiamas et al. [71], assessed the number of components 

needed to model the spatial displacements for specific organs, using data from 18 patients 

to create both individual and population-based models. They focused on comparing the 

relative variance of the different PCA components between models. They found three to 

four principal components were sufficient to achieve spatial displacement prediction at the 

95% confidence level for normal organs. In another study, Chetvertkov et al. [72] generated 

PCA models considering variations occurring in the whole scan in 10 patients. They focused 

on whether the weighting factors from the inner product could be used to predict 

systematic changes throughout the treatment course, and dismissed the errors not 
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expressed by linear combinations of the eigenvectors. Our results show that these errors 

can be considerable and should not be dismissed. 

The patient-specific models were created from scans from the first week of treatment and 

could for instance be used either for informing a patient-specific threshold for adaptation, 

or for including variations seen in the PCA model in a patient-specific robust optimization. 

In the first case, a set of possible patient geometries could be simulated from the model, 

dosimetric evaluation could be performed, and an assessment of whether adaptation is 

required be made. In the second case, a robust plan could be made to include the variations 

seen in the PCA model, such that within this envelope of variations no adaptation would 

be required for the rest of the treatment. Our population-based model was created using 

treatment scans across six weeks from 20 patients, providing the opportunity to use it to 

simulate possible anatomical changes on new patients, without having to wait for multiple 

scans. This means population-based models could be used at the planning stage to evaluate 

the robustness of treatment plans against expected anatomical changes or to directly 

account for them by using robust or probabilistic planning. Depending on the specific 

application, PCA models may be tuned to focus either on systematic variations (seen in the 

lower order components) and/or random variations (in higher order components). 

We observed that 𝑀𝑟𝑒𝑠
90 varied between datasets. One possibility is that the oropharynx 

tumours in datasets 2 and 3 may affect the model performance as it changes the anatomy 

and the tumour may shrink during treatment. Another possibility is the difference in 

bounding boxes between patient datasets. The bounding box for dataset 1 was based on a 

region surrounding the skull, meaning there was likely to be better anatomical consistency 

than for datasets 2 and 3, where the bounding boxes generally extended further down the 

neck which is prone to larger deformations [54]. This shows that the residual error depends 

on the region of interest being considered, which should be carefully selected to cover 

clinically relevant organs. One way to eliminate the bias of the bounding box could be to 

report 𝑀𝑟𝑒𝑠
90 for the target volume and the relevant organs individually.  

By using our evaluation toolbox, regions where a PCA model struggles to represent 

deformations can easily be identified. For example, the oropharynx presented a challenge 

for both the patient-specific models (using 5 or 10 input DVFs) and the population-based 
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model (using 120 input DVFs). This suggests that it is not a limit in the number of scans that 

is causing this challenge, but rather a limitation of the PCA method itself. PCA assumes 

variations are normally distributed around a non-zero mean. This assumption is commonly 

seen in the literature for models for day-to-day changes in organ shape [66], [67], but it has 

not been validated in H&N. Additionally, for the sinonasal cancer patients, the nasal cavity 

was highlighted as a challenging region. This is due to the cavity being filled/emptied, which 

violates the assumption of the variation of the position of each voxel being normally 

distributed.  

2.5 Conclusion 

We have proposed and tested a toolbox to evaluate how well PCA models can predict 

anatomical deformations. We showed how regions were identified where models created 

from the first week of radiotherapy in H&N cancer patients struggle to represent 

anatomical changes occurring later during treatment. All tested models had difficulties 

capturing deformations in the oropharyngeal region, and the nasal cavity for models 

created on sinonasal cancer patients. Our methods could potentially be used in a variety of 

scenarios to evaluate and validate PCA models and facilitate incorporation of deformation 

modelling in various clinical applications. 
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Appendix 2A 

2.A Supplementary material 

2.A.1 Z-score 

To get an indication of how likely it is for 𝒗𝑐𝑙𝑜𝑠𝑒𝑠𝑡  to occur from the PCA model, we 

calculated the Z-score (the weight divided by √𝜆𝑙) for the weight of each component, and 

report the maximum Z-score, 𝑍𝑚𝑎𝑥, for each DVF. Following the empirical rule, if the Z-

score is less than 3, there is more than 99.7% chance that it could have been selected from 

the model. For models with a large number of components the percentage of Z-scores 

under 3 can also be reported. If this number is significantly less than 99.7%, it is unlikely 

that 𝒗𝑐𝑙𝑜𝑠𝑒𝑠𝑡 could be randomly produced from the model. 

Robustness (LOOCV): 

𝑍𝑚𝑎𝑥  ranged from between 0.1-1.6 for dataset 1 and between 0.1-1.8 for dataset 2. For 

the population-based study (dataset 3a), 𝑍𝑚𝑎𝑥  ranged from 1.8-5.7. 99.2% of all the Z-

scores were below 3. 

Generalisability:  

For the DVFs not used to train the PCA models, 𝑍𝑚𝑎𝑥  ranged between 0.2-1.8 for dataset 1 

and 0.2-2 for dataset 2. For the population-based datasets, 𝑍𝑚𝑎𝑥  ranged from 1.7-13.0 for 

the training patients with 99.0% of the Z-scores below 3 and for the validation patients, 

𝑍𝑚𝑎𝑥  ranged from 2.0-17.5 with 91.6% of the Z-scores below 3. The DVFs with the highest 

𝑍𝑚𝑎𝑥  also tended to be those with high 𝑀𝑟𝑒𝑠
90 in the population-based model. 

2.A.2 Model sensitivity 

We assessed the sensitivity of the PCA models by quantifying the impact of adding differing 

levels of Gaussian noise to the reference DVF. We randomly produced 50 simulated DVFs 

using Equation 2.1 and added spatially independent Gaussian noise (standard deviation, 

SD, of 0, 1, and 2 mm) to each vector. For each simulated DVF (including noise), we 

calculated 𝑀𝑟𝑒𝑠
90  using the first l components from the PCA model, where 1 ≤ l ≤ n-1 
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(where n is the number of input DVFs for the model and n-1 is the total number of 

components from the model). These 𝑀𝑟𝑒𝑠
90 values were plotted against l, along with the 

mean for all 50 DVFs and are shown in Figure 2.A.1. 

 

Figure 2.A.1: Comparing 𝑀𝑟𝑒𝑠
90  for DVFs created from the PCA model with differing levels of noise, analysed using a 

different number of components from the model. The dashed lines show the results from each of 50 randomly 

generated DVFs and the solid line shows the mean of those 50. Plot a) shows the patient-specific model (patient 1, 

dataset 2) and plot b) shows the population-based model. 

The tests with the simulated data (Figure 2.A.1) show that for all noise-free simulated DVFs, 

𝑀𝑟𝑒𝑠
90  (and actually all 𝑀𝑟𝑒𝑠 ) reached zero after all components were accounted for, 

validating our evaluation approach. We also established that adding Gaussian noise with 

SD of 2 mm pushed 𝑀𝑟𝑒𝑠
90 above our chosen threshold of 4 mm. Regardless of the level of 

Gaussian noise, the 𝑍𝑚𝑎𝑥  values were the same and ranged between 0.3-2.6 for all patient-

specific models and 1.9-3.9 for the population-based model. 99.7% of all the Z-scores were 

below 3 for the population-based model.  

2.A.3 Patient data 

Patient datasets are detailed below: 
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Dataset 1: Data from 24 sinonasal cancer patients treated either with primary or 

postoperative photon therapy (IMRT) with curative intent from 2009 to 2017 were included 

in this dataset. The data was collected from the DAHANCA database (approval by the 

Danish Data Protection Agency (1-16-02-676-18)). These patients were treated to a 

prescribed dose to the primary CTV of either 66-68 Gy for primary radiotherapy or 60-66 

Gy for post-operative radiotherapy. Patients had between 30-34 CBCTs.  

Dataset 2: Data from 20 oropharyngeal cancer patients treated in the period of 2008-2018 

with radical radiotherapy in a single institution were arbitrarily selected. The data was fully 

anonymised and collected from a clinical database after internal study approval at the 

clinical department, in accordance with Danish guidelines. 10 patients were treated with 

IMRT and 10 with volumetric-modulated arc therapy (VMAT), 17 to a prescribed dose of 

66-68 Gy (33-34 fractions, 5-6 per week) and 3 to a prescribed dose of 76 Gy (56 fractions, 

10 per week). Patients had between 33-56 CBCTs.  

Dataset 3: Data from 40 oropharyngeal patients treated between 2016 and 2018 with 

radical radiotherapy in a single institution were selected. These data were collected from 

the ukCAT distributed learning database (ethics approval from the UK North West - 

Haydock Research Ethics Committee, (17/NW/0060), local consent ref. 2018-018). All 

patients were treated in 30 fractions using VMAT to a prescribed dose of 60-66 Gy to the 

primary CTV. 20 patients were selected as the training patients, denoted dataset 3a. The 

remaining 20 patients were used for validation and denoted dataset 3b. Patients had 

between 8-31 CBCTs. 

2.A.4 Cumulative variance ratio 

Here we report the cumulative variance for each component in the PCA models for the first 

patient-specific model in each of datasets 1 and 2 and for the population-based model. 
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Figure 2.A.2: Cumulative variance ratio of each component for patient 1 of dataset 1. 

 

Figure 2.A.3: Cumulative variance ratio of each component for patient 1 of dataset 2. 



58 
 

 

Figure 2.A.4: Cumulative variance ratio of each component for dataset 3a. 

2.A.5 Increased number of input scans 

As shown in Figures 2.A.5-2.A.8, increasing the number of input scans improved the model 

and decreased the 𝑀𝑟𝑒𝑠  values, but the same region was still highlighted as posing a 

challenge for the models. This suggests that it is perhaps a fundamental limitation of the 

PCA method that is causing the difficulties in modelling the changes within the oropharynx. 

 

Figure 2.A.5: 𝑀𝑟𝑒𝑠
90 calculated on the later weeks for patient 1 (dataset 2) with the model created: using the DVFs from 

first week (blue) and using the DVFs from first two weeks (orange). 
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Figure 2.A.6: 𝑀𝑟𝑒𝑠
90 calculated on the later weeks for patient 10 (dataset 2) with the model created: using the DVFs from 

first week (blue) and using the DVFs from first two weeks (orange). 

 

Figure 2.A.7: Identifying areas with high 𝑀𝑟𝑒𝑠 for patient 1 (dataset 2). The panels show a) the pCT  b) the mean of 𝑀𝑟𝑒𝑠 

from the later weeks with model created with the DVFs from first week c) the mean of 𝑀𝑟𝑒𝑠 from the later weeks with 

model created with the DVFs from first two weeks. 

 

Figure 2.A.8: Identifying areas with high 𝑀𝑟𝑒𝑠 for patient 10 (dataset 2). The panels show a) the pCT  b) the mean of 

𝑀𝑟𝑒𝑠 from the later weeks with model created with the DVFs from first week c) the mean of 𝑀𝑟𝑒𝑠 from the later weeks 

with model created with the DVFs from first two weeks. 
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2.A.6 LOOCV vs generalisability 

 

Figure 2.A.9: Scatter plot of the mean 𝑀𝑟𝑒𝑠
90 for LOOCV (with bars extending ± 1SD) with the mean 𝑀𝑟𝑒𝑠

90 for 

generalisability (with bars extending ± 1SD) for dataset 1 (red), dataset 2 (blue) and dataset 3a (green). 

2.A.7 Validation patient 2 

For the population-based model, the validation patients performed worse in the evaluation 

than the training patients, likely due to systematic differences between the patients. For 

example, the pCT of validation patient 2 (which had some of the highest 𝑀𝑟𝑒𝑠
90 values) 

shows that this patient was particularly large compared to the average pCT (see Figure 

2.A.10 below). This suggests that this kind of model works best on patients that are similar 

to the average patient geometry. 
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Figure 2.A.10: a) the average pCT of the training patients and b) the pCT of validation patient 2 which showed 

consistently high 𝑀𝑟𝑒𝑠
90 values for all scans evaluated against. 
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Abstract 

Background: In addition to patient set-up uncertainties, anatomical deformations, e.g., 

weight loss, lead to time-dependent differences between the planned and delivered dose 

in a radiotherapy course that currently cannot easily be predicted. The aim of this study 

was to create time-varying prediction models to describe both systematic and random 

anatomical deformations in head and neck (H&N) cancer. 

Methods: Weekly population-based principal component analysis models were generated 

from on-treatment cone-beam CT scans (CBCTs) of 30 H&N cancer patients, with additional 

data of 35 patients used as a validation cohort. We simulated treatment courses accounting 

for a) anatomical deformations, b) set-up uncertainties and c) a combination of both. The 

dosimetric effects of the simulated deformations were compared to a direct dose 

accumulation based on deformable registration of the CBCT data. 

Results: Set-up uncertainties were seen to have a larger effect on the organ at risk (OAR) 

doses than anatomical deformations for all organs except the larynx and the primary CTV. 

Distributions from simulation results were in good agreement with those of the 

accumulated dose. 

Conclusions: We present a novel method of modelling time-varying anatomical 

deformations in H&N cancer. The effect on the OAR doses from these deformations are 

smaller than the effect of set-up uncertainties for most OARs. These models can, for 

instance, be used to predict which patients could benefit from adaptive radiotherapy, prior 

to commencing treatment. 

3.1 Introduction 

For head and neck (H&N) cancer, radiotherapy is an important treatment modality with 

around 80% of patients receiving it [4]. Radiotherapy plans are commonly optimised on the 

patient anatomy determined in a single planning CT scan (pCT). The pCT, however, only 

shows a snapshot of the patient anatomy at one point in time. Motion and deformation of 

the patient’s internal anatomy and changes in patient set-up positioning will cause 

uncertainties in the absorbed dose [109]–[111]. In particular for H&N cancer patients, 

changes in weight are often observed [8]. Moreover, there are many reports of parotid 
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gland shrinkage [9]–[17], which is more pronounced in regions treated with high doses [18]. 

Regarding set-up, the literature reports flexion of the neck and rotations and translations 

of the patient under the mask as the main sources of variation [19]. These changes can 

potentially lead to overdosing organs at risk (OARs) or underdosing the target [10], [13], 

[22], [23].  

Various mathematical techniques have been proposed to model and account for 

anatomical deformations [63], [65]–[70], [112]–[114], with principal component analysis 

(PCA) showing promise for H&N patients [71], [72]. With respect to set-up uncertainty, 

patient misalignments are commonly modelled using Gaussian distributions. However, up 

to now, modelling and evaluating the effect of random and systematic uncertainties in both 

anatomical deformations and set-up positioning in a time-varying manner has not been 

done using population models, i.e., to obtain models that are applicable to a new patient 

with only a single pCT, prior to commencing the actual treatment.  

The aim of this study was to create a method to predict the impact of anatomical 

deformations and set-up uncertainties on the dose delivered to a patient. We built on PCA 

methods used previously [65], [69], [70] and in Chapter 2, to obtain a population-based 

statistical representation of anatomical deformations and introduced time-variation to 

account for time trends such as weight loss. Simulated anatomical deformations from the 

PCA models were combined with simulated patient misalignments to obtain a set of 

plausible treatment scenarios taking both the random and systematic effects of these 

uncertainties into consideration. The estimate of these uncertainties in the delivered dose 

could be used to “add error bars” in planning dose estimations. Additionally, these models 

have potential applications in the early prediction of which patients may benefit from 

adaptive radiotherapy, facilitating resource scheduling. 

3.2 Materials and methods 

In short, anatomical deformations were modelled at the population level using PCA on the 

displacement vector fields (DVFs) from the registrations of weekly cone-beam CT scans 

(CBCTs) to the pCTs. To account for time trends, independent weekly PCA models were 

created, using one CBCT and its corresponding DVF per week of all training patients. 

Systematic and random set-up uncertainties were modelled as Gaussian distributions. For 
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each patient, 1000 30 fraction treatment scenarios were simulated (assuming dose-shift 

invariance [41]) using the clinical dose distributions, accounting for: a) only anatomical 

deformations, b) only set-up errors, and c) both anatomical deformations and set-up 

errors. Both the anatomical deformation and the set-up uncertainty simulations included a 

systematic component for the whole treatment, and a random component for each 

fraction. To test the method, we compared the distributions of simulated and observed 

cumulative doses in the primary CTV and the OARs used for planning. The following 

sections expand this approach and the data used in our study. 

3.2.1 Patient data 

Variable Value Number of training 

patients 

Number of 

validation patients 

T stage 

1 

2 

3 

4 

unknown 

7 

17 

4 

1 

1 

8 

17 

4 

6 

0 

N stage 

0 

1 

2 

3 

unknown 

7 

3 

19 

0 

1 

9 

3 

21 

2 

0 

Sex 
Male 

Female 

23 

7 

25 

10 

Tumour size 

<100cc 

100-200cc 

>200cc 

18 

10 

2 

15 

17 

3 

Table 3.1: Patient characteristics 

Data (including the pCT, on-treatment CBCTs, dose distributions and delineations) from 65 

unilateral oropharyngeal patients treated at our institution were used for this study. These 

data were collected from the ukCAT distributed learning database (ethics approval from 

the UK North West - Haydock Research Ethics Committee, reference number 17/NW/0060, 
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local consent ref. 2018-018). All patients had at least one CBCT for each of six weeks of 

treatment and the field of view of each of the scans included the whole brainstem and 

extended down to at least the top of the shoulders. All patients were treated in 30 fractions 

using VMAT. The first CBCT was taken on the first day of treatment and this was considered 

as day 0. The CBCTs were then split into treatment weeks. Using the available CBCTs, there 

were 30 patients with CBCTs taken within one day of the second day of each week (i.e., day 

1, 8, 15 etc. ± 1 day). This ensured that the selected training CBCTs were taken at the same 

point in treatment for each patient and as close to seven days apart as possible within this 

cohort. These 30 patients were selected as training patients, using the weekly CBCTs for 

generating the PCA models. The remaining 35 patients were used as a validation cohort. 

The unused CBCTs from the training patients (318 CBCTs) and all CBCTs from the validation 

patient dataset (466 CBCTs) were used for model evaluation purposes. A summary of 

patient characteristics is shown in Table 3.1. 

3.2.2 PCA-based deformation models 

We used PCA to generate deformation models based on the 30 training patients. The 

general process is illustrated in Figure 3.1. 

 

Figure 3.1: Flow chart showing the process for creating the PCA models for systematic and random deformations. First, 
registrations were performed to get the weekly DVFs from each patient in the average geometry. Patient mean DVFs 
(across the six treatment weeks) were used as the input for the systematic PCA and the weekly DVFs with the patient 

mean subtracted were used as input for the random PCA models. 
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3.2.2.1 Pre-processing 

All pCT scans were centred using the centre of mass of the brainstem and, to reduce bias 

due to target laterality, patients were mirrored in the left-right direction as needed to 

ensure that the centre of mass of the primary tumour was on the right side for all patients. 

Next, a shading correction was applied to all CBCTs [115] to improve their quality. For each 

patient, all CBCTs were then rigidly registered to the pCT based on the bony anatomy in the 

skull, and the top of the skull from the pCT was patched onto the CBCT for the region 

outside of the field of view of the CBCT. This registered scan was then used as the input for 

deformable registration. 

3.2.2.2 Average geometry using group-wise registration 

To model anatomical deformations across a population of patients, the geometry of each 

patient must be brought to a common reference. To accomplish this, a group-wise 

registration of the pCTs of all the training patients was performed using an arbitrary 

patient’s pCT (in our case, patient 1) as the reference geometry. We performed 2 rigid 

registration iterations followed by 20 non-rigid registration iterations using NiftyReg [61], 

[105] with a bending energy parameter of 0.0005. After each iteration the reference 

anatomy was replaced by the newly calculated group average, thus reducing the effect of 

selecting an initial reference image to a minimum. This produced the average patient 

geometry with the relevant non-rigid transformations for each individual patient’s pCT to 

this geometry. The pCTs of the validation patients were then non-rigidly registered to this 

same average patient geometry, also using NiftyReg with a bending energy parameter of 

0.0005. 

3.2.2.3 Generate DVFs from CBCTs 

To describe the deformations between the CBCT and the pCT, non-rigid registrations were 

performed using NiftyReg [61]. Due to the limited field of view often present in the CBCTs, 

the registrations were performed with the CBCT as the reference image. Full details of the 

registration parameters used are shown in Supplement 3.A.1. The resulting DVF was then 

inverted to get the deformations from the CBCT to the pCT as required for model building. 

Each DVF was then mapped into the average patient geometry via a resampling filter using 

SimpleITK [106]. This step brought all DVFs into a common frame of reference, allowing 

voxel-wise processing.  
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All DVFs were then cropped to a bounding box, covering an area including the brainstem, 

parotids, oral cavity, larynx and primary CTV with a 1.5 cm margin in each direction, to 

reduce computation time. 

These DVFs were in the direction from the pCT to the CBCT. We used a direct sampling 

approach [116] where each point inside an organ was transformed by the vector  

(point + vector = transformed point). This meant that the points inside the pCT geometry 

could be transformed into the CBCT (or simulated) geometry, and then the pCT dose per 

fraction to each point could be accumulated across all fractions in the treatment 

simulations (see Section 3.2.3 below). 

3.2.2.4 PCA model creation 

PCA takes a dataset with n data-points, each with N dimensions (that can be correlated 

with each other), and reduces it down to a smaller set of principal components that are 

orthogonal and uncorrelated [73]. In our case, we had N=3U dimensions where 3 

corresponds to the number of spatial dimensions (x, y, and z) and U was the number of 

voxels present in the DVFs in the average patient geometry, cropped to the bounding box 

(583,968 voxels in our case). n is the number of scans input to the model which in our case 

was 30 for each model. 

Using the DVFs obtained from the registrations and mapping of the weekly CBCTs, we 

created seven PCA models, one for systematic deformations and six (one per week) for 

random deformations. The systematic PCA model was created using the mean of the six 

weekly DVFs of each patient as the inputs. The random PCA models were created by 

subtracting the mean DVF for each patient from their weekly DVFs, using these differences 

as inputs to build the models.  

As N>>n, the maximum number of components generated by PCA is n-1 [65], therefore we 

had 29 available components for each model. Each PCA model contains eigenvectors of the 

29 principal components, 𝒆𝑙, their corresponding variances, 𝜆𝑙, and the mean of the input 

DVFs, �̅�. We used the first L components that covered the largest 90% of the total variance 

from each model. 
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3.2.2.5 Creating simulated deformations 

For each model, a set of simulated deformations were created. Each simulated DVF, 𝒗𝑠𝑖𝑚, 

was created using the equation: 

 
𝒗𝑠𝑖𝑚 = 𝒗 + ∑ 𝑢𝑙𝒆𝑙

𝐿

𝑙=1

, (3.1) 

where 𝑢𝑙  is a scaling factor for the lth component, randomly drawn from a Gaussian 

distribution with a variance equal to 𝜆𝑙. The overall simulated DVF for a given fraction was 

created by first simulating a DVF from the systematic model and then one from the relevant 

random weekly model. The sum of these two DVFs provided the total deformations for that 

fraction. 

3.2.2.6 PCA model evaluation 

The PCA models were evaluated against DVFs derived from the CBCTs that were not used 

in model creation following the scheme detailed in Chapter 2. In short, given a reference 

DVF, the closest DVF that the model can represent was generated. The differences between 

the reference DVF and the closest DVF indicated the residual deformations that the model 

had not been able to replicate.  

For the systematic PCA model, for each patient, the mean of all DVFs available for that 

patient was used as the reference DVF. This total mean for each patient was then 

subtracted from each of the DVFs for that patient. For each of the weekly random PCA 

models, each DVF from CBCTs taken within the same week as the model with the patient 

mean subtracted was used as the reference DVF.  

Heat maps of the magnitude of the residual deformations for each voxel, 𝑀𝑟𝑒𝑠 , were 

plotted to indicate the size of the local residual error for the PCA models at different points 

in the average patient geometry. The 90th percentile of 𝑀𝑟𝑒𝑠, 𝑀𝑟𝑒𝑠
90, was calculated to give 

an estimate of the global residual error for each DVF. The Z-score for each component of 

each DVF the model evaluated against was calculated. 

An investigation into the effect of training the PCA models on a different number of 

patients is presented in Supplement 3.A.2. 
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3.2.3 Treatment simulations 

For treatment simulations, we started with the planned dose distribution for the patient 

and mapped it into the average patient geometry. For the sake of simplicity, we assumed 

dose-shift invariance meaning the dose distribution was not recalculated for each new 

geometry. This assumption had been shown to work well [43], [117]. The dose distribution 

was then extended slightly outside the patient’s body to improve dose-shift invariance [41], 

[48]. The fractional dose was calculated by dividing the planned dose distribution by the 

total number of fractions. Three different sets of simulations were carried out, accounting 

for a) only anatomical deformations, b) only set-up uncertainties, and c) a combination of 

both.  

3.2.3.1 Anatomical deformations 

To simulate one treatment, we produced one systematic DVF and 30 random DVFs (five 

DVFs from each of the six weekly models) using Equation 3.1. Each fraction was simulated 

using the combination of the same systematic and a different random DVF. This was 

repeated for each fraction of the treatment. Because all calculations were performed in the 

average anatomy, this allowed the same set of simulated DVFs to be used for all patients, 

to provide a 'paired' comparison. 

3.2.3.2 Set-up uncertainties 

Set-up uncertainties were also split into systematic uncertainties which are constant 

throughout a treatment and random uncertainties which are different for each fraction. 

These values were drawn from Gaussian distributions with standard deviations of Σ for 

systematic and σ for random uncertainties. Note that Σ and σ differ for the x, y, and z 

directions. For each fraction, the OAR was translated according to the sum of the sampled 

systematic and random errors. Similar to the deformations, the same systematic and 

random errors were used for each patient. 

In order to obtain the population mean, and the standard deviations for the systematic and 

random set-up uncertainties for the dataset (M, Σ and σ respectively), we followed the 

standard methodology described in [118]. The set-up error of each CBCT was calculated as 

the difference in the centre of mass position between the PTV in the pCT with the couch 

corrections applied and the pCT adjusted by the rigid registrations (the starting point for 
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deformable registration). To account for missing CBCTs, the set-up value from the CBCT 

closest in time was taken (nearest neighbour approach). M, Σ and σ were then calculated 

as in [118] using the training patients. The set-up uncertainties obtained in the training 

patients were also used for the validation patients. 

3.2.3.3 Anatomical deformations and set-up uncertainties: 

For simulations combining both anatomical deformations and set-up uncertainties, the 

same set of DVFs and set-up translations were used as when simulating treatments 

considering these uncertainties individually. For each fraction, the simulated DVF was first 

applied to each organ and then they were translated by the set-up error.  

For all sets of simulations (considering anatomical deformations, set-up uncertainties and 

a combination of both), the dose to each voxel in the translated/deformed OARs was 

accumulated across all fractions to produce a simulated dose distribution for the 

treatment. Next, relevant dose-volume histogram (DVH) parameters for the OARs were 

computed from each distribution. This process was repeated 1000 times per patient. We 

calculated the difference between the planned and the simulated dose for the minimum 

dose to the primary CTV and for the DVH parameters used in planning the OARs at our 

institution (maximum dose to spinal cord and brainstem, mean dose to larynx, oral cavity 

and each of the parotids). Simulations were performed on both the training and the 

validation patient datasets. 

3.2.3.4 Dose accumulation of actual treatment 

A dose accumulation for the actual treatment was calculated using the DVFs and set-up 

errors using all actual CBCTs for each patient. If there was no CBCT for a given fraction, the 

nearest CBCT in the same week was used.  

3.2.3.5 Volume change 

To see how much the OAR volumes changed throughout treatment, the contours were first 

mapped into the average patient geometry and then warped by a DVF. The volume of the 

warped contour was then compared to the planned contour in the average geometry. This 

was done for both the DVFs coming from the CBCTs from the patients and DVFs from 100 

simulated treatments produced by the model. The results from this are presented in 

Supplement 3.A.3. 
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3.3 Results 

 

Figure 3.2: Cumulative contributions of the different components to the total variance for each weekly PCA model. The 
different PCA models are shown in different colours. The solid grey line indicates 90% of the total variance and the 

dashed grey line shows that all PCA models reach at least 90% the total variance by component 16. 

3.3.1 PCA-based deformation models 

The cumulative normalised variance for each PCA component in each of the models is 

shown in Figure 3.2. By component 16, around 90% of the total variation was included in 

all models. 

3.3.1.1 Model evaluation 

The model evaluation (Figure 3.3) shows that each of the weekly models had similar 

residual errors (both local and global). For the systematic model however, the training 

patients had lower residual errors than the weekly models while the validation patients 

had much higher residual errors. For all models, the region of the largest local residual error 

was around the oropharynx. Across all patients and models, the mean 𝑀𝑟𝑒𝑠
90 was 2.2 mm.  

For all models, except the systematic model when evaluated against the validation 

patients, the percentage of the Z-score values below 3 is ~99.7 (Table 3.2), suggesting that 

the DVFs the models were evaluated against are likely to be produced by the model. For 

the systematic model when evaluated against the validation patients, only 6% of the Z-

scores were below 3, meaning it is unlikely these DVFs would be produced from the model. 
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Figure 3.3: a) Average pCT and the mean of the 𝑀𝑟𝑒𝑠 maps across all DVFs evaluated against for each of the models for 
the training and validation patients. The external contour and the spinal cord and brainstem are included on each plot 

to provide anatomical context. b) Box plots of 𝑀𝑟𝑒𝑠
90 for each DVF used to evaluate the models against for training and 

validation patients. 

 Systematic W1 W2 W3 W4 W5 W6 

Training 100 99.3 99.7 99.5 99.7 99.7 99.9 

Validation 6.0 99.8 99.4 98.7 99.7 99.7 100 

Table 3.2: The percentage of all the Z scores calculated for each model with values less than 3. 

3.3.2 Set-up uncertainties 

Table 3.3 shows the M, Σ and σ values calculated from the difference in the centre of mass 

position of the PTV for each of the CBCTs from the 30 training patients. 

 Lateral Longitudinal Vertical 

M -0.02 0.02 -0.07 

Σ 0.11 0.12 0.12 

σ 0.16 0.14 0.18 

Table 3.3: M, Σ and σ values from the 30 training patients. 

3.3.3 Treatment simulations 

Figure 3.4 shows the distribution of difference between each of the 1000 simulated 

treatment doses and the planned dose for all patients in the different error scenarios. For 

the brainstem, there was a median increase in dose for all scenarios considered, the largest 

being when both uncertainties were simulated together, with a median increase of 1.3 Gy 
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for the training patients and 1.1 Gy for the validation patients. The median dose change for 

the other organs were all <0.5 Gy for all scenarios except the CTV which had a median 

decrease to the minimum dose of 0.6 Gy when both uncertainties were considered. 

Considering the standard deviation in the DVH parameters studied, for the minimum dose 

to the CTV and the mean dose to the larynx, the spread of results was larger when just 

anatomical deformations were considered than just set-up uncertainties. The standard 

deviation when both uncertainties were considered together was larger than just 

deformations for the CTV, but similar for the larynx. For all other organs considered, the 

standard deviations of the simulated results were similar when both uncertainties were 

considered together and when just set-up uncertainties were simulated, and these were 

larger than when just anatomical deformations were considered. For just anatomical 

deformations, the standard deviations were largest for the CTV (3.1 Gy and 2.9 Gy for 

training and validation patients respectively) and smallest for the oral cavity (0.4 Gy for 

both training and validation patients). For set-up uncertainties, the standard deviations 

were largest for the CTV (2.1 Gy and 2.4 Gy for training and validation patients respectively) 

and smallest for the larynx (0.8 Gy for both sets of patients). Across all scenarios, the 

standard deviation for the ipsilateral parotid was larger than the contralateral parotid by 

~0.4 Gy. 

For all scenarios, the ‘real’ values from the dose show a similar distribution to the simulated 

values for each DVH parameter, although the range is a bit smaller for most OARs. For both 

the brainstem and spinal cord in the validation patients, the median of the ‘real’ treatment 

values is lower than that of the simulated values when set-up uncertainties and a 

combination of both uncertainties were taken into consideration. Of course, it should be 

notes that the ‘real’ dose accumulated results contain one value per patient for each DVH 

parameter, whereas the simulated results each contain 1000 values per patient. For all 

organs and scenarios, the results for the training patients were similar to the validation 

patients. 
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Figure 3.4: Violin plots showing the change in dose between the simulated treatments for all patients and the planned 
dose distribution for simulations considering just anatomical deformations (blue), just set-up uncertainties (red) and a 
combination of anatomical deformations and set-up uncertainties (green).The darker half (left) shows the simulated 
results and the lighter (right) the dose accumulation from actual CBCTs. The median is represented by a black line on 

each violin. 
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3.4 Discussion 

We have proposed a novel method for modelling time-varying anatomical deformations, 

based on weekly population-based PCA models. Our methodology explicitly splits the 

deformations into systematic and weekly random variations. The effect of these 

deformations on the OAR dose was evaluated in combination with set-up uncertainties in 

the training patients as well as in unseen validation patients.  

We found that for most organs used for planning (except the larynx and the primary CTV), 

the effect of anatomical deformations was smaller than set-up uncertainties, based on the 

off-line protocol in use at the time our data were collected. We expect that with modern 

treatment techniques where daily image guidance is implemented, patient set-up 

uncertainty will decrease. Consequently, uncertainties due to anatomical deformations will 

become more important. 

The main novelty of our work is the inclusion of time-variation, allowing us to model weight 

loss and organ shrinkage. To generate the weekly models, we used just one CBCT per 

patient per week. We did, however, achieve very good performance. Our results agree with 

similar work done by Badawi et al. [68] who looked at comparing a PCA model using just 

one scan a week compared with all three scans they had available for each week in lung 

tumours. They concluded that using just one scan per week had a minimal impact on the 

residual testing error. Their method was different from ours in the fact that they created 

just a single PCA model that included all time points, whereas we separated ours out into 

weekly models to be able to account for time-varying effects. Also, their work was done 

using individual patient models, whereas ours were population-based. 

Our work explicitly incorporated both systematic and random deformations separately. 

This is an important distinction as systematic variations originate from the arbitrary 

deformations ‘frozen’ in the pCT that affects the whole treatment course, because the pCT 

is used to plan the treatment. This separating of the systematic and random variations has 

been done before for prostate and lung patients [70], [100], but in those studies the 

random variations across the whole treatment course were modelled together and so time-

variation was not considered. 
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We used PCA to create our models, and this method assumes that anatomical deformations 

are normally distributed around a non-zero mean position. This is a commonly used 

assumption in the literature for producing synthetic anatomical deformations [66], [67]. 

Our method required the displacements for each voxel within the patient’s body as an input 

for the PCA models and this method for PCA has been used a number of times previously 

[67], [74], [101]. Other studies use the differences in the surface shape contours of specific 

organs as the input to the PCA models [65], [68], [69]. We chose the entire DVF method as 

we were aiming at simulating the impact of anatomical deformations for dose mapping and 

accumulation, so displacement information for each voxel was required. Additionally, by 

constructing one PCA model for the region of interest, deformations of multiple organs and 

the surrounding normal tissue can be modelled simultaneously, and their interactions are 

maintained. 

In our simulations, delineation uncertainties were not taken into account. It has been 

shown that delineation uncertainties have a dosimetric effect on OARs [119]–[121], but 

that this effect decreases when evaluated with set-up uncertainties [122]. A future 

extension of this work would be to include delineation uncertainties in our analysis and 

compare the effect they have when combined with both set-up uncertainties and 

anatomical deformations.  

To derive a population-based model, all our evaluations were performed in an average 

patient geometry. Therefore, our methodology requires the transfer of the DVFs and a 

contour for each OAR to the average patient anatomy, introducing uncertainty. 

Registrations were performed intra-patient, to measure deformations, and inter-patient to 

bring the deformation information to the average geometry to create the PCA models. All 

registrations were carefully visually assessed, but no quantitative measure of the 

uncertainty was taken. Veiga et al. [108] found the mean distance transform between 

manually delineated and deformed surfaces in H&N when using NiftyReg to be 0.3±0.4 mm 

when averaged across all patients and structures analysed. Any displacement due to 

imperfect intra-patient registrations would show up as patient deformations and be 

included in the PCA model. However, the anatomical deformations we intended to capture 

within the model were assumed to be larger than the registration uncertainties. For 
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example, Barker et al. [9] found the median shift of the centre of mass of the parotids to 

be 3.1 mm medially.  

For our models, we have used the first 16 components which correspond to roughly 90% 

of the total variance for each model. The final 10% in the last components is most likely to 

be dominated by registration uncertainties or CT artefacts as opposed to the main modes 

of deformation present. Several studies have found that between 2-5 principal components 

are enough to cover 90% of the variation present [65], [66], [68], [101]. However, these 

studies created intra-patient models, i.e., one model per patient, rather than a population-

based model. Tsiamas et al. [71] compared models for individual patients with a 

population-based model and found that more components were necessary to cover the 

same percentage of variations for the population-based model as opposed to individual 

patient models. This is because each patient will experience different variations, meaning 

there is more variation to capture in population-based model and the overall variations will 

be more complex so more components are necessary. Budiarto et al. [69] produced a 

population-based PCA model for prostate and found that 15 principal components covered 

90% of the variation, which is similar the 16 required in our case. To reach 95% of the total 

variance for their population-based prostate PCA models, Vile [70] found that 11 

components were needed for the systematic deformations and 33 for the random 

deformations. However, their random model included a total of 210 input scans, 

significantly more than the 30 used in our study. 

For the random weekly models, we found that the residual errors were similar between 

weeks and for both training and validation patients. The residual errors were smaller for 

the systematic model when evaluated against the training patients, but larger when 

considering the validation patients. This same effect was seen by Vile [70] for their PCA 

model created on a population of prostate patients. This is expected as the systematic 

errors remain the same throughout treatment and so the model will have captured some 

of the specific systematic changes for the training patients. The validation patients however 

will have slightly different systematic errors that were not captured by the model. This is 

likely due to differences between each patient and the ‘average patient’. For example, 

validation patient 2 was larger than the average patient and had a particularly high 𝑀𝑟𝑒𝑠
90 

when evaluating the systematic DVF against the systematic model (Supplement 3.A.4). 
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Changing the number of training patients from 10 through to 30 (Supplement 3.A.2) caused 

the residual errors to decrease for the validation patients, especially for the systematic 

model. This suggests that perhaps increasing the number of training patients beyond 30 

could reduce these systematic residual errors even more. 

The region that had the largest residual errors in all our models was the oropharyngeal 

region. This could be due to the fact that this region experiences a large amount of random 

variations, even within a single patient, and so it is difficult for the models to accurately 

capture the full range of changes present. It could also be because this is the region that 

contains the primary CTV and is the high dose region for this set of patients. The exact size, 

shape and location of the primary CTV will vary between patients, as will the exact response 

of the tumour. This means that it can be difficult to capture all these possible changes in a 

single population-based model.  

Across all simulations, the results for the validation patients were similar to those of the 

training patients and both were generally in good agreement with the dose accumulated 

from the DVFs from the actual CBCTs. For most DVH parameters, the range of the simulated 

results was larger than that of the dose accumulated results, although this is likely due to 

the larger number of samples present in the simulated results – 1000 treatment courses 

were simulated for each patient, whereas there will only be one dose accumulated result 

for each patient. This means that the models we have created can be used to simulate 

deformations on completely new patients without requiring any additional information. 

I.e., these models can be used in the planning process, without having to wait for multiple 

scans of the patient – the model can be used for new patients immediately.  

Our simulations gave a mean volume change (Supplement 3.A.3) of 13.9% for the ipsilateral 

parotid for the training patients dataset by the end of treatment which is less than the 

average of 26 ± 11% found in the literature [55]. This could mean that our models were not 

picking up the full extent of the shrinking of the parotids, possibly due to the fact that 

different patients will experience different amounts of shrinkage or that we had a small 

sample size (30 patients). For most OARs, an increase in volume was seen in both the real 

and simulated DVFs between the pCT and week 1. This is likely due to the difference in 

quality of the CBCT and the pCT, making it challenging for the registration algorithm to 

perfectly match the soft tissue boundaries of some of the OARs. This can lead to the DVFs 
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seeming to produce an overall increase in volume from the pCT that is not actually there. 

This could also explain why the mean volume change of the parotids was smaller than that 

seen in literature. 

Our method of modelling time-dependent anatomical deformations and running treatment 

simulations could potentially be used to prospectively evaluate treatment plans and 

identify the cases where anatomical deformations may have a large effect on the delivered 

dose. This can help in an adaptive radiotherapy programme, by predicting at the start of 

treatment whether adaptation may be required at some point during treatment. This 

ability at an early stage to predict the need for adaptation and replanning can help with 

resource allocation, e.g., allocating time to replan the treatment or time on the scanners. 

This framework can also be used to add error bars to treatment planning. This could be 

useful to help focus the attention of the planners on areas where deformations could have 

a large impact on the delivered dose, meaning a plan can be created that is not only good 

in the nominal situation but also holds up under anatomic variations. Ultimately, these PCA 

models could also potentially be used to directly account for the effect of deformations by 

incorporating this uncertainty into the treatment planning process, e.g. by using 

probabilistic planning [99]. 

3.5 Conclusion 

We have proposed a novel method to model time-varying anatomical deformations and 

have evaluated the effect of these deformations and set-up uncertainties on clinical H&N 

cancer plans. This method predicts plausible deformations based on a single CT scan and 

can, for instance, be used a priori to identify patients where adaptation may be beneficial. 
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Appendix 3A 

3.A Supplementary material 

3.A.1 Non-rigid registrations 

The non-rigid registrations between the pCT and the CBCTs were performed using NiftyReg 

with a number of steps and different parameters. Firstly, a mask of the CBCT was created 

with a threshold of 100, using in-house software, so that the registrations were only 

focused within the patient’s body. Then, the deformable registrations were performed 

using the Niftyreg’s reg_f3d.exe with the pCT as the floating image, the CBCT as the 

reference image and the CBCT mask as the reference mask. The specified parameters used 

were: 

-ln 5 -lp 4  -be 0.001 -smooR 1 -smooF 1 -lncc 20 -maxit 1000 -jl 0.0001 

The -ln 5 -lp 4 meant that there were 5 levels to the registration but only the first 4 were 

used – effectively down-sampling the image. The smooR and smooF were used because in 

some of the CBCTs later on in the treatment, there was a gap between the skin and the 

mask where the patient had lost weight.  This was causing challenges in the registration as 

it was trying to match the mask and not the skin as was required to get the patient’s 

deformation. Adding in the smoothing helped reduce the impact of this. 

The next step was to then invert the deformation field to get the deformations with the 

pCT as the reference. This was done using NiftyReg’s reg_transform.exe with -invDef using 

the pCT as the target reference.  

3.A.2 Different patient numbers for training 

To see the effect of training the model with fewer patients, we created a set of the 

systematic and random weekly PCA models using a random subset of 10 and 20 training 

patients. This was repeated for a total of 5 times with different random subsets of patients. 

For each of these models, the set of 𝑀𝑟𝑒𝑠
90 values were calculated using just the validation 

set of patients, and these values were plotted as box plots seen in Figure 3.A.1. 
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It can be seen that for all the models, increasing the number of training patients decreased 

the size of the residual errors. This effect was largest for the systematic PCA model. 

 

Figure 3.A.1: Box plots showing the 𝑀𝑟𝑒𝑠
90 values for each DVF from the validation patients used to evaluate the 

different PCA models against. 5 sets of PCA models were trained on random subsets of 10 training patients, and 5 set on 
random subsets of 20 training patient. These are shown alongside the model trained on all 30 training patients. 

3.A.3 Volume change of OARs 

Figure 3.A.2 shows the simulated mean volume change in each OAR across the treatment 

weeks. Looking at the mean for both the real and simulated DVFs, for both parotids and 

the oral cavity, the volume change decreased as the weeks progress, although for the oral 

cavity the volume was always higher than that in the pCT. By week 6, the mean ipsilateral 

parotid volume had decreased by 14.1% in the CBCTs used for model creation and 13.9% 

in the simulated treatments compared to the volume in the pCT. For the contralateral 

parotid, these numbers were slightly smaller with a decrease of 13.5% for the real DVFs 

and 12.2% from the PCA models. 

The mean volumes of the spinal cord, larynx and brainstem remained roughly similar 

throughout the weeks, although there was a slight increase seen in the brainstem volume. 

Both brainstem and spinal cord saw an increase in volume compared to the pCT and the 

larynx showed a decrease. 
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Figure 3.A.2: Volume change in OARs from the training and validation patients. Volume changes from the DVFs from 
the CBCTs are shown in orange (training) and red (validation) and from 100 simulated treatments from the PCA models 
in blue (training) and green (validation). The dotted lines show the volume change for each individual patient/simulated 
treatment and the darker, solid lines show the mean across all patients/treatments. Note: some of the dotted lines for 

individual patients/treatments extend outside the range of the axes on the plot. 

3.A.4 Validation patient 2 

Validation patient 2 was larger than the average patient and had an 𝑀𝑟𝑒𝑠
90 of 7.7 mm. This 

patient was also used in the analysis of Chapter 2, see Figure 2.A.10. 
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Abstract 

Background: Anatomical deformations can cause uncertainties in the dose delivered to a 

patient during radiotherapy. However, tools to directly account for these variations in the 

planning process are lacking. The aim of this study was to see if anatomical deformations 

in head and neck (H&N) cancer patients can be accounted for by treating them as easier-

to-model set-up uncertainties, which can be dealt with using several tools. 

Methods: Margin, robust and probabilistic plans for different uncertainty settings 

corresponding to 1 mm, 3 mm and 5 mm margins were created for 19 H&N cancer patients. 

For each plan, 1000 treatment courses were simulated accounting for time-varying 

anatomical deformations, using a previously developed method. The 90th percentile of the 

D98 of the clinical target volume (CTV) was calculated for the set of simulated treatments, 

along with the 90th percentile of the dose metrics for each of the organs at risk (OARs) used 

to create the plans. 

Results: The 90th percentile of the CTV D98 increased as the uncertainty settings increased 

for all planning approaches and was highest in the margin plans. On average, this value 

reached the accepted 95% of the prescribed dose for the 5 mm plans for all planning 

approaches and the 3 mm plans for the margin and robust approaches. OAR doses were 

seen to increase as the uncertainty setting increased and were also highest for the margin 

plans. In general, all simulations saw an increase in the 90th percentile of the OAR doses 

from the planned dose under deformations, but there was large variation between 

individual patients. Margin plans were generally more robust to deformations than robust 

and probabilistic plans, meaning that care should be taken when introducing such new 

techniques. 

Conclusions: In general, plans that were robust to anatomical deformations in H&N could 

be produced by treating these variations as 3-5 mm set-up uncertainties. However, all 

simulations saw an increase in OAR dose from the planned dose, supporting the use of 

adaptive radiotherapy in cases where the OAR doses are close to tolerance. 
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4.1. Introduction 

Radiotherapy is planned on a single computed tomography (CT) scan but is typically 

delivered in a large number of fractions spread across several weeks. This introduces 

uncertainties in the delivered dose as there may be changes in the patient geometry. These 

changes are due to differences in patient set-up positioning, organ motion within the 

patient and organ shape changes. As a result, a lower dose than intended could be 

delivered to the target, or a higher dose to surrounding organs at risk (OARs). This is a 

particular problem in head and neck (H&N) cancer patients as the target is often very close 

to OARs and there are changes to the patient’s anatomy throughout treatment, e.g., weight 

loss, parotid shrinking and changes in neck positioning [8], [9], [11], [12], [14]–[19]. 

Methods have been developed to help improve the robustness of radiotherapy plans in 

face of these uncertainties and to help mitigate the effects they have on the dose delivered 

to the patient. 

In particular for the target volumes, the most common method to account for geometrical 

uncertainties is to expand the clinical target volume (CTV) by a margin to create a planning 

target volume (PTV). The PTV is then used as the target for the plan optimisation, with the 

idea being that even if the CTV does change position, as long as it is within the PTV it will 

receive the intended dose. Recipes for the size of these margins have been developed [75], 

[76] based on the standard deviations of the systematic uncertainties (that remain the 

same throughout the whole treatment course) and random uncertainties (which are 

different for each fraction).  

Besides margins, other planning approaches have been developed to account for 

uncertainties. One such method is robust planning where a number of discrete error 

scenarios are sampled and the plan is optimised based on the worst-case of the considered 

scenarios [83]. Another way of accounting for uncertainties is by using probabilistic 

planning where the plan is optimised based on the distribution of the cost function for each 

of a set of sampled scenarios in combination with the probability of that scenario occurring 

[36]. Probabilistic planning explicitly distinguishes between systematic and random 

uncertainties, while robust planning does not. For photon treatments, these methods are 

most commonly used to account for rigid translations of the target structures [32]–[37], 

[41]. 
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Translations are the easiest type of uncertainty to account for because they are simple to 

model. However, with the improvement of techniques such as image guidance, set-up 

uncertainties are being reduced and therefore the uncertainties due to deformations are 

becoming more relevant. There have been many studies looking at modelling anatomical 

deformations [65], [68], [69], [71], [72], and the effect they can have on the delivered dose 

[13], [66], [67].  

In Chapter 3 of this thesis, we showed that the dosimetric effect of anatomical 

deformations in H&N is similar to or smaller than that of set-up uncertainties for most OARs 

considered. However, no planning tools currently exist to explicitly account for anatomical 

deformations in H&N. As such, the aim of this study is to see if it is possible to create plans 

that are robust to anatomical deformations using tools intended to deal with set-up 

uncertainties. For this, we created margin, robust and probabilistic H&N plans using 

different uncertainty settings. We then compared their robustness to simulated anatomical 

deformations. 

4.2. Materials and methods 

4.2.1 Patient data 

Variable Value Number of patients 

Site 

Anterior tongue 

Hypopharynx 

Neck nodes 

Oropharynx 

Supraglottis 

2 

2 

5 

9 

1 

T stage 

2 

3 

4 

unknown 

7 

4 

3 

5 

N stage 

0 

1 

2 

unknown 

3 

2 

13 

1 

Sex 
Male 

Female 

16 

3 

Table 4.1: Patient characteristics. 
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For this study, the planning CT (pCT) and delineations from 19 H&N cancer patients treated 

at our institution between 2014-2018 were used (Table 4.1). These data were collected 

from the ukCAT distributed learning database (ethics approval from the UK North West - 

Haydock Research Ethics Committee, reference number 17/NW/0060, local consent ref. 

2018-018). 

4.2.2 Plan creation 

A total of nine plans were created for each patient, using three different planning 

approaches (margin-based, robustly optimised and probabilistic) and three different 

uncertainty settings (1 mm, 3 mm and 5 mm). Plans were created in RayStation (v6.99) 

following a class solution used at our institution, with a prescribed dose to the primary CTV 

of 66 Gy in 30 fractions. A 3x3x3 mm dose grid was used. Table 4.2 shows the OAR 

objectives used for planning. Target objectives were adapted between planning 

approaches, but all other objectives remained unchanged. 

OAR Objective 

Brainstem Maximum dose < 45.0 Gy 

Brainstem + 5 mm (PRV) Maximum dose < 52.0 Gy 

Larynx Mean dose < 38.0 Gy 

Left/right parotids Mean dose < 22.0 Gy 

Oral cavity Mean dose < 37.5 Gy 

Spinal cord + 5 mm (PRV) Maximum dose < 43.0 Gy 

Table 4.2: OAR planning objectives. 

For the margin-based plans, the target objectives were based on a PTV which was derived 

by expanding the CTV by the uncertainty setting for that plan. The robustly optimised plans 

used the CTV as the target and the robustness setting used was equal to the uncertainty 

setting for that plan. For each uncertainty setting, a total of seven scenarios were sampled, 

which was the default for RayStation v6.99’s robust optimisation. Probabilistic plans were 

created using a probabilistic treatment planning plugin, similar to that used by Bohoslavsky 

et al. [36]. Details on the probabilistic planning algorithm can be found in Supplement 4.A.1. 

All three probabilistic plans for each patient were optimised based on the CTV, using a 

confidence level of 90% and a standard deviation of 1.4 mm for the random uncertainties 
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[54]. The standard deviation of the systematic uncertainties was altered between the plans 

to change the uncertainty setting, using values of 0.0 mm, 0.8 mm and 1.6 mm, equivalent 

to a 1 mm, 3 mm and 5 mm margin respectively according to the van Herk margin formula 

[76]. 

4.2.3 Treatment simulations 

For each plan, 1000 treatments simulations were run using the time-dependent PCA 

models for anatomical deformations developed in Chapter 3, created from a population of 

30 oropharyngeal cancer patients. As these PCA models were population-based, the pCT of 

each patient had to be first registered to the average patient geometry. These non-rigid 

registrations were performed using NiftyReg [61], with a bending energy parameter of 

0.0005. The dose distribution of the patient was then mapped into the average patient 

geometry and extended outside the patient’s body, to improve the validity of the 

assumption of dose-shift invariance [41], [48]. 

The treatment simulations were run following the method detailed in Section 3.2.3.1 of 

this thesis. In short, this involved generating one simulated DVF from the systematic PCA 

model and five simulated DVFs from each of the random weekly PCA models. At each 

fraction, the systematic DVF and one of the random DVFs were combined and the patient 

anatomy deformed accordingly. The dose at each fraction was accumulated to get an 

overall simulated treatment dose. This was repeated for each plan of each patient. 

For each simulated treatment, the minimum dose across 98% of the CTV (i.e., the D98) was 

calculated and used as a measure of target coverage. A plan was said to be robust to 

anatomical deformations if at least 90% of the simulated treatments achieved at least 95% 

of the prescribed dose (62.7 Gy) in the D98. We denote the 90th percentile of D98 as D9890. 

Regarding the OARs, the mean dose to the larynx, oral cavity and each of the parotids was 

calculated along with the maximum dose to the spinal cord and the brainstem for each 

simulated treatment. 

To estimate the equivalent uncertainty setting required to reach the desired robustness of 

95% of the prescribed dose for D9890, we used a linear interpolation on the mean of the 

D9890 across all 19 patients. This interpolation was done by assuming a linear relationship 

for D9890 between the 1 mm and 3 mm plans and between the 3 mm and 5mm plans. The 
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point between these plans at which the mean D9890 reached 95% of the prescribed dose 

was considered an estimate of the equivalent uncertainty setting (see the stars marked in 

Figure 4.1). This equivalent uncertainty setting was then used to obtain the mean 90th 

percentile of each OAR dose metric for each planning approach at the required robustness. 

This allowed us to compare how well each approach could spare OARs when dealing with 

anatomical deformations. 

4.3. Results 

For the CTV, as expected, all plans for all patients showed a decrease in the dose from the 

planned D98 to the D9890. As the uncertainty setting increased from 1 mm to 5 mm, D9890 

increased and the difference between D9890
 and the planned D98 got smaller (Figure 4.1). 

Using the 1 mm setting, both D9890 and the difference between D9890 and the planned D98 

were similar for all three planning approaches, with a D9890 of 62.3 Gy which was a 

decrease of 1.9 Gy from the planned D98. The margin plans were seen to have the highest 

D9890 and the smallest decrease of D9890 from the planned D98. Conversely, probabilistic 

plans had the lowest D9890 and the largest decrease from the planned D98. Considering 

the mean D9890
 across all patients, for the probabilistic plans, the 5 mm setting was 

sufficient to be robust to anatomical deformations, while for margin and robust planning 

the 3 mm plans were robust. 

 
Figure 4.1: a) D9890 and b) the difference between the planned D98 and D9890 for the CTV for each plan. The margin 
plans are plotted in red, the robust in green and the probabilistic plans in blue. For each plot, the solid lines are the 

mean across all patients, and individual patient results are shown as faint dotted lines. The yellow dotted line shows 
95% of the prescribed dose (62.7 Gy) and the solid yellow line shown the prescribed dose (66 Gy). The stars in plot a) 

show the point at which the D9890 reaches 95% of the prescribed dose for each planning approach. Note: data for some 
individual patients are outside the dose range of the plots. 
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Figure 4.2: i) the 90th percentile and ii) the difference between the planned value and 90th percentile of the mean dose 
under deformations for a) the ipsilateral parotid, b) the contra lateral parotid, c) the larynx and d) the oral cavity for 

each plan. The margin plans are plotted in red, the robust in green and the probabilistic plans in blue. For each plot, the 
solid lines are the mean across all patients, and individual patient results are shown as faint dotted lines. Note: data for 
some individual patients are outside the dose range of the plots; each plot has the same dose range but is centred on a 

different dose. 
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For both parotids, the larynx and the oral cavity, as the uncertainty setting increased, the 

90th percentile of the mean dose under anatomical deformations increased for all planning 

approaches (Figure 4.2 i). In general, the 90th percentile was highest for the margin plans 

for each of these OARs. When considering the difference between the 90th percentile of 

the mean dose under deformations and the planned mean dose to these OARs, in general, 

there was little difference between the different plans (Figure 4.2 ii). Note that the dose 

difference was calculated between the 90th percentile and the planned dose for each 

individual plan. The fact that there was little difference between the different plans, means 

the planned OAR dose must have followed the same trends as the 90th percentile of the 

OAR dose. The mean increase from the planned mean dose to the 90th percentile of the 

mean dose under deformations was 1.1 Gy and 0.7 Gy for the ipsilateral and contralateral 

parotids respectively, 2.5 Gy for the larynx, and 0.4 Gy for the oral cavity. 

 
Figure 4.3: i) the 90th percentile and ii) the difference between the planned value and 90th percentile of the maximum 

dose under deformations for a) the brainstem and b) the spinal cord for each plan. The margin plans are plotted in red, 
the robust in green and the probabilistic plans in blue. For each plot, the solid lines are the mean across all patients, and 

individual patient results are shown as faint dotted lines. Note: data for some individual patients are outside the dose 
range of the plots; each plot has the same dose range but is centred on a different dose. 
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On average, the 90th percentile of the maximum dose to the brainstem was highest for the 

5 mm margin plan and lowest for the 1 mm robust plan, see Figure 4.3. In general, the 90th 

percentile of the maximum dose under deformations increased as the uncertainty setting 

increased. The 5 mm margin plan also had the highest increase of the 90th percentile of the 

maximum dose under deformations to the brainstem at 2.0 Gy, while all other plans were 

similar with an increase between 1.4-1.7 Gy. 

There was little difference in both the 90th percentile of the maximum dose under 

deformations for the spinal cord and the difference between that and the planned 

maximum dose between the different plans, with an average value of 41.6 Gy and 0.3 Gy 

respectively. 

For all OARs considered, there was a large variation between different patients in the 90th 

percentile of the dose metric under deformations and its difference from the planned dose. 

 Margin Robust Probabilistic 

Uncertainty setting (mm) 1.3 2.8 4.5 

Table 4.3: Interpolated uncertainty setting required for each planning approach so the mean CTV D9890 is 95% of the 
prescribed dose (shown by the stars in Figure 4.1). 

 

Figure 4.4: Interpolated mean 90th percentile of the dose metric to each of the OARs, for the uncertainty setting 
required for the desired robustness for each planning approach (Table 4.3). The margin plans are plotted in red, the 
robust in green and the probabilistic plans in blue. Note: each plot has the same range but is centred on a different 

dose. 

Table 4.3 gives the uncertainty setting required to reach the desired level of robustness for 

each planning approach (shown by the stars in Figure 4.1), and Figure 4.4 shows the 
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interpolated OAR dose metrics for this uncertainty setting. It can be seen that for all OARs 

except the oral cavity and the brainstem, the margin plan gave the lowest OAR dose. The 

probabilistic plan gave the highest dose to all OARs except the spinal cord and ipsilateral 

parotid. The largest difference in OAR dose between different planning approaches was 

seen in the brainstem, with a difference of 1.0 Gy. 

4.4. Discussion 

In this study we have compared the robustness to anatomical deformations of margin-

based, robustly optimised and probabilistic plans with different uncertainty settings for 19 

H&N cancer patients. For all planning approaches, as the uncertainty setting increased from 

1 mm through to 5 mm, the CTV D9890 under deformations got higher and the decrease 

between the planned dose and D9890 reduced. However, the OAR doses were also seen to 

increase as the uncertainty setting increased. In general, for each uncertainty setting, the 

margin plans had the highest D9890 but also had the highest OAR doses. Averaged across 

the 19 patients, for the margin and robust planning approaches the 3 mm plans were 

sufficiently robust and for the probabilistic approach the 5 mm plans were sufficiently 

robust. To reach the desired level of robustness, the margin approach required the smallest 

uncertainty setting and this gave the lowest OAR doses compared to the robust and 

probabilistic approaches. 

While there have been no other studies explicitly accounting for anatomical deformations 

by treating them as set-up uncertainties, there have been numerous studies using both 

robust and probabilistic planning approaches similar to ours to simply account for set-up 

uncertainties [32]–[37], [41]. When accounting for anatomical deformations, our results 

show that both robust and probabilistic planning can deliver lower OAR doses than margin-

based planning for the same uncertainty setting (Figure 4.2 and Figure 4.3). This has been 

seen in other studies using these planning approaches to account for set-up uncertainties 

in H&N [34], [41]. However, in both those studies, plans were adapted to ensure a similar 

level of target coverage between the margin-based plans and either the robust or 

probabilistic plans. Wagenaar et al. [34] renormalised both their robustly optimised and 

margin-based plans to ensure a specific level of target coverage and Fontanarosa et al. [41] 

adjusted the weights of the objective functions to ensure that target coverage was the 



96 
 

same between the two planning approaches. While we did not renormalise our plans to 

ensure the same level of robustness, we used linear interpolation to find the uncertainty 

setting for each planning approach that gives the desired level of robustness. We found 

that for the same level of plan robustness, margin plans had the lowest OAR doses. 

However, the difference in OAR dose between the planning approaches at the desired level 

of robustness was small (Figure 4.4). 

Other studies have gone beyond set-up uncertainties and used probabilistic methods to 

directly account for anatomical deformations [86], [99]. Baum et al. [86] created coverage 

probability maps from the positions of the prostate, bladder and rectum on five pre-

treatment CT scans and used these in their plan optimisation. Tilly et al. [99] assumed a 

single fraction treatment and sampled 100 possible deformations from their PCA model for 

cervical cancer patients and optimised based on the worst 10% of these scenarios. They 

found an increase in target robustness and a decrease in OAR doses in their probabilistically 

optimised plans compared to the margin-based plan. However, both of these methods do 

not explicitly distinguish between random and systematic uncertainties. The latter method 

is also computationally expensive and more challenging than simply treating the 

anatomical deformations as set-up uncertainties. 

PCA models of anatomical deformations in H&N have been shown to have the largest 

residual error around the oropharyngeal region (Chapter 2), with the PCA models used in 

this study having a mean global residual error of 2.2 mm (Section 3.3.1.1). This means that 

around the oropharyngeal region, the dose under deformations could be poorly simulated 

for some patients. Additionally, our models were trained and validated in Chapter 3 on 

oropharyngeal patients, but 10 of the patients used for this study did not have 

oropharyngeal tumours. These patients were included in this study to assess the effect of 

anatomical deformations in other H&N subsites, but the actual deformations for these 

patients could be slightly different than simulated. 

As the anatomical deformations used in this study were population-based, the dose 

distribution for each patient had to be first mapped to the average patient geometry from 

the PCA models. This was done by registering the pCT of each patient to the average pCT, 

which will not be perfect and can introduce errors. However, these errors will be the same 



97 
 

for all simulated treatments and all plans for each individual patient, and so the different 

plans for the patient can still be compared. 

Our results show that the simulated maximum dose to the brainstem increased from the 

planned dose when anatomical deformations were taken into consideration. While the 

brainstem itself is not expected to deform, the maximum dose is generally located at the 

bottom of the brainstem where it connects to the spinal cord, and so changes in flexion of 

the spinal cord could result in this increase in dose. 

The plans used in this study were created using a class solution from our institution. These 

plans were not individualised for each patient and so may not represent the most optimal 

plan possible for the patient for the given planning approach and uncertainty setting. The 

class solution was chosen to avoid bias and ensure a fair comparison between the planning 

approaches. 

For the probabilistic plans in this study, only the standard deviation of the systematic 

uncertainties was changed for the different uncertainty settings. The standard deviation of 

the random uncertainties remained at 1.4 mm [54]. Changing the size of the systematic 

uncertainties changes which scenarios are sampled by the optimiser, whereas the random 

uncertainties have no effect on which scenarios are sampled. Just changing the size of the 

systematic uncertainties meant that the differences between the different uncertainty 

settings were more similar to those used in robust planning, where changing the 

uncertainty setting also changes the scenarios sampled in the optimisation. 

While on average the 5 mm plans for all three planning approaches and the 3 mm margin 

and robust plans were robust to anatomical deformations in terms of target coverage, 

there was a lot of variation between different patients. This means that it would have to 

be determined on a patient-by-patient basis as to which planning approach and uncertainty 

setting best accounts for the anatomical deformations, and whether any of these plans are 

robust enough.  

Robust and probabilistic planning required uncertainty settings that were ~2 and ~3.5 times 

larger than those of margin-based planning respectively to reach the desired level of plan 

robustness. This means that the margin-based plans were better at accounting for 

anatomical deformations than the robust and probabilistic plans. We hypothesise that 
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margin plans may be more robust to deformations because the shape of the CTV is 

smoothed by the PTV expansion, while the original CTV contours may have sharp corners 

that are more easily underdosed under deformations. This raises the need of further 

research on the impact of CTV shape on plan robustness. 

In general, for all planning approaches and uncertainty settings, OAR doses were seen to 

increase from the planned dose and the target dose was seen to decrease. This means that 

anatomical deformations should not be ignored in the planning process and plans should 

be evaluated to see how well they account for these changes. So, while in general treating 

anatomical deformations as set-up uncertainties can produce plans that are robust in terms 

of target coverage, care still needs to be taken to ensure OARs are not overdosed. For 

example, in cases where an OAR dose is close to the clinical goal, adaptive radiotherapy 

could be considered to stop the OAR being overdosed. 

4.5. Conclusion 

Margin-based plans were seen to be the most robust to anatomical deformations in terms 

of target coverage, but they had the highest OAR doses for the same uncertainty settings. 

Similarly, increasing the uncertainty setting increased the robustness but also the OAR 

dose. In general, anatomical deformations in H&N could be accounted for by treating them 

as set-up uncertainties. However, the robust and probabilistic plans were more sensitive 

to deformations, and this should be taken into account when replacing margin plans by 

robust or probabilistic planning techniques that only use translational error scenarios. For 

some patients, these plans were not robust and so alternative ways of accounting for the 

anatomical deformations should be considered in these cases, e.g., directly accounting for 

the anatomical deformations in the plan optimisation process or by adaptive radiotherapy. 
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Appendix 4A 

4.A Supplementary material 

4.A.1 Probabilistic planning algorithm 

The probabilistic planning algorithm directly accounts for set-up uncertainties and starts by 

creating separate 3D Gaussian error kernels for both random and systematic uncertainties. 

The standard deviations of the error kernels are Σ and σ for the systematic and random 

uncertainties respectively, and can be different in each of the x, y and z directions. Both 

error kernels have the same resolution as the dose grid (3x3x3 mm in our case) and are 

truncated so that any values with a probability of less than 1% of the maximum value are 

removed, and the remaining values renormalised to make their sum equal to 1. 

To account for random uncertainties, the dose distribution is convolved by the random 

error kernel for each voxel. Systematic uncertainties are accounted for by translating the 

blurred dose distribution, assuming dose-shift invariance. Each point in the systematic 

error kernel is sampled and the total cost function is computed for each scenario. These 

scenarios are then sorted by ascending cost function and weighted by the probability of 

that scenario occurring. The weighted cost functions are then summed until the cumulative 

probability of all scenarios in the sum reaches a specified confidence level, in this case 90%. 

This truncated weighted sum is the total cost that is then optimised. 
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Abstract 

Background: In radiotherapy, margins are commonly used to account for uncertainties, but 

robust and probabilistic planning present alternative approaches for this purpose. The aim 

of this study was to compare the robustness to set-up uncertainties of margin-based, 

robustly optimised and probabilistic plans for different clinical target volume (CTV) shapes. 

Methods: Margin, robust and probabilistic plans were created on a cylindrical phantom for 

12 different CTV shapes: a sphere, a cube and 10 CTVs extracted from head and neck cancer 

patients. The sphericity of each CTV shape was used as a measure of its complexity. For 

each plan, the conformity index (CI) was calculated and then 1000 treatments were 

simulated to measure the impact of set-up uncertainties. For each simulated treatment the 

minimum CTV dose was calculated.  

Results: For all shapes, the margin plan was seen to have the best robustness, with 90% of 

the simulated treatments having a minimum CTV dose well above 95% of the prescribed 

dose. However, the margin plan also had the poorest CI. For both the robust and 

probabilistic plans, about half of the CTVs did not achieve target coverage, including the 

cube. For each planning approach, as the sphericity of the CTV decreased, target coverage 

dropped and the CI worsened. Both robust and probabilistic plans struggled to achieve 

adequate coverage on the ‘corners’ of the more complex CTVs. 

Conclusions: Margin plans achieved the highest target coverage but also had the worst CI. 

As target sphericity decreased, plans were less robust for all three planning approaches. 

Care needs to be taken when planning on CTVs with low sphericity, especially when using 

robust or probabilistic planning as they may underdose the ‘corners’ of more complex CTV 

shapes. 

5.1 Introduction 

In radiotherapy, organ motion and differences in patient set-up positioning cause 

uncertainties to the delivered dose. These uncertainties are typically split into systematic 

errors, which remain the same throughout the treatment course, and random errors, which 

are different for each fraction. Such uncertainties are generally accounted for by extending 

the clinical target volume (CTV) by a margin to the planning target volume (PTV). A common 
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methodology to calculate the margin is to use the van Herk margin formula [76]. However, 

margin recipes were derived for targets with limited curvature which is unrealistic in head 

and neck (H&N) cancer patients and are based on idealised dose distributions which may 

not actually be realistically achievable. Gordon et al. [81] showed that prostate plans 

created using these margin recipes were able to tolerate larger set-up uncertainties than 

expected and as such were too conservative. Additionally, Zheng et al. [79] calculated that 

CTVs with different sizes and shapes would require different margin expansions to ensure 

that the CTV is within the PTV 95% of the time. As an alternative to PTV margins, methods 

such as robust planning and probabilistic planning optimise on the CTV and take the 

uncertainties into account in the optimisation process. These methods have two 

advantages over margins: 1) the robustness of the plan can be explicitly traded off with 

organ at risk (OAR) dose, and 2) the shaping of the dose distribution is taken into account 

in the robustness evaluation. 

Robust planning works by calculating the cost function for a set of discrete error scenarios 

that are assumed to be equally likely to occur, and aims to optimise the worst-case of these 

scenarios. This method is often used to account for range uncertainties as well as set-up 

uncertainties for proton therapy [24]–[31] but its use has also been studied for set-up 

uncertainties in photon treatments for glioblastoma [32], lung [33], head and neck (H&N) 

[34] and breast [35]. 

In probabilistic planning, both systematic and random uncertainties are directly taken into 

account and dealt with differently by the optimiser. Random errors are accounted for by 

blurring the evaluated dose distribution while systematic errors are sampled discretely like 

in robust planning. The cost function for each sampled scenario is weighted by the 

probability of that scenario occurring, and the probability distribution of these functions 

across all scenarios is optimised to reach the given planning constraint at a pre-set 

probability. Studies on the effectiveness of probabilistic planning to account for set-up 

uncertainties have been performed in prostate [36]–[38], spinal cord [39], [40] and H&N 

[41] patients, generally showing better OAR sparing for the same probability of target 

coverage. 

However, to the best of the author’s knowledge, no study so far evaluated the direct effect 

of target shape complexity on the effectiveness of the different planning approaches. The 
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aim of this study was to compare margin-based plans with robustly and probabilistically 

optimised plans under realistic set-up uncertainties for complex target shapes as 

encountered in H&N radiotherapy.  

5.2 Materials and methods 

For this study, a uniform cylindrical phantom (diameter 15 cm and length 20 cm) was used. 

12 separate CTV shapes were used, consisting of a sphere (4.8 cm diameter), a cube (4.8 

cm length) and 10 actual primary CTV shapes from H&N cancer patients (Table 5.1). All 

shapes were centred on the centre of the cylindrical phantom and were treated as the CTV. 

The sphericity of each shape was calculated as a measure of its complexity using the 

following equation: 

 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
√36𝜋𝑉23

𝐴
, (5.1) 

where V is the volume of the shape and A is the surface area. This measure is 1 for perfect 

sphere, and <1 for more complex shapes. 

Three VMAT plans were made in a research version of RayStation (version 6.99) for each 

shape using margin-based planning, robust planning and probabilistic planning with a 

prescribed dose of 66 Gy in 30 fractions, using a 3x3x3 mm dose grid. The plans were kept 

simple, using just a minimum dose constraint for the target and both maximum and 

uniform target objectives along with a dose fall-off objective outside the target (Table 5.2). 

The only region of interest for this study was the target shape – no explicit OARs were 

included, with the rest of the phantom being considered as normal tissue.  

Both the robustly optimised plans and the probabilistic plans used the CTV as the target, 

while the margin-based plans used a PTV that was derived by isotropically expanding the 

CTV by 4 mm. For the target objectives and constraints, an isotropic robustness setting of 

4 mm was used for the robust plans.  

A probabilistic treatment planning plugin was used to create the probabilistic plans, similar 

to the one used by Bohoslavsky et al. in [36], using a confidence level of 90%. Details on 

the probabilistic planning algorithm can be found in Supplement 4.A.1 in Chapter 4. In the 

probabilistic plans, standard deviations of the systematic (Σ) and random (σ) uncertainties 

were used of 1.2 mm and 1.4 mm respectively [54], equivalent to a 4 mm margin according 
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to the van Herk margin formula [76]. The dose fall-off objective remained unchanged across 

the planning approaches. 

Shape 3D Rendering Volume (cm3) Surface area (cm2) Sphericity 

Sphere 

 

57.28 72.20 1.00 

Cube 

 

105.94 132.02 0.82 

CTV1 

 

53.24 77.91 0.88 

CTV2 

 

69.19 93.86 0.87 

CTV3 

 

74.19 110.53 0.77 

CTV4 

 

81.72 121.08 0.75 

CTV5 

 

50.04 91.17 0.72 

CTV6 

 

61.41 107.60 0.70 

CTV7 

 

53.83 104.24 0.66 

CTV8 

 

86.54 143.58 0.66 

CTV9 

 

91.54 159.09 0.62 

CTV10 

 

58.89 128.59 0.57 

Table 5.1: Shape, volume, surface area and sphericity of each target shape. The real CTV shapes are ordered by 
sphericity, with CTV1 being the most spherical. 
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Function Parameters Weight 

Minimum target dose 62.7 Gy (95% prescribed dose) Constraint 

Maximum target dose 69.3 Gy (105% prescribed dose) 50 

Uniform target dose 66 Gy 10 

Dose fall-off 62.7 Gy to 55 Gy in 5mm from PTV edge 5 

Table 5.2: Planning cost functions and their weights. 

To compare the plans, several evaluations were performed. First, the conformity index (CI) 

was calculated to assess the spread of the high dose region, according to the Radiation 

Therapy Oncology Group guidelines [123]. This is calculated by: 

 𝐶𝐼 =  
𝑉95%

𝑉𝑡𝑎𝑟𝑔𝑒𝑡
, (5.2) 

where V95% is the volume enclosed by the 95% isodose surface and Vtarget is the volume of 

the PTV. Values between 1-2 are considered to be acceptable, with 1 being the ideal but 

unreachable value [123]. The mean distances between the surface of the CTV and the 95%, 

50% and 10% isodose surface were next computed to evaluate the spread of the high, 

medium and low dose regions within each plan, and these results are presented in 

Supplement 5.A.1. The minimum distance between the CTV and the 95% isodose surface 

was also calculated. 

The target coverage of the plans was evaluated using an external error scenario simulator, 

similar to the software described in [124]. Here, 1000 treatments were simulated for each 

plan, taking random and systematic set-up uncertainties into account. The systematic and 

random set-up uncertainties were drawn from Gaussian distributions with standard 

deviations of Σ = 1.2 mm and σ = 1.4 mm respectively. For each simulation, the minimum 

cumulative dose to the CTV shape, CTVmin, and the D99 (minimum dose across 99% of the 

CTV) was recorded and summarised in a probability distribution. The 90th percentile of 

CTVmin was plotted against the minimum distance between the CTV and the 95% isodose 

surface for each plan. The 90th percentile of CTVmin for each plan was also plotted against 

the sphericity of the target shape to investigate whether there was a link between target 

coverage and shape complexity. 
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5.3 Results 

Figure 5.1 shows the distribution of CTVmin for the simulated treatments. Given that the van 

Herk margin formula was used, all plans were expected to have 90% probability of 

achieving at least 95% of the prescribed dose (62.7 Gy in this case). For all target shapes, 

the 90th percentile of CTVmin was highest for the margin-based optimisations where it was 

well above the expected 95% for all shapes, indicating that the margin plans were overly 

robust. The robust and probabilistic planning approaches only reached the threshold of 

95% of the prescribed dose to at least 90% of the simulated treatments for half of the plans: 

the sphere and five real CTVs. 

 

Figure 5.1: Violin plots showing the distributions of CTVmin for the different planning approaches and different target 
shapes. Plans for the sphere and cube are on the left, separated from the real H&N CTV shapes. The x-axis is labelled 

with a 3D rendering of the target shape used to create the plans. For each shape, the margin plan is shown in blue, the 
robust in orange and the probabilistic in green. The line on each violin represents the 90th percentile of the distribution 

(±16 treatments corresponding to a 95% confidence level according to binomial statistics), i.e., 90% of the simulated 
treatments have values above the line. 

For the D99 (Figure 5.2), the 90th percentile was above 95% of the prescribed dose for all 

plans, and highest for the margin plans. Only the probabilistic plan for the cube and CTVs 6 

( ), 9 ( ) and 10 ( ) along with CTV9 ( ) for the robust plans had any simulated 

treatment values below 95% of the prescribed dose.  

Figure 5.3 shows there was a strong correlation between the minimum distance between 

the CTV and the 95% isodose surface and CTVmin – as one increased so did the other. The 

margin plans were seen to have the largest distance and CTVmin values, while probabilistic 
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plans had lower values. For each planning approach, the sphere had the highest values for 

both the minimum distance and CTVmin, apart from CTV2 ( ) in the probabilistic plans. A 

CTVmin of 95% of the prescribed dose corresponded to a minimum distance between the 

CTV and 95% isodose surface of ~2.6 mm. 

 

Figure 5.2: Violin plots showing the distributions for the D99 (minimum dose across 99% of the CTV) for the different 
planning approaches and each different target shape. Plans for the sphere and cube are on the left, separated off from 

the real H&N CTV shapes. The x-axis is labelled with a 3D rendering of the target shape used to create the plans. For 
each shape, the margin plan is shown in blue, the robust in orange and the probabilistic in green. The line on each violin 
represents the 90th percentile of the distribution (±16 treatments corresponding to a 95% confidence level according to 

binomial statistics), i.e., 90% of the simulated treatments have values above the line. 

Figure 5.4 shows the CI for the different plans, which ranged from 1.07 in the probabilistic 

plan for CTV9 ( ) to 1.45 in the margin plan for CTV5 ( ). For each shape, the margin 

plans had the poorest CI with a mean of 1.38 and the robust and probabilistic plans were 

similar, with means of 1.17 and 1.15 respectively.  

As the sphericity of the shape decreased, there was a general trend for the 90th percentile 

of CTVmin to decrease for each planning approach (Figure 5.5). This same trend was seen 

for the D99. There was a general trend that shapes with a lower sphericity had a higher CI 

for each planning approach. 

For the sphere, the 95% isodose surface covered the whole PTV in each plan. For the cube, 

the 95% isodose surface covered the whole PTV for the margin plan, whereas for the robust 

and probabilistic plans, it did not reach all of the voxels at the corners of the PTV (Figure 

5.6). 
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Figure 5.3: Scatter plots showing the relationship between the 90th percentile of CTVmin and the minimum distance 
between the CTV and 95% isodose surface. The ‘x’s represent the real H&N CTV shapes and the spherical and cubic 

targets are represented by a circle and square respectively. The margin plans are shown in blue, the robust in orange 
and the probabilistic in green. A trendline is shown in purple. 

 

Figure 5.4: Bar charts showing the CI for the different plans. Plans for the sphere and cube are on the left, separated off 
from the real H&N CTV shapes.  The x-axis is labelled with a 3D rendering of the target shape used to create the plans. 

For each shape, the margin plan is shown in blue, the robust in orange and the probabilistic in green. 
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Figure 5.5: Scatter plots showing the relationship between CTV sphericity and a) the 90th percentile of CTVmin and b) CI 
for each plan. The ‘x’s represent the real H&N CTV shapes and the spherical and cubic targets are represented by a 

circle and square respectively. The margin plans are shown in blue, the robust in orange and the probabilistic in green. 
A trendline is shown for each of the planning approaches. 
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Figure 5.6: The dose distributions on the axial slice through the centre of the cylindrical phantom for the plans for the 
spherical and cubic target shapes. a-b) show the margin plan, c-d) the robust plans and e-f) the probabilistic plans. The 

CTV is delineated in green on each plan and the PTV (the CTV with a 4 mm expansion) is delineated in blue. 

5.4 Discussion 

In this study, we have compared simple plans for different CTV shapes using margin, robust 

and probabilistic planning approaches. We investigated the effect of set-up uncertainties 

on target dose by running treatment simulations, and also looked at conformity. Our results 
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have shown that as the minimum distance between the CTV and the 95% isodose surface 

increased, the 90th percentile of the minimum dose to the CTV also increased. The margin 

plans were seen to have both a higher robustness and larger dose spreads than the robust 

and probabilistic plans. Plans for the sphere were the most robust within each planning 

approach. We found that all plans achieved adequate coverage to 99% of the CTV but some 

of the robust and probabilistic plans had the 90th percentile of CTVmin significantly below 

the intended 95% of the prescribed dose. The margin plans were seen to have the highest 

target dose but also the poorest CI, while both the probabilistic and robust plans had a 

better CI and lower target dose. 

There was a general trend that the lower the sphericity of the target shape, the lower the 

CTVmin, and the higher the CI. This implies that plans get ‘worse’ as the CTV gets less 

spherical – there is a lower dose to the target and the high dose region spreads further 

outside the target, into the normal tissue. This suggests that for CTVs with low sphericity, 

more care needs to be taken into the planning process to ensure a good quality plan, than 

for more spherical targets. To the best of the knowledge of the authors, no other studies 

have looked into the effect of target shape complexity on the efficacy of different planning 

algorithms. 

There have been some studies looking at the effect of differences in CTV shape, size and 

tissue density on required margins. Zheng et al. [79] calculated the required margins for 

different size spheres, cylinders and concave regions within a CTV. They concluded that 

different size margins would be required for the different shapes and sizes of CTV to 

account for the random component of the set-up uncertainties. Witte et al. [78] also 

concluded that both the target size and tissue density affected the required margin 

expansion to account for random error. However, these margin expansions were calculated 

mathematically and were based on idealised dose distributions which may not actually be 

realistic or deliverable. Actual plans were not created and evaluated for the different 

shapes/sizes/tissue densities considered in these studies. 

Numerous studies have compared either robust planning or probabilistic planning to 

conventional margin-based plans under set-up uncertainties for a range of sites [25], [27], 

[31], [32], [36]–[38], [41]. In general, these results have found that robust and probabilistic 

planning can help increase OAR sparing while keeping a similar level of target coverage. 
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These studies were conducted using real patient geometries, and the effect of different 

target shape complexity has not been evaluated.  

The standard deviations of the systematic and random uncertainties used in the treatment 

simulations and probabilistic planning were 1.2 mm and 1.4 mm respectively. Using the van 

Herk margin formula [76], this should equate to a margin of 4 mm, which was the value 

used for the PTV expansion and the robustness setting for the robust plans. For a spherical 

target, this formula was derived under the assumption that the 95% isodose surface should 

extend by this margin beyond the CTV (following the PTV for conventional margin plans). 

In our plans for the spherical target, the mean distance between the surface of the sphere 

and the 95% isodose surface was 6.8 mm, 5.3 mm and 4.7 mm for the margin, robust and 

probabilistic plans respectively (Supplement 5.A.1). This is larger than expected for the 

margin and robust plans, and on par for the probabilistic plans. This shows that the margin-

based plan extends the 95% isodose surface further than the formula recommends, 

potentially due to a lack of degrees of freedom for plan optimisation. This behaviour is not 

just seen in the sphere: the mean across all the shapes was 7.1 mm, 5.5 mm and 5.2 mm 

for the margin, robust and probabilistic planning approaches respectively. This effect has 

been noted before in both prostate [81] and H&N [49]. Both studies noted that the plans 

were able to tolerate larger set-up uncertainties than expected for the size of margins, 

suggesting that margin-based planning could be more conservative than intended. Gordon 

et al. [81] conclude that this is likely due to the planning system effectively creating an 

additional dosimetric margin around the target. 

This over-cautiousness in the margin plans was also seen in the results for CTVmin for the 

simulated treatments. The van Herk margin formula was derived to ensure that a minimum 

of 95% of the prescribed dose to the target was achieved at least 90% of the time. All 

margin plans exceeded this aimed robustness.  

In general, it was also seen that as the sphericity of the shape reduced, the 90th percentile 

of CTVmin reduced. This is especially noticeable in the cube. Looking at Figure 5.6, it can be 

seen that the robust and probabilistic plans were ‘cutting off the corners’ with the high 

dose. Although the real CTV shapes do not always have easily identifiable ‘corners’ as such, 

it is likely that this is also what was happening in those shapes with lower sphericity. 
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Looking at the shapes that have the lowest minimum CTV dose, CTVs 6 ( ), 9 ( ) and 10 

( ), these shapes are seen to have the most obvious ‘corners’ that are fairly square like, 

and it was these ‘corners’ where the minimum dose under uncertainties was below the 

expected 95% of the prescribed dose (Supplement 5.A.2). This explains why CTVmin was so 

low for these shapes while the D99 was within the accepted range – the majority of the 

target shape was covered by the high dose, but a few of the ‘corner’ voxels were being 

underdosed, resulting in a lower absolute minimum dose.  

The reason for this ‘cutting off corners’ is possibly due to the way the scenario sampling 

works for the robust and probabilistic plans. The default behaviour for the robust planning 

algorithm in RayStation (v6.99) for this size of uncertainty only samples the nominal 

scenario (with no errors) and scenarios in the six cardinal directions, not any combinations 

of them, i.e., along the diagonals. The probabilistic planning algorithm weights the different 

scenarios sampled by their probability. The scenarios along the diagonals have the lowest 

probability of occurring so will be given less emphasis by the optimiser. This could explain 

why the corners of the cube (and other shapes with lower sphericity) are being cut off and 

the 95% isodose surface does not extend as far out as it perhaps should, explaining the 

lower CTVmin values for both robust and probabilistic plans. 

Another reason for this could be the way the planning system represents the target shapes 

and OARs while planning. For each planning structure, every voxel in the dose grid is 

assigned a value from 0-1 depending on the percentage of that voxel that is within the 

specified structure. Voxels fully outside a given structure have a value of 0, voxels fully 

inside will have a value of 1 and voxels along the surface will have a value that is the 

fractional volume of the voxel that is within the structure. This representation of the 

structure used for the planning process is fairly rough and does not maintain the exact 

shape of the contour. This will not matter too much where the contour is smooth, but 

where there are ‘corners’, this representation is not perfect. Expanding the CTV by a 

specified margin to a PTV has the effect of smoothing out some of the ‘corners’ of the CTV. 

This means the imperfections in this way of representing planning structures will likely have 

less impact on margin planning which is based on the ‘smoother’ PTV contour than on 

robust or probabilistic planning which use the more ‘jagged’ CTV contour as the input. 
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Comparing the different planning approaches, for all shapes, the margin plan had the 

highest dose to the target in both CTVmin and the D99. However, the spread of the high 

dose region was largest for the margin plans, meaning there would be a higher dose to the 

normal tissue than for the robust and probabilistic plans. As always with planning, there is 

a trade-off between getting a higher dose to the target and limiting the dose to the rest of 

the patient. As to which of these planning approaches would be ‘better’, this would depend 

entirely on the scenario, and a clinical decision would have to be made as to whether it was 

worth sacrificing getting a high dose to a few voxels on the ‘corners’ of the CTV to spare 

the normal tissue from receiving as high a dose. 

In order to create the plans for each shape, only a minimum dose constraint and both 

maximum and uniform target objective functions were used, with a dose fall off function. 

While these functions were based on realistic values, these plans were massively simplified 

due to the lack of specific OARs. In practise, there are typically many OARs that are 

considered in H&N patients which will have an effect on how well target coverage can be 

achieved and how far dose can be allowed to spread outside the target. However, these 

simplified plans can give an idea of how well the different planning approaches can perform 

on different shapes under optimal conditions. It stands to reason that a planning approach 

that struggles to achieve the required target coverage in this simplified scenario is likely to 

also struggle in a real patient with non-uniform tissue densities and OARs that have limits 

on how much dose should be applied. 

An extension of this work would be to include some OARs to the cylindrical phantom, e.g., 

a simplified version of the brainstem, spinal cord or parotids, and re-run the plans with 

dose objectives on these to investigate whether target shape has an effect on the ability of 

the planning approaches to spare OARs as well as achieving coverage. However, this is 

beyond the current scope of this paper. 

This study only looks at 12 different shapes – a sphere, a cube and then 10 real CTV shapes 

from H&N cancer patients. This is enough to show that there is a correlation between 

sphericity of the shape and both the minimum dose to the target and conformity. Future 

work could be done to investigate this link further by using a larger sample of different 

shapes with a wide range of sphericity and features. This could also be extended to consider 
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other measures for the complexity of the shape, e.g., deviation from the convex hull or the 

complexity measure suggested by Brinkhoff et al. [125]. 

5.5 Conclusion 

All plans achieved 95% of the prescribed dose to the majority of the target, however some 

of the robust and probabilistic plans were seen to underdose a small portion (<1%) of the 

CTV. This effect was larger in CTV shapes with lower sphericity, likely due to the plans 

underdosing the ‘corners’ of the shape. However, the probabilistic and robust plans had 

better conformity than the margin plans and were closer to the intended robustness. It was 

seen that as the sphericity of the target decreased, in general plans performed worse for 

all three planning approaches. This suggests more care needs to be taken when planning 

on CTVs with low sphericity, especially when using probabilistic or robust planning. 
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Appendix 5A 

5.A Supplementary material 

5.A.1 High, medium and low dose spread 

 

Figure 5.A.1: Bar charts showing the mean distance between the CTV surface and the a) 95% isodose surface, b) 50% 
isodose surface and c) the 10% isodose surface. Plans for the sphere and cube are on the left, separated off from the 

real H&N CTV shapes. The x-axis is labelled with a 3D rendering of the target shape used to create the plans. The margin 
plans are shown in blue, the robust in orange and the probabilistic in green. 

Looking at the spread of the high, medium and low dose regions for each plan by 

considering the distance between the target shape and the 95%, 50% and 10% isodose 

surfaces (Figure 5.A.1), it can be seen that the margin plans had the largest dose spread. 

For the mean distance between the 95% isodose surface, the mean across all shapes was 

7.1 mm, 5.5 mm and 5.2 mm for the margin, robust and probabilistic plans respectively. 

For the medium dose region, the means were 21.4 mm, 19.8 mm, 19.4 mm for the margin, 

robust and probabilistic plans respectively and for the low dose spread, 41.7 mm, 40.2 and 

40.0 mm.  

For each planning approach, there was a general trend that as the sphericity of the shape 

decreased, the high, medium and low dose regions spread further. 
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5.A.2 Isodose contours 

 

Figure 5.A.2: The CTV (purple) and the 95% isodose contours (red) for a single slice of each plan. The same slice is 
depicted for plans made using the three planning approaches for a given CTV shape, but different slices are shown for 
each shape. The highlighted regions show voxels within the CTV that had a final simulated treatment dose of less than 

95% of the prescribed dose in any of 250 simulated treatments. Note: a voxel was considered within the CTV if any 
portion of the voxel fell within the 3D CTV contour – it may appear to be outside the contour in the figures as they are 

just 2D cross sections of the overall image. 



119 
 

 

 

Figure 5.A.2 continued: The CTV (purple) and the 95% isodose contours (red) for a single slice of each plan. The same 
slice is depicted for plans made using the three planning approaches for a given CTV shape, but different slices are 

shown for each shape. The highlighted regions show voxels within the CTV that had a final simulated treatment dose of 
less than 95% of the prescribed dose in any of 250 simulated treatments. Note: a voxel was considered within the CTV if 
any portion of the voxel fell within the 3D CTV contour – it may appear to be outside the contour in the figures as they 

are just 2D cross sections of the overall image. 
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Figure 5.A.2 continued: The CTV (purple) and the 95% isodose contours (red) for a single slice of each plan. The same 
slice is depicted for plans made using the three planning approaches for a given CTV shape, but different slices are 

shown for each shape. The highlighted regions show voxels within the CTV that had a final simulated treatment dose of 
less than 95% of the prescribed dose in any of 250 simulated treatments. Note: a voxel was considered within the CTV if 
any portion of the voxel fell within the 3D CTV contour – it may appear to be outside the contour in the figures as they 

are just 2D cross sections of the overall image. 
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Figure 5.A.2 continued: The CTV (purple) and the 95% isodose contours (red) for a single slice of each plan. The same 
slice is depicted for plans made using the three planning approaches for a given CTV shape, but different slices are 

shown for each shape. The highlighted regions show voxels within the CTV that had a final simulated treatment dose of 
less than 95% of the prescribed dose in any of 250 simulated treatments. Note: a voxel was considered within the CTV if 
any portion of the voxel fell within the 3D CTV contour – it may appear to be outside the contour in the figures as they 

are just 2D cross sections of the overall image. 



122 
 

 

Figure 5.A.2 continued: The CTV (purple) and the 95% isodose contours (red) for a single slice of each plan. The same 
slice is depicted for the three planning approaches of a given CTV shape, but different slices are shown for each shape. 
The highlighted regions show voxels within the CTV that had a final simulated treatment dose of less than 95% of the 
prescribed dose in any of 250 simulated treatments. Note: a voxel was considered within the CTV if any portion of the 
voxel fell within the 3D CTV contour – it may appear to be outside the contour in the figures as they are just 2D cross 

sections of the overall image. 
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Figure 5.A.2 continued: The CTV (purple) and the 95% isodose contours (red) for a single slice of each plan. The same 
slice is depicted for the three planning approaches of a given CTV shape, but different slices are shown for each shape. 
The highlighted regions show voxels within the CTV that had a final simulated treatment dose of less than 95% of the 
prescribed dose in any of 250 simulated treatments. Note: a voxel was considered within the CTV if any portion of the 
voxel fell within the 3D CTV contour – it may appear to be outside the contour in the figures as they are just 2D cross 

sections of the overall image. 
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Chapter 6 

Discussion 
The overall aim of this thesis was to understand geometrical uncertainties in H&N 

radiotherapy; how to model them, how to evaluate their impact and how to make plans 

that are robust against them. Uncertainties can cause underdosing of the target, making 

the treatment less effective or overdosing OARs, increasing the risk and severity of side 

effects for the patient. For H&N cancer patients, these side effects include xerostomia (dry 

mouth) and dysphagia (difficulty swallowing), which can have a large impact on the quality 

of life for the patient [5]–[7]. As such, it is important to improve the models of the 

uncertainties and assess the robustness of different plans to these variations. To achieve 

the overall aim of this thesis, a set of specific aims were defined: 

1. Create and evaluate a time-dependent H&N anatomical deformation model 

including random and systematic components. 

2. Evaluate the impact of set-up uncertainties and anatomical deformations on the 

dose to the target and OARs. 

3. Compare different planning approaches to deal with set-up uncertainties and 

anatomical deformations. 

4. Evaluate the impact of target shape on plan robustness. 

The first aim was addressed by Chapters 2 and 3. Chapter 2 developed a method to evaluate 

the ability of PCA models to represent unseen changes in the patient or population. This 

chapter highlighted the fact that the oropharyngeal region in H&N cancer patients is 

particularly challenging to model using PCA. Chapter 3 created a set of time-dependent PCA 

models to describe both the systematic and random anatomical deformations occurring in 

a population of H&N cancer patients. 

Chapter 3 went on to address the second aim by evaluating the dosimetric effect of both 

anatomical deformations and set-up uncertainties on the clinical plans for a set of H&N 

cancer patients. The results show that for most OARs, the anatomical deformations had a 

similar or smaller impact than set-up uncertainties. 
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This finding was then used to address the third aim in Chapter 4, investigating whether 

different planning approaches which were intended to account for set-up uncertainties 

could also account for anatomical deformations. This was done by creating margin, robust 

and probabilistic plans accounting for differing levels of set-up uncertainties. Treatment 

simulations for these plans were run, using the anatomical deformation models from 

Chapter 3. A 5 mm uncertainty setting was found to be sufficiently robust to anatomical 

deformations for the probabilistic plans, while a 3 mm uncertainty setting was sufficiently 

robust for the margin and robust plans. The third aim was also addressed in Chapter 5 

where simple margin, robust and probabilistic plans were created for a variety of CTV 

shapes and the dosimetric effect of set-up uncertainties on these plans was evaluated. 

Here, margin plans were found to be the most robust to set-up uncertainties. 

The final aim was addressed by Chapter 5, which investigated whether there was any link 

between plan robustness and the complexity of the target shape. The results show that 

plan robustness decreased as the CTV got less spherical, and both robust and probabilistic 

planning approaches struggled to reach a high enough dose to the target for more complex 

CTVs as the ‘corners’ of these shapes were underdosed. This implies that care should be 

taken when using robust and probabilistic planning to ensure an adequate dose to the 

target is reached for complex target shapes. 

6.1 Comparison to literature 

There have been many studies using PCA to model anatomical deformations. Some 

considered just the displacement of the surface contour of specific organs [65], [68], [69], 

while others considered the displacement of each voxel within the scan [67], [70], [74], 

[100], [101], as was done in Chapters 2 and 3. While the inputs for these two 

implementations are slightly different, the overall method for modelling deformations is 

the same, although depending on the intended application, one implementation may be 

preferable to the other. For example, considering the displacement of each individual voxel 

is more useful when the model is intended to be used for dose mapping and accumulation, 

as it was in Chapter 3. 

Before PCA models can be used, they need to be first evaluated to see how well they 

represent actual deformations seen in a patient or population. Similar evaluation strategies 
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to the generalisability method proposed in Chapter 2 have been used previously in prostate 

[65], [69], [70] and lung [68], [100] patients, but they mainly evaluated the PCA model 

against the input DVFs instead of against unseen data. However, Badawi et al. [68] did 

create models using just a subset of their input data, which they evaluated against the 

unused DVFs in order to determine whether it was enough to use just one input scan per 

week of data or whether three per week were needed. Budiarto et al. [69] evaluated their 

population-based model on DVFs from three unseen patients, but not on any unseen DVFs 

from their training patients. Badawi et al. [68] and Söhn et al. [65] plotted heat maps of the 

local residual errors, similar to the 𝑀𝑟𝑒𝑠 maps shown in Chapter 2.  

Both Szeto et al. [100] and Vile [70] used a LOOCV, similar to the model robustness method 

proposed in Chapter 2. However, neither study evaluated residual errors locally; they just 

considered the scan as a whole. 

While these studies have used similar methods to those proposed in Chapter 2, there are 

some key differences. Besides their lack of evaluation on unused DVFs to determine 

whether their models represented the full range of deformations seen within the patient 

or population of training patients, none of these studies considered the Z-score of the 

weights required to generate the closest DVF to the reference DVF that can be produced 

from the model. These Z-scores are important to ensure that the model can accurately 

describe not only the direction of the deformations but also their size. The Z-scores also 

give a value for the likelihood of the closest DVF being produced from the PCA model, which 

gives an indication as to whether the DVF being evaluated against is within the same 

distribution as the input DVFs. Also, none of these other studies investigated the sensitivity 

of the model by considering the effect adding Gaussian noise to the DVF had on the residual 

error. 

Thornqvist et al. [103] developed a method for evaluating PCA models for anatomical 

deformations. They created 5,000-10,000 different patient geometries from their model 

and used these to create a coverage probability map for the different organs. From this, 

they compared specific iso-probability contours with the actual contours delineated on the 

different scans. They then used the sensitivity and precision of the iso-probability contours 

to evaluate the model. 
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In H&N, there have been a couple of studies using PCA to model anatomical deformations 

[71], [72], however no evaluation of the residual errors of the PCA models were conducted. 

While Chetvertkov et al. [72] looked at using their PCA model to see if they could predict 

time trends for the main modes of deformation, there was no explicit time-variation built 

into their models. In contrast, our population-based deformation model in Chapter 3 

explicitly accounted for time by creating separate PCA models for each of the weeks of 

treatment. Pakela et al. [126] also explicitly built in a time-dependence to their H&N 

anatomical deformation models, however this was done by modelling the changes as either 

a Markov process or by using a quantum mechanics approach as opposed to PCA. None of 

these other H&N models were used to assess the dosimetric effect of the modelled changes 

on the patient, as was done in Chapter 3. This is an important step, because it is the actual 

effect of the deformations on the delivered dose that can determine how well they are 

currently accounted for. Importantly, we are the first to explicitly differentiate systematic 

and random components of anatomical deformations in H&N cancer, in a similar way to 

Vile [70] in the prostate. Szeto et al. [100] also modelled the random and systematic parts 

separately for their model of lung deformations, however, they used the voxel-wise 

standard deviation of all DVFs for each patient as the inputs for their model for the random 

variations. This distinction between the systematic and random errors is important as they 

will have different effects on the delivered dose, and so need to be handled differently 

when accounting for these uncertainties [76]. 

Along with conventional margin-based planning, robust and probabilistic planning have 

both been studied to account for set-up uncertainties in various sites [32], [33], [35]–[37], 

including H&N [34], [41]. These approaches have been shown to reduce OAR dose 

compared to margin plans while keeping a similar or improved level of target coverage. 

While there were no specific OARs considered in the plans in Chapter 5, the high dose 

region spread further into the normal tissue for the margin plans, suggesting that it might 

be harder to spare OARs if they had been considered. The robust and probabilistic plans 

were also seen to have a lower dose to the target than the margin plans which is not always 

the case in other studies conducted into robust and probabilistic planning. The reason for 

this discrepancy could be that other studies either re-normalise the plans once optimised 

to ensure a specific level of target coverage [34], or they adjust the margins or the weights 
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for the objective functions to ensure a similar level of target coverage between the two 

plans they are comparing [37], [41]. Neither of these was done for the studies in Chapters 

4 and 5 to guarantee a fair comparison between the optimisation approaches.  

We also found that the margin plans in Chapter 5 were overly robust, with the 90th 

percentile probability level of the minimum dose to the CTV being higher than 95% of the 

prescribed dose. This over-robustness of the margin plans has been seen before in clinical 

plans for prostate [81] and H&N [49] patients, suggesting that perhaps margins could be 

reduced to help spare OARs. This also agrees with the work in Chapter 4 which showed that 

the margin plans required a much smaller uncertainty setting than robust and probabilistic 

plans to reach the desired level of robustness to anatomical deformations. 

The work in Chapter 5 investigated whether the complexity of the CTV shape affects the 

robustness of the plan. Witte et al. [78] investigated whether the size and tissue density of 

the target had any effect on the required margin size, and Zheng et al. [79] considered the 

effect of target shape as well as size on the necessary margins. Both these studies 

concluded that these factors would affect the size of margin expansion required to account 

for the random component of the uncertainties. However, both these studies evaluated 

mathematical derivations for margin recipes and actual plans were not created and 

analysed. To the best of the author’s knowledge, there have been no other investigations 

into the effect of target shape on either robust or probabilistic planning, and we are the 

first to perform planning studies to investigate the effect of shape complexity on plan 

robustness.  

The probabilistic planning algorithm used in Chapters 4 and 5 was the same 

implementation (but in a different treatment planning system) as the one used by 

Bohoslavsky et al. [36] and Fontanarosa et al. [41], although rotational uncertainties were 

not included in our study. In Chapters 4 and 5, all objective functions were kept the same 

between the margin and probabilistic plans, with the only difference being that target 

objectives were switched from PTV to CTV and were made probabilistic. For Chapter 4, the 

objective functions came from a class solution used at our institution, including minimum, 

maximum, uniform and minimum DVH target objectives, and Chapter 5 used minimum, 

maximum and uniform target objectives. However, Fontanarosa et al. [41] only used a 

minimum CTV dose objective function, and discarded any other objective functions relating 
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to the PTV. This was done to avoid possible problems due to the fact that each objective 

function is calculated independently, meaning that different error scenarios could be 

combined in the different cost functions for the same target. This is a similar concept to 

using an objective-wise vs composite worst-case optimisation in robust planning. We chose 

to follow the workflow used in the clinic at our institution as closely as possible, where 

multiple target objectives are used and therefore effects from this correlation problem will 

have been included in our results. In future, this impact of potential correlation problems 

could be investigated by adapting the probabilistic planning algorithm to treat all 

probabilistic objectives as a single overarching function and sample all the errors together 

and then comparing it to sampling each objective function individually. 

Our implementation of probabilistic planning samples the errors at each point in the 

systematic error kernel (which has the same resolution as the dose grid), and then weights 

all the sampled scenarios by the probability of the scenario occurring. However, Moore et 

al. [38] randomly sampled systematic errors from a Gaussian distribution, and then 

summed the cost function of each scenario without explicitly weighting it by the 

probability. Their method works because the random sampling from the Gaussian 

distribution already takes the probability of the scenario occurring into account – with 

more likely scenarios being sampled more often. However, this technique requires a larger 

number of scenarios to be sampled to represent the probability distribution and would 

therefore take a very long time. 

6.2 Limitations and future work 

The PCA models in Chapters 2, 3 and 4 relied on DVFs produced by deformable image 

registration. While no formal quantitative evaluation of the registration uncertainties was 

performed, they will not be perfect. For instance, considering the volume changes of the 

OARs using the anatomical deformation model (Supplement 3.A.3), there was an overall 

systematic increase in volume seen in the brainstem, spinal cord and oral cavity and a 

decrease in the larynx, likely to do with differences in the CBCT image quality and CT image 

quality affecting the registrations. Veiga et al. [108] found that regions of low quality within 

the CBCT had larger variations in the registrations between different algorithms. Using data 

with better quality of on-treatment scans, or perhaps different deformable registration 
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algorithms could perhaps reduce registration uncertainties. For example, Veiga et al. [108] 

suggest that using a registration algorithm parameterized by a stationary velocity field 

could produce DVFs with more desirable physical properties. 

Uncertainties will be present in both the intra- and inter-patient registrations. For the intra-

patient registrations, these will cause uncertainties in the length and orientation of each 

vector within the DVF, and these uncertainties will be different for each scan. This will have 

the overall effect of adding noise to the models. The inter-patient registrations only effect 

the mapping of the DVFs into the average geometry. Any uncertainties in these 

registrations will manifest as uncertainties in the position of each vector in the DVF. This 

effect will remain the same for all DVFs from the same patient. These uncertainties will 

have the overall effect of blurring the model. Figure 6.1 shows a representation of the 

effect of these registration uncertainties for a vector within a DVF. 

 

Figure 6.1: a representation of the effect of intra- (left) and inter-patient (right) registration uncertainties. 

One way to get an idea of the regions of higher registration uncertainty is to take the 

average of all scans registered to a common reference scan [127]. Regions that are blurred 

or ‘fuzzy’  in this average scan are regions where the registrations were less consistent 

between the different scans. For each patient, an average of all the CBCTs registered to the 

pCT was calculated and an example of this for patient 4 is shown in Figure 6.2. Along with 

the average registered CBCT, a single registered CBCT is shown, to give an idea of the 

sharpness and quality of the individual scan for comparison.  

For the inter-patient registrations, the average pCT is already the mean of each patient’s 

pCT registered to the common reference frame. This is shown in Figure 6.3, along with 

examples of 2 individual patient’s pCTs registered to the average geometry. 
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Figure 6.2: The pCT of patient 4 and the results of the intra-patient registrations for a single CBCT (middle row) and the 
mean of all CBCTs (bottom row). On the right, the CBCT and average CBCT (green) are superimposed over the pCT 

(pink). The region circled in red shows the area where the registrations were seen to struggle. 

For both the intra- and inter-patient registrations, the areas of least consistency were 

shown to be around the air-tissue interfaces, especially in the oropharynx and the 

nasopharynx (see circled regions in Figures 6.2 and 6.3). This region is also the region that 

was found to have the largest residual error in the PCA models. It is possible that the 

registration uncertainties are contributing to the larger residual error, by blurring/adding 

noise to the PCA models, making it difficult to pick out the actual anatomical deformations 

taking place in this region. 
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Figure 6.3: The average pCT and the results of the inter-patient registrations for patient 8 (middle row) and patient 10 
(bottom row). On the right, the patient pCT (green) is superimposed with the average pCT (pink). The region circled in 

red shows the area where the registrations were seen to struggle. 

In this thesis, the DVFs from the intra-patient registrations are mapped to the average 

patient geometry using the following equation 

 𝑇𝑝𝑎𝑡_𝑡𝑜_𝑝𝑜𝑝 ⋅ 𝑇𝐶𝐵𝐶𝑇_𝑡𝑜_𝑝𝐶𝑇, (6.1) 

where 𝑇𝑝𝑎𝑡_𝑡𝑜_𝑝𝑜𝑝  is the transformation from the patient pCT to the average pCT and 

𝑇𝐶𝐵𝐶𝑇_𝑡𝑜_𝑝𝐶𝑇  is the transformation from the CBCT to the pCT in the patient geometry. 

However, this only repositions the vectors in the new geometry; the length and orientation 

of the vectors remains unchanged. To include and changes in orientation/length of the 

vectors, the DVFs mut also been transformed by the inverse of the transformation between 

the patient pCT to the average pCT [128], 𝑇𝑝𝑎𝑡_𝑡𝑜_𝑝𝑜𝑝
−1 

 𝑇𝑝𝑎𝑡_𝑡𝑜_𝑝𝑜𝑝 ⋅ 𝑇𝐶𝐵𝐶𝑇_𝑡𝑜_𝑝𝐶𝑇 ⋅ 𝑇𝑝𝑎𝑡_𝑡𝑜_𝑝𝑜𝑝
−1. (6.2) 
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Adding this extra transformation ensures that the vectors are rescaled and reorientated 

accordingly to account for deformations between the patient and the average geometry. 

For example, if a patient is much larger than the average geometry, the vectors from the 

intra-patient deformations might be expected to be larger than average and so when 

warping to the average geometry, the DVFs from CBCT to pCT need to be rescaled to 

account for this.  

To get an idea to the difference adding this extra transformation would make to the results 

in this thesis, one of the intra-patient DVFs from the final week of treatment for validation 

patient 2 was transformed into the average geometry using Equation 6.2. The population-

based model from Chapter 2 was then evaluated against this DVF and the 𝑀𝑟𝑒𝑠  values 

compared to those done previously, using Equation 6.1. 

 

Figure 6.4: a) average planning CT. The 𝑀𝑟𝑒𝑠 values for the population-based model in Chapter 2 evaluated against a 
DVF from week 6 for validation patient 2 where the DVFs were mapped into the average geometry by b) just mapping 

geometry and c) mapping and re-orientating the DVFs from the patient geometry. d) the difference in 𝑀𝑟𝑒𝑠 values 
between the two methods. 

Figure 6.4 shows the difference in the 𝑀𝑟𝑒𝑠  values for a DVF from validation patient 2 

between just mapping the vectors into the average patient geometry (Equation 6.1) and 

both mapping and reorientating the vectors (Equation 6.2). Across all voxels n the DVFs, 

the differenced ranged from -3.6 to 3.2 mm, with a standard deviation of 0.4 mm. The 

difference between the 𝑀𝑟𝑒𝑠
90 values was 0.08 mm. 

The anatomical deformation models presented in Chapter 3 were population-based. This 

has the advantage that it can be used based on the first CT of a new patient prior to taking 

any additional scans. However, it is likely that not all patients experience the same 

deformations so the model could be more accurate for some patients than others. One 
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possible extension of this work could be to split patients into groups based on expected 

deformations, e.g., patients that are likely to experience large amounts of weight loss, or 

patients that may only have minimal parotid shrinking. Separate models could then be used 

for the different patient groups, and criteria should be developed to assign a new patient 

to the best fitting group. If a patient already has a few scans, the PCA evaluation method 

proposed in Chapter 2 could be used to identify which model has the lowest residual error 

and therefore best represents the likely deformations for that patient. 

One limitation of the anatomical deformation models presented in Chapter 3 is the fact 

that the residual error was fairly high for the systematic model when evaluated against the 

validation patients, with a mean 𝑀𝑟𝑒𝑠
90 of 4.6 mm. This could potentially be improved by 

training the model on more patients, as an increase in training patients was shown to 

decrease the residual errors (Supplement 3.A.2). For all models, the residual error was seen 

to be largest around the oropharynx. It is unlikely that increasing the number of training 

patients will completely eliminate the error in this region, as shown in Chapter 2. This is 

likely to be a limitation of PCA itself and models need to be carefully interpreted when used 

in this region. In Chapter 3, anatomical deformations were seen to have a larger effect than 

set-up uncertainties on the CTV and larynx dose. However, these are both within the region 

with higher residual error on the models, and so further work needs to be conducted to 

see if this is a real effect, or to do with the limitations of the modelling method itself. 

To capture the long-term time trends, separate weekly PCA models were created. These 

models were independent from each other and so any treatment simulations would not 

take into account previous fractions when simulating the following fraction. This means 

that progressive changes may not be captured smoothly. For example, in one treatment 

simulation, a simulated DVF during week 1 may include a particularly large amount of 

parotid shrinking, while the following DVF simulated from the week 2 model may include 

experience a smaller level of shrinking. In reality, this is unlikely to happen, and the long-

term changes are progressive throughout the treatment course. However, in this thesis, 

the models are not used to consider individual treatment courses. Rather, the models are 

used to look at the distribution of end points after multiple (1000) treatment courses are 

run. As such, while individual treatments themselves may experience unusual progressive 
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changes, this averages out over the 1000 treatments per patient and produces something 

much smoother and more realistic (see Figure 3.A.2).  

However, in applications where simulating individual treatment courses would be required, 

these models could be adapted. This could be done by creating the weekly models using 

the residual deformation compared to the previous week. The models for week 1 would 

remain the same, but the input for subsequent models would be the residual DVF between 

the DVF from that week and the previous week. To run a simulated treatment course, a 

DVF would be simulated from the PCA model for week 1, as before. For each subsequent 

week, a residual DVF would be simulated from that weekly residual model, and this would 

be summed to the DVF from the previous week. This would ensure that any of the long-

term changes were progressive and take into account the previous fraction. 

The plans created in Chapter 4 were based on a class solution used at our institution and 

were not adapted for each specific patient. This means that these might not be the best 

possible plans for each patient. An extension to this study would be to have an experienced 

planner create a plan for the patient using say the 3 mm PTV margins, and then use the 

objectives and weights from this personalised plan for the other plans for that patient. This 

would ensure that the plans were of better quality and more realistic to the plans that 

might be clinically used. 

The work in Chapter 5 massively simplified the challenge of planning radiotherapy for H&N 

patients. This was conducted in a cylindrical phantom, of uniform density, with only a 

single, central target and no specific OARs. While this gives an idea to the efficacy of the 

different planning approaches under ideal and simplified conditions, it does not give a 

realistic view of the complexity of H&N plans with multiple OARs near the target. A future 

direction of this work would be to extend this by approximating OARs within the phantom, 

e.g., the parotids or spinal cord, and see how target sphericity and planning approach affect 

OAR sparing. In addition, this analysis could also be run on plans created in a real patient 

geometry. 

The probabilistic planning approach used in this thesis was stochastic optimisation and to 

the best of the author’s knowledge, this approach has not been used before to directly 

account for anatomical deformations. There have been a couple studies using alternative 
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probabilistic planning approaches that have incorporated anatomical deformations into 

their plan optimisation [86], [99]. Baum et al. [86] used five pre-treatment CTs to create 

probability maps for the CTV, bladder and rectum for each of their prostate patients, which 

were then used in their CP optimisation. Tilly et al. [99] assumed single fraction treatments 

and randomly sampled 100 systematic errors from their PCA deformation model for 

cervical cancer patients for each iteration of the CVaR optimisation. Ideally, however, both 

systematic and random deformations would be incorporated into probabilistic planning 

and accounted for differently and neither of these studies do that.  

My proposal to probabilistically account for anatomical deformations would be adapt 

current stochastic optimisation methods, using the systematic and weekly random PCA 

models developed in Chapter 3 as inputs.  

• Firstly, the mean and components from each of the PCA models would need to be 

mapped from the average patient geometry to the geometry of the patient being 

planned. 

• Each component l of a PCA model has a corresponding variance (𝜆𝑙 ) and the 

eigenvector of that component should be multiplied by √𝜆𝑙 to give the standard 

deviation of the displacement in each of the 3 directions for each voxel. This can 

then be used to create Gaussian error kernels for each voxel in each component of 

the different models. 

• Considering random errors, the Gaussian error kernels for each component of the 

weekly PCA model should be convolved to create a total error kernel for each voxel 

for that week of treatment. If needed, a separate dose blurring could be performed 

for each weekly model. However, it is likely that they can be convolved to create a 

single blurred dose which could be used for random errors without too much loss 

in accuracy. 

• To account for the systematic deformations, scenarios need to be sampled from the 

systematic PCA model. The number of sampled scenarios will depend on the desired 

accuracy of the model and any time limitations as more samples will take more 

time. For each component, regular steps should be sampled, e.g., sample every 

0.5√𝜆𝑙  (so multiply the eigenvector by 0, ±0.5√𝜆𝑙, ±√𝜆𝑙, etc.). For each component, 
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the probability of that scenario occurring will be the probability of selecting that 

scaling factor from a Gaussian distribution with standard deviation √𝜆𝑙. Different 

combinations of these steps across the different components should be sampled, 

by summing the scaled eigenvector of each component with the mean. For 

example, to sample the scenario where each component is scaled by the 

corresponding √𝜆𝑙, sum the weighted eigenvalues and the mean to get the overall 

DVF for that scenario. The probability of each scenario occurring will be the 

probability of that scaling factor for each component multiplied together. The 

sampled scenarios can be truncated to only include those that have a probability of 

at least 1% of the maximum probability, and then the probabilities of the remaining 

scenarios renormalised so the cumulative probability is 1 [36]. 

There are likely to be challenges in this implementation due to the large number of 

scenarios that will need to be sampled, which makes it much more computationally 

expensive than conventional margin-based planning. The run-time could be reduced by 

sampling fewer scenarios, e.g., only sampling every √𝜆𝑙 rather than every 0.5√𝜆𝑙  for the 

above method for accounting for anatomical deformations. However, this will reduce the 

accuracy of the method and so a balance needs to be struck to ensure that enough 

scenarios are sampled to account for the full range of uncertainties present but that the 

optimisation runs in a reasonable amount of time. Exactly where this balance will be will 

depend on the specific situation and the requirement of the planner. 

One potential way to reduce the computational time is by following the work of Moore et 

al. [38] where they initially started with 8 samples and ran the optimisation. Then, the 

number of samples is doubled, and the optimisation continued from the previous end 

point, until it had optimised with 128 samples. This means that a large number of scenarios 

was sampled overall, and so included in the final optimisation, but time was saved by not 

doing this at every single step in the optimisation. This will be faster than sampling the final 

number of scenarios at each iteration, however, it may make the system more unstable or 

perhaps more likely to get stuck in a local minimum and not find the overall optimal 

solution. 
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6.3 Clinical relevance 

The aim of this thesis was to understand geometrical uncertainties in H&N radiotherapy; 

how to model them, how to evaluate their impact and how to make plans that are robust 

against them. The work in Chapters 3 and 4 has shown that anatomical deformations have 

an effect on the delivered dose to the patient and so should be taken into account when 

creating a plan. We have shown that, on average, treating anatomical deformations as set-

up uncertainties allows the creation of robust plans, but this is not the case for every single 

patient. This is likely because different patients will have different tumour locations and 

slightly different geometries and so the planned dose distribution will be different for each 

patient and will therefore be affected differently by anatomical deformations. Ideally, a 

plan evaluation tool such as the one developed in this thesis should be integrated into the 

treatment planning system to show the planner the dosimetric effect of anatomical 

deformations and set-up errors. Such a tool would allow the planner to focus on regions 

that are most likely to be affected by anatomical deformations and allow them to improve 

the plan robustness and reduce the risk of overdosing OARs. The PCA evaluation method 

developed in Chapter 2 could also be used to highlight regions where the deformation 

models are less accurate and inform the planners of regions where more care needs to be 

taken. For example, if robust planning is being used, the robustness settings could be higher 

in the region where the PCA deformation models are less accurate. 

The work in Chapter 5 has shown that when set-up uncertainties are taken into 

consideration, robust and probabilistic planning need to be used with care. While both 

methods have the potential to reduce dose to the normal tissue and possibly OARs, this 

can come at the cost of target coverage. This trade-off becomes more important for more 

complex target shapes, as the robust and probabilistic plans failed to achieve adequate 

target coverage on a few voxels in the ‘corners’ of the CTV. In these situations, a clinical 

decision would have to be taken to decide whether it is more important to deliver a high 

dose to every single voxel in the CTV, or if it is worth using robust or probabilistic planning 

and sacrificing those few corner voxels in order to reduce dose to the surrounding healthy 

tissue and OARs. In addition, robust and probabilistic planning approaches were seen to be 

less robust for anatomical deformations. 
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The work in Chapter 5 has also shown that margin plans in H&N may be over conservative 

and achieve more than the required level of target coverage when set-up uncertainties are 

taken into account in the plan evaluation. Similarly, the margin-based plans required a 

smaller uncertainty setting that robust or probabilistic plans to account for anatomical 

deformations. This means that potentially margins could be reduced which could help OAR 

sparing and reduce normal tissue dose, thus reducing the risk or severity of possible side 

effects for the patient. 

In future work, planning systems should be developed that anticipate anatomical 

deformations and directly account for them in the planning process, i.e., using the method 

described in this discussion.  
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Chapter 7 

Conclusions 
In this thesis, a number of studies were presented with an overall aim to understand 

geometrical uncertainties in H&N radiotherapy; how to model them, how to evaluate their 

impact and how to make plans that are robust against them. The main findings in this thesis 

are: 

• PCA models of anatomical deformations in H&N cancer patients struggle to 

represent the deformations seen around the oropharynx. 

• For most organs, the dosimetric effect of anatomical deformations in 

oropharyngeal cancer patients is similar to or smaller than the effect of set-up 

uncertainties, except for the in the primary CTV and the larynx. 

• On average, anatomical deformations can be accounted for by treating them as set-

up uncertainties for all planning approaches using 3-5 mm uncertainty settings, but 

this is not the case for every single patient. 

• For all planning approaches, increasing the uncertainty setting increases the plan 

robustness but also the OAR dose. 

• Margin plans are more robust to set-up uncertainties and anatomical deformations 

than robust or probabilistic plans, but they spread the high dose region further 

beyond the CTV. 

• When accounting for set-up uncertainties, robust and probabilistic plans do not 

achieve an adequate target dose for a few voxels on the ‘corners’ of more complex 

CTVs. 

• When set-up uncertainties are taken into consideration, as the sphericity of the CTV 

decreases, plans get less robust for margin, robust and probabilistic planning. 

Collectively, the work presented in this thesis indicate that both set-up uncertainties and 

anatomical deformations have dosimetric effects on H&N cancer patients and that current 

planning methods cannot fully account for these uncertainties in all patients. While robust 

and probabilistic planning can help reduce OAR dose, care needs to be taken when utilising 

them to ensure adequate target coverage is met, especially for more complex CTVs.  
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Chapter 8 

Publications and Presentations 
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8.1.1 Peer-reviewed 

• R. Argota-Perez, J. Robbins, A. Green, M. van Herk, S. Korreman, and E. Vásquez-

Osorio, “Evaluating principal component analysis models for representing 

anatomical changes in head and neck radiotherapy,” Phys. Imaging Radiat. Oncol., 

vol. 22, pp. 13–19, Apr. 2022. 

8.1.2 Non peer-reviewed 

• J. Robbins, R. Argota-Perez, A. Green, M. van Herk, S. Korreman, and E. Vasquez 

Osorio, “OC-0363 Evaluation of how well a PCA model represents anatomical 

variations during H&N radiation treatment,” Radiotherapy and Oncology, vol. 161, 

pp. S267–S269, Aug. 2021. 

• J. Robbins, E. Vásquez Osorio, A. Green, and M. van Herk, “PH-0045 Comparing 

robustness of margin and robustly optimised plans to anatomical deformations in 

H&N,” Radiotherapy and Oncology, vol. 161, pp. S19–S20, Aug. 2021. 

• J. Robbins, M. Van Herk, A. Green, B. Eiben, A. McPartlin, and E. Vásquez Osorio, 

“PO-1650: Evaluating plan robustness for organ deformation and set-up 

uncertainties in head and neck cancer,” Radiotherapy and Oncology, vol. 152, pp. 

S905–S906, Nov. 2020. 

• J. Robbins, E. Vásquez Osorio, A. Green, A. McWilliam, A. McPartlin, and M. Van 

Herk, “EP-1816 A robustness comparison of margin based and robust plans for head 

and neck VMAT patients,” Radiotherapy and Oncology, vol. 133, pp. S984–S985, 

Apr. 2019. 

8.1.3 In preparation  

• J. Robbins, M. Van Herk, B. Eiben, A. Green and E. Vásquez Osorio, “Probabilistic 

evaluation of plan quality for time-dependent anatomical deformations in head and 

neck cancer patients.” 
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• J. Robbins, M. Van Herk, A. Green and E. Vásquez Osorio, “The impact of target 

volume shape on plan robustness with different planning approaches.” 

• J. Robbins, M. Van Herk, A. Green and E. Vásquez Osorio, “Can anatomical 

deformations in head and neck cancer be accounted for as set-up uncertainties? 

8.2 Presentations 

• ESTRO 2022, Is robust planning safe? A comparison of margin and robust photon 

plans on different target shapes, May 2022, Copenhagen, mini-oral presentation. 

• ESTRO 2021 Hybrid Meeting, Evaluation of how well a PCA model represents 
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• ESTRO 2019, A robustness comparison of margin based and robust plans for head 

and neck VMAT patients, April 2019, Milan, poster. 
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