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1 Abstract 

Background and purpose: Current automated planning methods do not allow for the 

intuitive exploration of clinical trade-offs during calibration. This work introduces a novel 

automated planning solution, which aimed to address this problem through incorporating 

Pareto navigation techniques into the calibration process. The efficacy of this new solution 

was evaluated for prostate cancer patients with and without elective nodal irradiation.  

Materials and methods: The developed automated planning methodology was as follows. 

For each tumour site a set of planning goals is defined. Utilising Pareto navigation techniques 

an operator calibrates the solution through intuitively exploring different treatment options: 

selecting the optimum balancing of competing planning goals for the given site. Once 

calibrated, fully automated plan generation is possible, with specific algorithms 

implemented to ensure trade-off balancing of new patients is consistent with that during 

calibration. Using the proposed methodology the system was calibrated for prostate and 

seminal vesicle (PSV), and prostate and pelvic node (PPN) treatments. For 40 randomly 

selected patients (20 PSV and 20 PPN) automatically generated plans (VMATAuto) were 

compared against plans created by expert dosimetrists under clinical conditions (VMATClinical) 

and no time pressures (VMATIdeal).  Plans were compared through quantitative comparison 

of dosimetric parameters and blind review by an oncologist. 

Results: Upon blind review 39/40 and 33/40 VMATAuto plans were considered preferable or 

equal to VMATClinical and VMATIdeal respectively, with all deemed clinically acceptable. 

Dosimetrically, VMATAuto, VMATClinical and VMATIdeal were similar, with observed differences 

generally of low clinical significance. Compared to VMATClinical, VMATAuto reduced hands-on 

planning time by 94% and 79% for PSV and PPN respectively. Total planning time was 

significantly reduced from 22.2 mins to 14.0 mins for PSV, with no significant reduction 

observed for PPN. 

Conclusions: An automated planning methodology with a Pareto navigation based 

calibration has been developed, enabling the complex balancing of competing trade-offs to 

be intuitively incorporated into automated protocols. It was successfully applied to two sites 

of differing complexity and robustly generated high quality plans in an efficient manner.  
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6 Submission Format 

This thesis has been constructed in the Manchester University journal format in accordance 

with the requirements of School of Medical Sciences.  

Following journal format guidance the thesis is separated into three main sections. Section 1 

(chapter 7) presents an introduction to the field of advanced radiotherapy planning, a review 

of the literature and discussion of key gaps in the existing evidence base. Section 2 (chapters 

8-9) presents two published journal articles which fully describe the body of research work 

undertaken. Finally section 3 (chapter 10) presents a critical appraisal of the research as a 

whole. 

The content of the journal articles presented in this thesis are slightly modified from the 

original published versions. As per journal format guidelines, their presentation has been 

edited to align with the overall thesis format such that a single coherent body of work is 

created. In addition, for each journal article the contribution of each author has been 

explicitly defined. The full changes made to the articles were: 

• Inclusion of a table defining author contributions. 

• Formatting changed to match thesis, including section\figure\table numbering. 

• Figure 6 caption amended to include definitions of DMPO and imax. 

• Addition of paragraph in section 8.4.2.3 of article 1 to justify the values of variables 

used in the PB-AIO optimsation framework. 

• Details on how the navigation patient was chosen added to the methods section of 

article 1. 

• Supplementary information included as thesis appendices. 

• Referencing sections removed; a single reference list is used across the whole thesis 

(excluding appendices). 

The reader is pointed to the original published versions to access high resolution images of 

the article’s figures.   

As part of the requirements of the Doctorate in Clinical Science this thesis also includes an 

innovation proposal (Appendix D). The purpose of the proposal is to conceive and present an 

innovation that has the potential to make a positive contribution to healthcare. In this case, 
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the proposed innovation is utilisation of automated planning to improve plan quality 

assurance within radiotherapy clinical trials.   

Finally Appendix E presents a summary of the all the additional modules undertaken as part 

of the Doctorate in Clinical Science. 
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7 Introduction 

7.1 Overview 

Radiotherapy is a technologically advanced, clinically effective treatment, which is indicated 

for half of all cancer patients at some point during their care [1].  All patients undergoing 

radiotherapy require a bespoke, personalised, treatment plan to be generated prior to 

treatment. The effectiveness of radiotherapy is highly dependent on the quality of this 

treatment plan. Poor quality radiotherapy negatively affects patient outcomes: it increases 

the risks of treatment failure; increases overall mortality; and detrimentally impacts the 

patient’s quality of life [2–5]. 

Plan generation is complex and resource intensive, requiring specialist radiotherapy 

simulation software operated by expert staff to ensure plans are safe and clinically effective. 

Current planning methods are heavily reliant on time consuming manual interactions by the 

operator. This not only hinders the efficiency of the process, but also forms a dependence on 

the quality of the resultant plan with the expertise of the operator. This leads to substantial 

variations in plan quality both at intra- and inter-institutional level [6].  

In recent years there has been an increased focus on making the radiotherapy planning 

process more automated and intuitive to the operator, with the aims of improving quality 

and efficiency, and reducing variation. This section reviews the current state-of-the-art in 

radiotherapy plan generation. The review is limited to intensity modulated radiotherapy 

(IMRT), which is widely acknowledged as the standard of care for radical radiotherapy due to 

its superior tissue sparing over conventional techniques [7,8]. Within this thesis the term 

IMRT is defined as being inclusive of specific modulated delivery techniques such as 

volumetric arc therapy (VMAT). Through this review, the differing plan generation methods 

are critiqued and key gaps in the literature identified, which informed the aims and 

objectives of the presented doctoral research project.  
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7.2 Background 

7.2.1 The Radiotherapy Planning Process  

 

Figure 1: Overview of the treatment planning process. (1) Patient is CT scanned. (2) Radiotherapy planning 
targets and organs at risk are delineated on the CT. (3) Treatment plan generated using Inverse IMRT 
optimisation: operator defines optimisation objectives, inverse optimiser generates treatment plan, operator 
reviews plan, if plan is unacceptable objectives are adjusted and plan re-optimised until a suitable plan is 
obtained. (4) Final plan is approved and used to treat patient.    

Radiotherapy plans are created on patient computed tomography (CT) scans using specialist 

computer simulation treatment planning software (TPS) and aim to maximise the radiation 

dose to the cancer, whilst avoiding sensitive organs. Figure 1 presents an overview of the 

planning process for IMRT treatments.  Due to the high number of delivery variables, 

complex IMRT plans are generated using inverse optimisation algorithms, where plans are 

automatically generated based on a set of user defined constraints and objectives. Whilst 

the plan generation process is automated, it requires constraints and objectives to be 

appropriately defined such that a clinically optimal plan is produced. This is a non-trivial 

problem. In practice, the inverse optimisation process is highly iterative, requiring expert 

operators using manual trial and error techniques to hone in on objectives and constraints 
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which yield clinically acceptable plans. Traditional inverse manual planning (MP) is resource 

intensive, dependent on operator experience [9] and may yield plans which are clinically 

acceptable but not optimal.   

The resultant radiotherapy plans are defined by a series of treatment control points, or 

segments, which are delivered sequentially. For each segment the following machine 

parameters are defined: 

• the quantity of radiation to be delivered, specified in terms of monitor units (MU) 

• the machine orientation (i.e. gantry and collimator angle) 

• The x-ray aperture, as defined by the individual positioning of the machine’s multi-

leaf collimators (MLCs)) 

Importantly, when generating radiotherapy plans, the resultant dose distribution is not the 

only factor to consider, the deliverability of the plans in terms of dosimetric accuracy is also 

vital to ensure treatment efficacy. Plans where a high proportion of the MU is delivered 

through multiple small or complex apertures are considered to have a high plan complexity 

(or modulation) and are typically more challenging to model and deliver accurately. Plan 

complexity can be quantified through a range of different metrics, the most simplistic being 

plan MU due to more complex plans (with correspondingly smaller apertures) requiring 

more MU to deliver the same dose prescription [10]. 
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7.2.2 Pareto Optimality 

 

Figure 2 : Schematic diagram demonstrating the concept of Pareto optimality for prostate cancer treatments. 
When considering the dose metrics of PTV conformality and mean rectum dose, all three plans (a, b and c) lie on 
the Pareto front and are mathematically optimal, it is the responsibility of the decision maker to determine 
which plan is clinically optimal. (Graph representing Pareto front taken from Hussein et al. [11]). 

When considering the quality of IMRT plans, an important concept is that of Pareto 

optimality.  Plans are considered Pareto optimal when improvement of one objective can 

only be made at the detriment to another. If this condition is not true the solution is 

considered ‘dominated’ and thus sub-optimal. For a given optimisation problem there is an 

infinite set of Pareto optimal plans, which define the ‘Pareto front’ (Figure 2).  Whilst any 

solution which lies on the Pareto front is mathematically optimal, for radiotherapy plan 

generation the desired solution is the position on the front which is considered clinically 

optimal by the treating oncologist. Thus there are two fundamental aims within the plan 

generation process: firstly, the clinically optimal position on the Pareto front must be 

identified, ideally in an intuitive manner, and secondly, plan generation methods must 

adequately generate plans which are both Pareto optimal and lie within the clinically 

desirable region of the front.  
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7.3 Review of Advanced Planning Techniques 

 

Figure 3: Schematic representation of the ‘a posteriori’ advanced planning technique. For each patient a 
database of Pareto optimal plans is automatically generated. Using an appropriate GUI the decision maker 
navigates the Pareto surface and selects the clinically optimal plan for that individual patient. (Graph 
representing Pareto front taken from Hussein et al. [11]). 

Within the literature advanced planning techniques fall under two broad methodologies, 

defined by whether the clinical decision making is made before (a priori) or after (a 

posteriori) the plan generation process. A posteriori methodologies (Figure 3) assume that 

the clinically optimal position on the Pareto front for a given patient is either unknown, or 

cannot be reliably obtained automatically. A posteriori techniques therefore generate a 

range of Pareto optimal plans on a per patient basis, which are reviewed by the decision 

maker who selects the most clinically optimum solution. In contrast, a priori methodologies 

assume that the clinically optimum position on the Pareto front is known for all patients 

within a given treatment site and can be obtained automatically. For a priori methods 

(Figure 4) a single plan is automatically produced for an individual patient, with site specific 

templates or plan generation methodologies ‘calibrated’ a priori such that the single plan lies 

within the clinically desirable region of the Pareto front. As a priori methodologies generate 

a single plan fully automatically, for the remainder of this document they will be defined by 

the more general terminology ‘automated planning’ (AP). Furthermore, in the context of AP 
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the term ‘calibration’ is defined as the process of protocol-specific modification of any 

adjustable AP parameter or input, including the training of machine learning models, such 

that a clinically acceptable AP solution for a given treatment protocol is obtained. 

 

Figure 4: Schematic representation of the a priori advanced planning technique. For a given treatment site an a 
priori calibration is performed using machine learning or trial and error. The aim of the calibration is to target 
automated solutions towards the clinical desirable part of the Pareto front.  Following calibration a single 
automated plan can be generated for new patients. (Graph representing Pareto front taken from Hussein et al. 
[11]). 

What follows is a review of the currently implemented a posteriori and AP techniques 

presented in the literature. Studies within this review were identified though the literature 

search methodology presented in Appendix A for publications between 2018-2021, with 

studies pre 2018 identified from the review performed by Hussein et al [11].    

7.3.1 Posteriori Optimisation  

As discussed, the aim of a posteriori methodologies is to automatically generate a database 

of Pareto optimal plans which sample the Pareto front. The decision maker (e.g. oncologist 

or dosimetrist) then interactively navigates the Pareto front using a navigation star [12] or 

sliders [13] to select the clinically optimum solution. During navigation, convex combinations 

(a linear combination where all coefficients are non-negative and sum to 1) of neighbouring 

plans provide real time estimates of the dose distribution and DVHs at the navigated point 

on the Pareto front, which informs the decision making. Once the clinically optimum point 

on the front is determined by the operator, the navigated solution is converted into a 
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deliverable treatment plan.  Within the literature this form of optimisation is termed 

posteriori multi-criteria optimisation (MCOposteriori). 

Craft et al [13] and Thieke et al. [12] provided the first clinical evaluations of IMRT 

MCOposteriori solutions through the application to individual cancer cases of brain, prostate, 

lung and paraspinal meningioma. In these ‘proof of principle studies’ no meaningful 

comparison with standard manual planning was made. MCOposteriori has since been 

incorporated into a number of commercial planning systems leading to a range of clinical 

studies evaluating its efficacy against MP for prostate, head and neck, brain, spine, lung and 

pancreatic cancer [14–25]. 

With the exception of a single study where MCOposteriori led to marginal increases in rectal 

doses for prostate and pelvic node radiotherapy [17], all studies reported that MCOposteriori 

yields plans of comparable [14,16,18–20] or superior quality [15,19,21–25] to MP, but with 

significant reductions in planning time of approximately 70% - 90% [20,22,23]. Several 

studies highlight that the low resource, intuitive nature of MCOposteriori could enable planning 

to be driven by oncologists, which in turn should yield plans more congruent with the 

oncologist’s clinical aims [23,26]. This hypothesis was tested in Craft et al.’s [23] seminal 

paper evaluating the application of MCOposteriori to pancreatic and glioblastoma patients. The 

study demonstrated that intuitively navigating differing treatment options through 

MCOposteriori led the oncologist to select trade-offs which compromised PTV homogeneity to a 

greater extent than MP such that organ at risk (OAR) doses were reduced. Across all 10 

patients MCOposteriori plans were considered superior to MP. For head and neck cancer, 

Kierkels et al. [20] also demonstrated that MCOposteriori enabled less experienced planners to 

efficiently produce high quality treatment plans. This is considered a key advantage over MP 

where plan quality has been shown to correlate with planner experience [9].  

Despite the conceptual advantages of MCOposteriori there are some key limitations in the 

current implementations of this technique. Firstly, the navigated point on the Pareto front is 

represented by a 3D dose distribution and as such contains no information on the treatment 

plan parameters required to deliver that dose. A separate step, which typically utilises the 

inverse optimisation engine, is therefore required to convert the navigated dose distribution 

into a deliverable plan. This however is not a lossless process and depending on the 

implementation method can lead to substantial, clinically significant detriments in plan 
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quality [14,27]. Secondly, during Pareto surface navigation the navigated dose distribution is 

approximated through the convex combination of neighbouring Pareto plans. Depending on 

the number of plans which sample the Pareto front this can result in an ‘approximation 

error’ in the displayed navigated dose, which is propagated across to the final segmented 

plan. The approximation error is defined as the difference between the navigated/displayed 

dose and the dose of its corresponding Pareto optimal plan that, by definition, lies on the 

Pareto front. Sampling strategies such as the ‘sandwich algorithm’, which target areas of 

high approximation error when generating the Pareto plan set, aid in reducing this error 

[28]. However, especially for complex tumour sites where the dimensionality of the problem 

is high, the error may be significant. Typical approximation errors are <5% and <15% for 

adequality sampled (n > 75) and sparsely sampled (n = number of objectives +1) datasets 

respectively [29].    

When reviewing the literature on MCOposteriori what is most apparent is the low number of 

reported clinical studies for a technique which has clear theoretical advantages and was 

released as a commercial solution in 2012. In Hussein et al.’s  systematic review on 

innovations in IMRT planning [11] only five clinical studies were identified for MCOposteriori 

[14–16,20,25] compared to 73 for AP. This current review identified an additional seven 

studies [17–19,21–24]. Importantly, of these 12 studies, four have dataset sizes of <10 

patients per tumour site, five studies use between 10-19 patients, three studies have 

datasets of 20-30 patients and one utilises multiple datasets containing between 7-20 

patients across 4 different clinical sites. Aside from the low patient numbers, five of the 

studies have a strong probability of bias, with MCOposteriori plans generated in a different 

planning system to the MP comparator [14,15,20,23]. Furthermore, one study provides 

insufficient detail on patient selection and results to provide any meaningful confidence in 

the study’s conclusion [18]. In summary, since the first MCOposteriori commercial product was 

released in 2012, only 2 high quality studies (datasets of 20 or more patients, comparators 

generated within the same planning system), have been identified [21,22]. Both studies are 

for the clinical site of head and neck and demonstrate improved plan quality through 

reduction in OAR doses with MCOposteriori. 

It is assumed that the limitations discussed in this review and in the literature [14,27] may be 

hindering the realisation of the theoretical benefits of the technique, resulting in the low 
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number of supporting publications. Interestingly, despite these limitations, when comparing 

MCOposteriori to MP only one negative result has been published for the site of prostate and 

pelvic nodes [17]. It is hypothesised this could be due to an underlying publication bias, 

where negative results are either not submitted for publication or not accepted.  
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7.3.2 Automated Planning 

Automated planning (AP) has been successfully implemented using a range of differing 

techniques, which fall into 3 broad categories: knowledge based planning (KBP), sequential 

ε-constraint planning (εc), which is also defined as a priori multi-criteria optimisation, and 

protocol based automatic iterative optimisation (PB-AIO) [11].   

7.3.2.1 Knowledge Based Planning 

KBP utilises databases of historical treatment plans to inform the optimisation of new 

patients. Within automated planning the most common and effective methods train 

machine learning algorithms on previously treated patients, which then predict the optimum 

dose volume histograms (DVH) [30–32] or dose distributions [33–35] for new patients. The 

predicted DVH or dose distribution is then utilised during the automated planning process to 

tailor the plan optimisation to the individual patient. Common optimisation methods include 

use of DVH line objective functions or voxel based dose mimicking functions [34,36], which 

seek to drive the dose towards the predicted DVH or voxel dose respectively. Alternatively 

the predicted DVH or dose distribution can be used as an input to an ‘inverse optimisation 

pipeline’ [37]  that outputs a set of optimisation objectives, which are used in standard 

treatment planning optimisers to generate a deliverable plan [32,35]. 

KBP is the most widely validated automated solution in the literature, forming 83% of all 

clinical studies identified by Hussein et al. [11] in their systematic review on automation. The 

majority of these studies utilise the commercial KBP product RapidPlan (Varian, Palo Alto), 

which is based on a DVH prediction and line objective function methodology. KBP has been 

applied to head and neck, prostate, cervical, lung, spinal metastasis, breast cancer, upper 

gastrointestinal (GI) and lower GI cancers, with all studies reporting KBP maintaining or 

slightly improving plan quality [11,38]. While the quality of plans generated with KBP has 

been comprehensively evaluated, there remains minimal evidence on the technique’s 

potential efficiency saving compared to MP. A systematic review on KBP identified only 6 

studies (out of 73), which contained some form of timing analysis, with the authors 

concluding that current evidence provides only ‘preliminary’ data on efficiency [38].   

When compared to MP, KBP has a substantive supportive evidence base, however the 

technique has some key limitations. KBP generally requires large historical datasets, which 
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may not be present for novel techniques or prescriptions. A systematic review of KBP studies 

identified that across all clinical sites the mean size of training datasets was ~100 patients 

[38]. More specifically for prostate cancer, Boutilier et al demonstrate that for DVH 

prediction algorithms, which are the most common KBP approach, datasets of >75 patients  

are required to ensure all OAR DVHs are modelled appropriately [39]. Models are also 

strongly dependent on the optimality and consistency of plans in the training dataset [40], 

which is not guaranteed as they are predominantly generated using traditional manual 

planning methods with known limitations [6,9]. Hussein et al. [41] highlight that KBP 

solutions require considerable tuning to deliver suitable solutions. Resultant plans are also 

highly dependent on the makeup of the training patient datasets, with Tol et al. [42] 

demonstrating that two independent 30 patient models, populated with different patients 

from a 60 patient head and neck cohort, yielded markedly different results for individual 

patients. Furthermore, even if models are trained against Pareto optimal patient datasets, 

modelling uncertainty results in clinically relevant discrepancies in predicted metrics [43]. 

Finally, by implementing DVH or voxel based mimicking objectives the prioritisation of 

individual ROIs is removed, thus the optimiser may make clinically relevant compromises to 

critical OARs (e.g. maximum dose to rectum) in order to improve the global mimicking of 

dose. It is considered that these limitations hinder the optimality of KBP solutions, leading to 

only small improvements in plan quality when compared to MP as evidenced by a KBP 

systematic review and data synthesis by Ge and Wu [38]. 

7.3.2.2 Sequential ε-constraint Planning 

Sequential εc planning utilises an optimisation approach where clinical objectives are 

minimised in strict sequential order, generating treatment plans fully autonomously. This 

technique has been implemented within the automated solution ‘iCycle’ [44] and evaluated 

for prostate, head and neck, spinal metastasis, gastric, cervical, rectal and lung cancers [45–

53]. Optimisations involving iCycle are based on a tumour site specific ‘wish list’ containing 

user defined hard constraints (which must not be violated) and objectives, which are 

ordered in terms of priority. iCycle begins with a pre-optimisation in fluence space, where 

objectives are minimised in sequential order to generate a Pareto optimal plan. Based on 

this pre-optimisation, Lagrange multipliers are utilised to convert the result into an 

equivalent weighted sum optimisation problem, which is optimised in the commercial 
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planning system Monaco (Elekta, Stockholm) to generate the final deliverable plan. The two-

stage process is fully automated.  

εc has been evaluated in both single institutional [45–51,53] and multi institutional settings 

[52]. Across all the reported studies, on a population basis εc was considered equivalent or 

superior to MP, however for lung cancer 15% of AP required manual intervention to be 

clinically acceptable [45]. Unlike KBP, in some cases marked improvements in dose metrics 

were observed, for example, when applied to prostate and pelvic node cancer, mean 

bladder and rectum doses were reduced by 10.7 Gy and 4.5 Gy respectively [49]. It is likely 

these observed improvements are due to εc algorithms driving solutions towards Pareto 

optimality, in contrast to KBP which nominally aims to reproduce the quality of the historical 

datasets. Interestingly though, in the five studies where the plan monitor units (MU) were 

reported, εc resulted in a substantial increase in MU (29%) for four studies [47,49,50,52]. A 

moderate reduction in MU (13%) was reported for one study, which was unique in that it 

was a simple clinical situation (rectal cancer) with only one organ at risk [53]. Craft et al. 

have previously demonstrated a link between OAR sparing and MU [54], suggesting that the 

observed improvement in plan quality, for the complex cases at least, may partially be due 

to increased modulation and not solely due to superiority of the technique. In terms of 

efficiency, the εc process is fully automated and therefore offers a substantial reduction in 

staff ‘hands on’ time compared to manual approaches.  

εc does have a number of limitations. Firstly, generating the ‘wish list’ is an iterative process, 

reliant on trial and error [11]. This process is analogous to traditional MP, but at the patient 

cohort level, therefore as with MP the resultant solution may not optimally align to 

oncologists’ clinical preference. This iterative process is also time-consuming. Secondly, plan 

generation time scales linearly with the number of criteria in the ‘wish list’; for complex 

treatments (e.g. head and neck) planning time can be in the order of hours [55]. Thirdly, due 

to the two-stage plan generation process, there may be clinically relevant discrepancies 

between the Pareto optimal fluence based plan, and the final segmented solution. Finally, it 

is assumed that a single ‘wish list’ is optimum for every patient in the treatment cohort, 

which may not be the case as even if plans are Pareto optimal, they may not be clinically 

optimal for that individual patient.  
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Recent work by van Haveren et al. [56,57] has however sought to address limitations in the 

optimisation and calibration efficiency of the εc methodology. In terms of optimisation 

speed, a lexicographic reference point method (LRPM) has been developed where 

optimisation criteria defined in the ‘wish list’ are optimised within a single optimisation 

problem, rather than the sequential approach used with εc. The LRPM method has been 

applied to prostate and head and neck with planning time reduced by a factor of 10 and 21 

respectively at no detriment to plan quality [56,57]. For calibration, a methodology has been 

developed whereby LRPM solutions are automatically configured using a dataset of historical 

treatment plans, with the purpose of removing the manual iterative process of protocol 

calibration. The method has been validated for prostate and head and neck, and 

demonstrated acceptable solutions can be calibrated automatically, with limited dataset 

sizes (n > 9) [58,59]. Whilst this approach is promising in terms of improving the time burden 

of calibrations, the methodology still required a user preferences template as an input, with 

the authors acknowledging that this input will need iterative adaptation, resulting in a semi-

automated, not automated approach [58]. Furthermore, as with KBP, the balancing of 

competing trade-offs will be based on a historical dataset, which may not be fully aligned 

with the clinician’s clinical preference.  

7.3.2.3 Protocol Based Automatic Iterative Optimisation 

For PB-AIO solutions the general principle is to load an initial set of objectives/constraints 

into the planning system’s native optimiser, then iteratively adapt these parameters during 

the optimisation process to drive the solution towards a clinically acceptable plan. Whilst a 

broad range of automation methodologies can be categorised as PB-AIO, across the 

literature there are two core implementation strategies. The first (PB-AIOA) utilises a trial 

and error approach, akin to the process undertaken by expert staff during manual planning 

[60–63]. The broad concept is as follows. For a given treatment site a set of hard and soft 

clinical goals is defined either within a site specific template, or for single site solutions, hard 

coded into the automated algorithms. Based on these goals an initial optimisation is 

performed that aims to meet all hard clinical goals, with soft goals largely ignored. Multiple 

optimisation rounds follow where the objectives for each soft clinical goal are iteratively 

adapted to minimise the dose to normal tissue, whilst not violating the hard constraints. If 

hard constraints are violated, the objectives are reset to values just before the violation 
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occurred. During this process auxiliary ROIs may be generated to improve the geometric 

specificity of the optimisation, for example to minimise regions of over/under dose. This 

approach has been implemented within the commercial planning system Pinnacle (Philips 

Radiation Oncology Systems, Fitchburg) (PB-AIOPinnacle). The second methodology (PB-AIOB) 

loads a set of predefined optimisation objectives. During the optimisation process the value 

or weight of objectives related to soft clinical goals are then iteratively updated such that 

either the distance between the objective and the DVH line is held constant [64,65], or the 

resultant objective function value nominally equals a predefined target (OVT) [66–68]. The 

effect of both approaches is to ensure the soft objectives form a significant but not 

dominant contribution to the composite objective function value. Using this approach soft 

objectives are minimised, without compromising the higher weighted hard objectives.  

PB-AIO has been successfully applied to breast, oesophagus, head and neck, liver, Hodgkin 

lymphoma, prostate, brain, oesophagus, gynaecological, rectal and lung treatments [61,63–

86]. Of the clinical evaluation studies identified in this review 17/25 evaluated PB-AIOPinnacle 

[69–75,77–86]. Across all 25 studies, 13 demonstrated superiority of PB-AIO compared to 

MP in terms of plan quality [61,63,65,66,68,69,73,74,79–82,85], 11 demonstrated non-

inferiority [64,67,70,71,75–78,83,84,86] and one yielded mixed results where only 75% of 

plans were considered clinically acceptable upon review [72]. With approximately 50% of the 

identified studies yielding superiority over MP these results, as with εc, are suggestive that 

the active minimisation of OAR doses is preferential to KBP, which only seeks to mimic 

previous treatments.   

The limitations of PB-AIO are as follows. Firstly, many of the PB-AIO solutions presented in 

the literature are specific to a single site [61,66,68,87], with only PB-AIOPinnacle being easily 

applicable to a wide range of differing clinical sites. Secondly, as with εc, calibrating an 

acceptable PB-AIO solution is an iterative process, with no intuitive method to balance 

competing trade-offs. For PB-AIOB solutions, balancing is defined through the manual 

specification of either OVT or the weights within the initial set of optimisation objectives, 

both of which have minimal relevance to clinical prioritisation. For PB-AIOPinnacle, instead of 

objective weights, clinical goals are assigned priorities (low, medium, high), however, 

correctly setting these values is still iterative and requires expert input from treatment 

planners [73]. Finally, there is evidence that PB-AIOPinnacle, which forms 68% of the clinical 
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evaluations in the literature, may yield suboptimal results for a significant cohort of clinical 

patients. In a lung study by Vanderstraeten et al. [72] only 75% of patients were clinically 

approvable. Additionally, Zhang et al. [70] identify a correlation between anatomical 

separation (brainstem vs CTV) and the optimality of the resultant plan. Finally an audit of PB-

AIOPinnalce plan quality across two institutions using a KBP audit tool identified suboptimal 

clinical plans in 8% (centre A) and 25% (centre B) of clinical prostate plans [88]. 
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7.3.2.4 Summary of Automated Methodologies 

 KBP εc PB-AIO 

Methodology Does prediction via 

machine learning 

Minimisation of clinical 

objectives in strict 

sequential order 

Iterative adaptation of 

parameters during 

plan optimisation 

Clinical Application Head and neck 

Prostate 

Lung 

Cervical 

Spinal metastasis 

Breast cancer 

Upper GI 

Lower GI 

Head and neck 

Prostate 

Lung 

Spinal metastasis 

Gastric 

Cervical 

Rectal 

 

Head and neck 

Prostate 

Lung 

Breast 

Oesophagus 

Liver 

Hodgkin lymphoma 

Brain 

Oesophagus 

Gynaecological 

Rectal 

Plan Quality vs MP 

 

Equivalent or 

marginally superior 

Equivalent or superior Equivalent or superior 

Training Dataset 

Requirements 

Large datasets  

(typically n > 75) 

 

Delineated CT & 

treatment plan 

Small datasets 

 (n ≤ 10) 

 

Delineated CT 

Small datasets  

(n ≤ 10) 

 

Delineated CT 

Training/Calibration 

Methodology 

Machine learning on 

historical datasets 

Trial and error or 

machine learning on 

historical datasets 

Trial and error 

Advantages Commercially available 

Conceptually simple 

Generates Pareto 

optimal plans 

Commercially available 

Actively minimises OAR 

doses 

Disadvantages Quality is dependent 

on training dataset 

OAR doses not actively 

minimised. 

Calibration via 

machine learning is an 

iterative process 

Not commercially 

available 

Calibration via trial and 

error is challenging and 

time consuming 

Calibration via 

machine learning is an 

iterative process 

Calibration via trial and 

error is challenging and 

time consuming 

Methodology can yield 

suboptimal solutions 

for individual patients 

Table 1: Summary of the different automated planning methodologies 
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7.3.3 Hybrid Approaches to Advanced Planning 

The advanced planning approaches discussed in section 7.3.1 and 7.3.2 are not mutually 

exclusive and combinations of advanced techniques may offer potential advantages. What 

follows is a review of the different hybrid advanced planning solutions in the literature.  

For KBP, which is strongly reliant on the quality of the training dataset, utilising advanced 

techniques to generate a ‘gold standard’ training dataset has the potential to yield improved 

models. Miguel-Chumacero et al. [21] and Wall et al. [89] presented data for head and neck, 

and prostate cancer respectively, comparing KBP models trained on MP and MCOposterior 

datasets. Their results demonstrated that training with MCOposteriori led to substantial 

reductions in OAR doses, with rectum and parotid mean doses reduced by 9.4 Gy and 5.7 Gy 

respectively. Lin et al. [90] utilised a constrained hierarchal optimisation (CHO), a 

methodology analogous to εc, to automatically generate a KBP training dataset for prostate 

bed radiotherapy. Whilst KBP models based on the CHO dataset generated equivalent plans 

compared to a traditional MP dataset, CHO based datasets could be autonomously 

generated, enabling the potential of rapid adaptability to changes in radiotherapy protocols 

or planning techniques.  Finally Wang et al. [91] and Chatterjee et al. [92] presented an 

iterative approach to developing KBP models, where models trained on MP datasets are 

subsequently refined through selected re-training against their own KBP output if the KBP is 

superior to the original MP. In this way, it is hypothesised that KBP models will trend 

towards Pareto optimality. This method was shown to yield models with increased OAR 

sparing and reduced prediction uncertainty [92] when compared to models trained on a MP 

dataset. However, this method was also prone to overfitting, leading to inconsistent results 

on novel patients [91].  

Use of MCOposteriori techniques downstream of KBP generation to improve the quality of the 

final plan has also been investigated for head and neck cancer [21]. Results demonstrated 

this hybrid approach improved plan quality compared to KBP trained on MP (KBPMP) or 

MCOposteriori (KBPMCO) datasets, with the largest improvements observed when comparing to 

KBPMP.  

For PB-AIOPinnacle, KBP techniques have been implemented upstream of the core automated 

planning engine with the aim of predicting dose metrics for individual patients and tailoring 



31 
 

the automated planning protocol based on these results. This technique has been 

successfully applied to hepatocellular and oesophageal cancer, with result demonstrating 

non-inferiority to MP [93,94] 

For εc type methodologies (including LRPM), as discussed in section 7.3.2.2 a KBP approach 

has been developed to automatically calibrate a ‘wish list’ based on historical treatment 

plans. Furthermore, through automatically adjusting parameters within an εc ‘wish list’, 

Pareto fronts for individual patients can be generated. Whilst this has not yet been 

implemented as an MCOposteriori solution, the method has been utilised to evaluate the 

impact of trade-off balancing on KBP models [40] and rectal toxicity for prostate cancer [95] .  

Finally PB-AIOPinnacle has been used upstream of the MCOposteriori planning process to generate 

individualised MCOposteriori templates (used for Pareto dataset generation) based on the DVH 

obtained from AP [93]. In this way, the sampling of the Pareto surface is tailored to the 

individual, focusing on the clinically relevant areas. When compared to MCOposteriori plans 

generated with population based templates, this method yielded plans of similar quality but 

with a 10.5% and 8.4% reduction in dose to the glottis larynx and pharyngeal constrictor 

muscles respectively.    

7.3.4 Application of Advanced Techniques to Prostate Cancer 

Prostate cancer accounts for 13% of all new cancer cases in the UK [96] and radiotherapy is a 

key treatment modality in the management of this disease.  At Velindre Cancer Centre 

prostate cancer accounts for ~19% of all radical radiotherapy treatments. It is therefore a 

good candidate site to pilot and evaluate the novel automated solution that was developed 

within this project. What follows is a summary of the evidence on the application of 

advanced techniques to intact prostate and seminal vesicle radiotherapy, both with (PPN) 

and without (PSV) elective nodal irradiation.  

For PSV radiotherapy a thorough summary comparing AP with MP has been presented by 

Heijmen et al. [52]; with 12 studies identified as demonstrating small differences between 

automated and manual plans [41,51,61,82,97–104], and only Heijmen et al.'s more recent 

multi-centre study showing the overall dosimetric superiority of automation through 

reduced rectum doses [52]. Since the publication of this summary a further 11 studies have 

been identified, five demonstrating the dosimetric superiority [63,74,105–107] and six the 
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non-inferiority [108–113] of AP compared to MP. For MCOposteriori, excluding studies with less 

than 10 patients, only 2 studies comparing MCOposteriori with MP for PSV have been 

identified. Both studies were performed on only 10 patients and concluded that MCOposteriori 

was non-inferior to MP [14,17].  

For the more complex situation of PPN radiotherapy, only five studies which present results 

comparing MP with AP have been identified [49,74,75,92,108]. Of these studies three 

demonstrate dosimetric superiority [49,74,92] of AP though reduced OAR doses and two 

non-inferiority [75,108]. In some cases the reduction in OAR doses was substantial; 

Buschmann et al. showed AP reduced mean bladder and rectum doses by 10.7 Gy and 4.5 Gy 

respectively [49]. Across these five studies, two had low sample sizes (n ≤ 12) [75,108] and 

one allowed manual correction of the AP post generation [74], therefore only two of the five 

identified studies are considered be considered high quality and robust [49,92].  For 

MCOposteriori, only one clinical study with a sample size ≥ 10 was identified. The study 

concluded that MCOposteriori generated high quality treatment plans with minimal workload, 

however OAR sparing was slightly improved with MP [17].   

In summary, for PSV there is a wide body of evidence demonstrating non-inferiority, and on 

some occasions superiority, of AP compared to MP. For PPN, the results are similarly 

supportive of AP, but the evidence base is substantially smaller with only five studies 

identified. For MCOposteriori, the evidence base is very weak with only three studies identified 

across both PSV and PPN, all with a sample size of 10 patients. The studies indicate 

MCOposteriori yields plans of a clinically acceptable quality, yet due to the low number of 

studies and small sample size no robust assessment of the technique’s non-inferiority to MP 

can be made. 

7.4 Discussion: Key Gaps and Unanswered Questions 

In terms of advanced planning techniques, there is a clear gap in the utilisation of 

MCOposteriori techniques within the AP calibration process. In all the AP approaches presented 

in the literature MCOpositeriori has only been utilised as part of the calibration process for KBP 

(via an MCOposteriori database). In the two studies which investigated this approach, both 

indicated substantial improvements in the KBP model with MCOposteriori. For both εc and PB-

AIO however, no solution has yet been developed which enables the intuitive navigation of 
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competing trade-offs during the set-up phase for a given clinical site. The approaches 

currently rely heavily on trial and error to align solutions to oncologists’ clinical preference, 

which is not an optimal approach. Implementing MCOposteriori, during the setup phase of 

automated solutions could reduce this reliance on trial and error, and help ensure solutions 

are congruent with oncologists’ treatment aims. This innovation is likely to be especially 

powerful for εc and PB-AIO methodologies, where only small calibration datasets are 

required, as the MCOposteriori approach could focus on accuracy (e.g. minimising the 

approximation error via generation of large Pareto datasets), rather than efficiency (required 

for MCOposteriori in the clinical environment or in the generation of large KBP training 

databases).   

In reviewing the evaluative studies for both MCOposteriori and AP a number of deficiencies 

were observed. As discussed in section 7.3.1, for MCOposteriori there are limited studies 

evaluating its efficacy and questions over publication bias. There is therefore a clear need to 

conduct further robust studies on MCOposteriori that aim to publish results regardless of the 

outcome. Across both MCO and AP techniques the majority of studies are single 

institutional, with only a small number of multicentre studies identified [52,97,111,114,115]. 

The potential benefit of minimising inter-institutional variation though AP has also not been 

adequately explored. A further weakness in the evidence base is the majority of evaluative 

studies use the clinically treated MP as the comparator, meaning that results could be biased 

by local institutional planning expertise, which is known to vary, and suboptimal planning 

due to clinical time pressures. Finally, there are few studies directly comparing differing 

advanced planning techniques, with only six studies identified [19,21,94,114,116,117]. 

Whilst direct comparisons are complex due to many solutions being implemented within 

differing planning systems, to better understand their relative advantage there is a real need 

for robust multi-solution studies to be undertaken.  

More specifically for the site of prostate cancer, there is a dearth of high quality studies 

evaluating the efficacy of MCOposteriori for both PSV and PPN. Furthermore, whilst there is a 

substantive evidence in support of AP for PSV, for PPN there is scope for a strengthening of 

the evidence base, with only 5 studies identified across all AP techniques.   
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In summary, within the literature the following key gaps on advanced planning techniques 

have been identified: 

• No εc or PB-AIO technique utilises MCOposteriori during the calibration process. 

• There are a small number of studies evaluating the application of advanced 

techniques to PPN radiotherapy.  

• There is a dearth of high quality MCOposteriori evaluative studies. 

• There are a small number of multi-institutional studies. 

• There are minimal studies comparing differing advanced techniques. 

The work presented in this thesis aimed to address the first two of these gaps in evidence. 

Firstly through developing an automated planning solution based on a MCOposteriori 

calibration process and secondly through evaluating the solution for both PSV and PPN 

radiotherapy treatments. What follows are two published journal articles detailing the work 

undertaken. The first article details, in full, the developed algorithms and presents an initial 

assessment of their application to PSV plan generation. The second article presents a 

comprehensive clinical study for both PSV and PPN treatments, comparing the new 

automated technique with plans generated manually by expert dosimetrists.  
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8 Journal Article 1: Utilisation of Pareto Navigation Techniques to Calibrate a Fully 
Automated Radiotherapy Treatment Planning Solution 

Published in: Physics and Imaging in Radiation Oncology, Volume 10, April 2019, Pages 41-48 

8.1 Author List and Contribution 

Author Contribution 

Philip A. Wheeler1 Designed and built EdgeVcc. Designed study. Calibrated the PSV 

EdgeVcc solution with Rosemary Holmes. Performed all evaluation 

work including data analysis. Author of paper (including all figures, 

tables and supplementary information).  

Michael Chu1 Advised on translational aspects of EdgeVcc; ensuring alignment 

with requirements of the treatment planning clinical service. 

Rosemary Holmes1 Developed data analysis package in python, which was utilised as 

part of the statistical and graphical analysis. Calibrated the PSV 

EdgeVcc solution with Philip Wheeler. 

Maeve Smyth1 Developed prototype Pareto navigation module, which was adapted 

and incorporated into EdgeVcc by Philip Wheeler. 

Rhydian Maggs1 Advised on translational aspects of EdgeVcc; ensuring alignment 

with requirements of the treatment planning clinical service. 

Emiliano Spezi2 Advised on study design, provided academic oversight of the project  

John Staffurth3 Provided clinical governance across the study, including advising and 

reviewing the quality of generated plans. 

David G. Lewis1 Advised on study design, provided academic oversight of the project 

with a focus on statistical methods 

Anthony E. Millin1 Advised on study design, provided academic oversight of the 

project, advised on the design of EdgeVcc from a technical 

perspective to ensure safe translation to the clinical environment.  

 
1 Department of Medical Physics, Velindre Cancer Centre, Cardiff, United Kingdom. 
2 School of Engineering, Cardiff University, Cardiff, United Kingdom. 
3 School of Medicine, Cardiff University, Cardiff, United Kingdom. 
 

All authors contributed to the review and revision of the manuscript. 
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8.2 Abstract 

Background and purpose: Current automated radiotherapy planning solutions do not allow 

for the intuitive exploration of different treatment options during protocol calibration. This 

work introduces an automated planning solution, which aims to address this problem 

through incorporating Pareto navigation techniques into the calibration process. 

Materials and methods:  For each tumour site a set of planning goals is defined. Utilising 

Pareto navigation techniques an operator calibrates the solution through intuitively 

exploring different treatment options: selecting the optimum balancing of competing 

planning goals for the given site. Once calibrated, fully automated plan generation is 

possible, with specific algorithms implemented to ensure trade-off balancing of new patients 

is consistent with that during calibration. Using the proposed methodology the system was 

calibrated for prostate and seminal vesicle treatments. The resultant solution was validated 

through quantitatively comparing the dose distribution of automatically generated plans 

(VMATAuto) against the previous clinical plan, for ten randomly selected patients. 

Results: VMATAuto yielded statistically significant improvements in: PTV conformity indices, 

high dose bladder metrics, mean bowel dose, and the majority of rectum dose metrics. Of 

particular note was the reduction in mean rectum dose (median 25.1Gy vs. 27.5 Gy), rectum 

V24.3Gy (median 41.1% vs. 46.4%), and improvement in the conformity index for the primary 

PTV (median 0.86 vs. 0.79). Dosimetric improvements were not at the cost of other dose 

metrics. 

Conclusions: An automated planning methodology with a Pareto navigation based 

calibration has been developed, which enables the complex balancing of competing trade-

offs to be intuitively incorporated into automated protocols. 

8.3 Introduction 

Inverse radiotherapy planning is a time consuming, iterative process where optimal plan 

quality is not guaranteed [6]. A solution to this problem is automated planning (AP) where 

high quality treatment plans are generated fully autonomously [47,49–

51,66,67,72,79,118,119]. AP has been implemented using a range of methodologies, which 

can be categorised within the following three broad domains: knowledge based planning 
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(KBP), sequential ε-constraint optimisations (εc) and protocol based automatic iterative 

optimisations (PB-AIO).  

KBP utilises information from previously treated patients to inform the optimisation of 

future patients. The most common methods use machine learning algorithms, trained on 

databases of historical treatment plans, to predict the achievable dose distribution [33,34] 

or dose volume histograms [30,31] for new patients. This information is utilised during the 

inverse optimisation process to generate a plan whose dose distribution best matches that 

predicted.  

εc generates plans according to a list of prioritised clinical goals, which are minimised in 

strict sequential order under the condition that lower priority goals must not compromise 

higher priority goals. Through the appropriate selection and ordering of goals, a single 

prioritised list can generate desirably balanced plans for individual patients within a given 

treatment site [49,51].  

Finally, PB-AIO techniques load an initial set of objectives (either hard coded or derived from 

a site specific template) into the planning system’s native optimiser. During the optimisation 

process, automated algorithms iteratively adjust objectives based on information from the 

optimised dose distribution to tailor the plan to the desired clinical aims [61,66,68]. Specific 

examples include: regularly updating objective positions such that a constant distance below 

the corresponding DVH line is maintained [65] and modulating objective weights such that 

the function’s objective value (OV) tends towards a target OV during the course of the 

optimisation [66,67]. Through implementing these methods of dynamic objective 

adjustment it has been shown that a single set of initial objectives can yield plans with 

minimised organ at risk (OAR) doses and consistently balanced trade-offs across all patients 

within a given treatment site [65–67]. In this manuscript, we define objectives whose weight 

and position are modified in this specific manner as ‘dynamic objectives’. 

A key challenge in all three approaches is adequately and intuitively capturing the 

oncologist’s experience and decision making during the calibration process, such that 

automated plans are congruent with clinical preference. KBP is dependent on the optimality 

of large datasets of previous clinical plans, which is not guaranteed, and both εc and PB-AIO 

rely on trial and error to develop and refine automated protocols [11]. In this paper a novel 
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solution to this problem is proposed through integrating Pareto navigation techniques 

directly into the calibration process.  

Pareto navigation enables operators to intuitively explore differing treatment plan options 

such that an informed choice can be made on the optimal balancing of competing trade-offs 

[12,13]. Navigation is performed on a pre-calculated set of Pareto optimal plans, which aim 

to sample clinically relevant parts of the Pareto surface. In this regard, a treatment plan is 

considered Pareto optimal when improvement of a given trade-off is only possible at the 

detriment of another, with the Pareto surface being represented by an infinite set of such 

plans. On an individual patient basis, intuitively exploring the Pareto surface through Pareto 

navigation has shown to reduce the need for trial and error, and yield plans more congruent 

with oncologists’ clinical preferences [23]. It is expected that incorporating Pareto navigation 

into the automated planning calibration process will yield similar benefits at the patient 

cohort level.  

The purpose of this work is to present the methodology of EdgeVcc (Experience Driven plan 

Generation Engine by Velindre Cancer Centre): a PB-AIO based automated planning solution, 

designed to be applicable across a range of radiotherapy treatment sites and uniquely 

calibrated using Pareto navigation principles. The first section of this paper provides a 

detailed description of the proposed methodology alongside its associated algorithms. The 

second section presents an example of its application to the tumour site of prostate and 

seminal vesicles (PSV).  

8.4 Methods and Materials 

8.4.1 Patient Dataset 

20 patients previously treated at Velindre Cancer Centre between July and December 2015 

were randomly selected into a calibration (n=10) and validation (n=10) cohort. Patients were 

planned on computed tomography scans of 3 mm slice thickness with prostate, seminal 

vesicles, rectum, bladder and bowel delineated. Prostate + seminal vesicles were expanded 

10 mm isotropically to form the planning target volume PTV48 and prostate expanded by 

5mm (6 mm craniocaudally) to form PTV60, with the PTV’s suffix denoting its prescribed 

dose in Gy. All study patients were previously treated with VMAT on Elekta Agility linear 

accelerators with treatment plans generated manually in Oncentra Masterplan (v4.3, Elekta 
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Ltd, Crawley) using a single 6MV 360˚ arc, simultaneous integrated boost technique. 

Treatments were prescribed for 20 fractions, and manually planned to local clinical goals 

(supplementary table 1) using a class solution based methodology.   

8.4.2 Automated System 

8.4.2.1 System Overview  

 

 

The proposed solution (Figure 5) was developed in the treatment planning system 

RayStation (Raysearch Laboratories, Stockholm) using custom python scripts. For each 

tumour site a set of planning goals is defined within an ‘AutoPlan protocol’ (section 8.4.2.2). 

On a selected calibration patient(s) Pareto navigation techniques are utilised to derive a set 

of planning goal weighting factors, which correspond to a clinically desirable point on the 

Pareto surface for the given patient (section 8.4.2.4). The weighting factors are stored within 

the AutoPlan protocol, which then forms the input for automated planning of new patients. 

Automated plan generation is based on a PB-AIO framework (section 8.4.2.3) that utilises 

‘dynamic objectives’ to ensure OAR doses are minimised and trade-off balancing for new 

patients is consistent with that selected during protocol calibration.   

Figure 5: Flowchart depicting the workflow of the proposed solution, with all items within the PB-AIO 
framework (as represented by the dashed area) fully automated. For each tumour site a calibrated 
AutoPlan protocol is required.   
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8.4.2.2 AutoPlan Protocol  

The treatment modality, beam arrangement, standard PTV and planning volume at risk (PRV) 

margins, and planning goals are defined within the AutoPlan protocol. Planning goals guide 

the optimisation process and are stratified into three priority levels: primary normal tissue 

goals (P1), target goals (P2) and trade-off goals (P3). The optimisation methodology aims to 

meet goals in order of their priority, with compromise to target goals permissible by P1 but 

not P3. Trade-off goals are assigned a group number, which determines the order in which 

they are explored during the calibration process. Goals of the same parameter type and 

clinical relevance (e.g. low dose rectum objectives) are grouped to reduce degrees of 

freedom during calibration. The planning goals for PSV are presented in the supplementary 

table 2. 

Planning goals are designed to be clinically intuitive, with no specification of weighting 

factors required. Weighting factors are instead derived through two distinct processes. For 

P1
 and P2, the clinical preference across all tumour sites when balancing conflicting goals is 

explicitly defined: target coverage is compromised to maintain normal tissue goals. 

Conflicting goals are therefore explicitly handled through region of interest (ROI) retraction 

algorithms, enabling weights to be defined by simple hard coded algorithms. In contrast, 

conflicting P3 trade-offs require careful balancing for each tumour site; a complex process 

requiring specialist clinical judgment. Weights are therefore derived through utilisation of 

Pareto navigation techniques (Section 8.4.2.4).  

8.4.2.3 PB-AIO Framework  

The following PB-AIO framework is used to generate both the final automated plans and 

those utilised during the calibration process.  

Auxiliary Optimisation Volumes  

Following PTV and PRV creation, a standard set of auxiliary optimisation ROIs (AuxROIs) are 

generated according to the algorithms detailed in the supplementary file S1. AuxROIs have 

two purposes. For conformity related planning goals AuxROIs enable a higher level of 

geometric specificity. For target goals, in line with ICRU 83 [120], AuxROIs subdivide each 

PTV into three sub-volumes to avoid conflicting planning aims:  PTVsv-1 is retracted from the 

skin surface and proximal primary OARs, PTVSV-2 consists of areas of PTV within the skin 
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surface or extending into air, and PTVSV-3 is the PTV volume not covered by PTVSV-1 or PTVSV-2, 

which represents parts of PTV proximal to primary OARs. It is through this subdivision that P2 

goals are compromised for P1 goals and IMRT flash is secured for superficial PTVs. 

Initial Optimisation Objectives  

Scaling Factor Description 

FV Scales objective weight according the volume of the corresponding ROI 

FT Scales objective weight according to the objective's target dose level (DT). This removes an 
unwanted dependency of RayStation's objective functions on DT  

FC A hardcoded constant utilised to reduce the weight of PTV sub-volume objectives to avoid 
skin boosting and reduce conflicts within the PTV/OAR overlap region.  

FN FN enables winitial to be modified for an individual planning goal. The purpose is to bring 
winitial closer to the anticipated final weight for dynamic objectives 

Table 2: Summary of objective weight scaling factors 

Following treatment beam/arc definition an initial set of optimisation objectives are loaded 

into RayStation’s native optimiser. Optimisation objectives are derived from the defined 

planning goals according to the algorithms specified in supplementary file S2, with the initial 

weight, winitial, for the ith objective defined by:  

𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖 = 𝑤𝑛𝑜𝑚

𝑖 𝐹𝑉
𝑖 𝐹𝑇

𝑖 𝐹𝐶
𝑖 𝐹𝑁

𝑖   Eq. (1) 

where, 𝑤𝑛𝑜𝑚
𝑖 is the nominal weight of the planning goal from which the objective is derived, 

and 𝐹𝑉
𝑖 , 𝐹𝑇

𝑖 , 𝐹𝐶
𝑖  and 𝐹𝑁

𝑖  are optimisation objective specific scaling factors. Each scaling factor 

is summarised in Table 2, with full definitions provided in the supplementary file S3. For P1 

and P2 goals, 𝑤𝑛𝑜𝑚
𝑖  is an empirically derived hardcoded value (supplementary table 3), 

intended to be common across all treatment sites. For P3 goals, 𝑤𝑛𝑜𝑚
𝑖  is generated through 

the Pareto navigation calibration process.   

Plan Optimisation  

The employed optimisation algorithms (Figure 6) consist of two stages: a pre-optimisation, 

which sets initial P3 objective target values (𝑇𝑝3
𝑖 ) and a main optimisation, which generates 

the final clinical plan. During the optimisation process, P3 goals are implemented as ‘dynamic 

objectives’ with the aim of minimising OAR doses and keeping trade-off balancing across 

patients consistent. In the following description of the methodology, we define ∆𝑖 by the 

equation: 
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∆𝑖 =
𝐷𝑝3

𝑖 −𝑇𝑝3
𝑖

𝑥𝑖                   Eq. (2) 

Where 𝐷𝑝3
𝑖  is the current value of the planning goal’s corresponding dose parameter (c.f. 

supplementary table 2) and 𝑥𝑖  equals DPresc for dose objectives and 𝑉𝑅𝑂𝐼
𝑖  for volume 

objectives, where 𝑉𝑅𝑂𝐼
𝑖  is the volume of the ith objective’s corresponding ROI.  

For stage one, a fluence-based optimisation, which allows beam intensity to be modulated 

with minimal physical limits, is performed. Following the optimisation, if ∆𝑖 does not lie 

within the range [0.15-0.5] (or [0.0-0.5] if 𝑇𝑝3
𝑖 =0) for each dynamic objective,  𝑇𝑝3

𝑖  is updated 

according to equation 3 (with the variable δ set to 0.35) and the optimisation rerun. 

Figure 6: Flowchart of the stage 1 and stage 2 optimisation algorithms, where: 𝑤𝑝2
𝑖 , 𝑇𝑝3

𝑖 , 𝑤𝑝3
𝑖 , ∆𝑖  and δ are 

defined in the main manuscript, imax specifies the number of optimisation loops to perform and was set to 
6, DynObj is an abbreviation for dynamic objectives and DMPO indicates a direct machine parameter 
optimisation where optimisations are bound by the treatment machine’s physical limits. *During the 

modulation optimisation, for Eq. 3, 𝐷𝑝3
𝑖  is calculated from the final stage one pre-optimisation distribution. 
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𝑇𝑝3
𝑖 = 𝐷𝑝3

𝑖 − 𝑥𝑖𝛿                  Eq. (3) 

The process is repeated until ∆𝑖 lies within the specified bounds across all dynamic 

objectives. Bounding ∆𝑖 in this manner ensures P3 optimisation objectives are a significant 

but not dominant component of the composite objective function, resulting in P3 goals being 

minimised without significantly compromising P1 or P2 goals. The resulting dose distribution, 

which is generated within 1-2 minutes, provides an approximate prediction of the final, fully 

optimised, clinical solution. Based on this distribution,  𝑇𝑝3
𝑖  for the main optimisation is set 

according to Eq. 3 with δ=0.05. Fluence-based VMAT optimisations are not possible in 

RayStation, therefore stage one treatment arcs are approximated through 15 equi-spaced 

static IMRT fields. 

For stage two, a preliminary direct machine parameter optimisation (DMPO), where 

optimisations are bound by the machine’s physical limits, is executed to generate an initial 

set of segments. An optional modulation optimisation is performed where P2 objective 

weights (𝑤𝑝2
𝑖 ) are reduced by a factor of 25 and, using the stage one pre-optimisation 

distribution as the reference dose,  𝑇𝑝3
𝑖

 set according to Eq.3 with δ=0.35. This prioritises the 

minimisation of P3 objectives during the initial phases of the plan generation process and 

results in a reduction of OAR doses at the lower dose levels in the final clinical plan. This 

however is at the expense of increased modulation and MU. After the modulation 

optimisation, objective positions and weights are reverted to their original values. Finally, in 

the main stage of the plan generation process, multiple DMPOs are performed with 𝑇𝑝3
𝑖  and 

𝑤𝑝3
𝑖   adjusted after each round. Using the stage two dose distribution as the reference, 𝑇𝑝3

𝑖  

is updated according to Eq. 3 (with δ=0.05) and 𝑤𝑝3
𝑖  according to:  

𝑤𝑝3
𝑖 =

𝑂𝑉𝑡
𝑖𝑤𝑐

𝑖

𝑂𝑉𝑐
𝑖                           Eq. (4) 

where, 𝑤𝑐
𝑖, 𝑂𝑉𝑐

𝑖 and 𝑂𝑉𝑡
𝑖 are the current weight, current OV and target OV of the ith objective 

respectively, with 𝑂𝑉𝑡
𝑖

 derived from 𝑤𝑛𝑜𝑟𝑚
𝑖  according to the supplementary file S4. A 

function’s OV is defined as the product of its weight and function, therefore this iterative 

weight adjustment ensures that across the multiple DMPOs, 𝑂𝑉𝑐
𝑖 tends towards 𝑂𝑉𝑡

𝑖.  

The values for δ and ∆𝑖 bounds within the optimisation algorithm were based on previous 

experience developing VMAT class solutions, where it was observed that performing 
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multiple fluence based optimisations until ∆𝑖 lay within the range [0.15-0.5] yielded a 

distribution where OAR doses were minimised with target coverage not excessively 

compromised. This fluence distribution represented an approximate prediction of the 

optimal OAR DVH for a given patient, with DVH objective positions then set to 5% below the 

predicted value (i.e. δ=0.05) and a full optimisation performed to create a deliverable plan. 

This process is very much akin to KBP approaches, but with the fluence optimisation used to 

predict DVHs and inform DVO positioning rather than machine learning. The parameters 

during the class solution development were derived through trial and error and were chosen 

as a starting point for the algorithms in this work and not modified. For the modulation 

optimisation the chosen values of 25 and 0.35 for the weight reduction factor and δ 

respectively were derived through trial and error. 
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8.4.2.4 AutoPlan Protocol Calibration 

A flowchart of the calibration process, used to generate 𝑤𝑛𝑜𝑚
𝑖

 for each P3 planning goal, is 

provided in the supplementary file S5. A calibration patient data set, consisting of typically 

10-20 delineated patients, is defined. From this dataset a single ‘navigation patient’ is 

selected and the Pareto navigation process started. 

 

Figure 7: (LHS) Screenshots demonstrating using the slider GUI to navigate through different weighted 
options for the PSV conformality goal (P3 group 4).  The displayed DVH metrics, which are not part of the 
calibration GUI, demonstrate the trade-off between the Paddick’s conformity index (CI) for both PTVs and 
organ at risk mean doses. Isodose legend is enlarged for clarity. (RHS) Algorithms associated with the 
navigation module where: wj and wj+1 are the nominal weights of the nearest neighbour plans j and j+1 
respectively, whose weights bound the navigation weight, wnav; Dj and Dj+1 correspond to the dose 
distribution of plan j and j+1 respectively; and Dnav represents the estimated navigated dose distribution. 
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Initially all P3 nominal weights are set to zero. For the first P3 group, multiple plans 

(nominally five) are generated, each with a different value of 𝑤𝑛𝑜𝑚
𝑖  applied to the group. The 

operator uses a slider to navigate through convex combinations of the differently weighted 

plans, with the navigated dose distribution and associated DVH updated in real time to 

inform the decision-making (Figure 7). The operator selects what they consider to be the 

optimum group weighting and the navigated weight is stored in the AutoPlan protocol. The 

process is then repeated for the next group using the updated protocol. Once all groups are 

navigated a final ‘rebalancing’ navigation is performed on a set of plans with differing factors 

(range 0.25 to 1.25) applied globally to all P3 nominal weights. This process allows the ratio 

of P3 weights, and P1 and P2 weights to be explored, ensuring a solution can be selected 

where higher priority goals are not compromised.  Once this first calibration round is 

complete the solution is tested across all calibration patients, with amendments to planning 

goals or additional navigations (on selected P3 groups) performed as required to refine the 

solution.  

Generating one set of navigation plans for a P3 group takes 1-3 hours, depending on plan 

complexity, and each group must be optimised and navigated sequentially. Navigations are 

initially performed on a single patient, however where there are large inter-patient 

anatomical variations, repeat navigations over population outliers may be required to 

ensure the solution is robust across the whole patient cohort. When navigating over multiple 

patients the operator decides whether the P3 group weighting is based a particular patient, 

or averaged over multiple patients. The calibration process can be considered equivalent to 

navigating the Pareto surface one dimension (or P3 group) at a time, with operators using 

clinical experience and expertise to balance competing trade-offs. 

8.4.3 Application to Prostate Cancer  

All 10 calibration patients alongside their previous clinically approved treatment plan 

(VMATClinical) were available during the AutoPlan protocol calibration for PSV. The navigation 

patient was selected following a visual review of all calibration patients and chosen based on 

its anatomy being reasonably representative of the set. Once successfully calibrated a final 

automated plan (VMATAuto) was generated for all study patients using identical arc 

configurations to VMATClinical. To assess the efficacy of the calibrated automated solution, 

plan quality was quantitatively compared to VMATClinical using the local clinical goals, 
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alongside D98%, D2% and Paddick’s Conformity Index [121] for each target volume. The 

statistical significance of any differences was assessed using two-sided Wilcoxon matched-

paired signed-rank tests.  

8.5 Results 

8.5.1 AutoPlan Protocol Calibration 

Protocol calibration was performed by one physicist with a radiation oncologist providing 

clinical input on trade-off prioritisation prior to calibration. 15 individual trade-off 

navigations were required to calibrate the AutoPlan protocol. All navigations were 

performed on a single patient, with planning goals manually modified twice after reviewing 

results across all patients in the calibration dataset. Key planning goal updates included the 

addition of bowel and low dose bladder planning goals. The final nominal weights are 

presented in supplementary table 3. 

8.5.2 Comparison with VMATClinical 

  VMATAuto   VMATClinical   

  Metric Median Range   Median Range   p value 

PTV60 D98% (Gy) 57.8 57.7 to 58.0   57.9 57.6 to 58.3   0.17 
  D2% (Gy) 61.7 61.6 to 61.7   61.7 61.3 to 62.2   0.33 
  CI 0.86 0.85 to 0.87   0.79 0.76 to 0.82   0.01 

PTV48  D98% (Gy) 46.8 46.5 to 47.4   47.0 46.6 to 47.7   0.06 
  D2% (Gy) 58.8 58.5 to 59.2   59.4 58.8 to 59.8   0.01 
  CI 0.84 0.82 to 0.87   0.77 0.75 to 0.79   0.01 

Rectum V24.3Gy (%) 41.1 27.3 to 63.6   46.4 30.6 to 66.1   0.01 
  V40.5Gy (%) 24.2 15.3 to 39.6   24.6 16.4 to 41.2   0.06 
  V52.7Gy (%) 11.0 4.7 to 16.5   12.8 5.6 to 18.9   0.01 
  V60.8Gy (%) 0.1 0.0 to 0.5   0.0 0.0 to 0.3   0.09 
  DMean (Gy) 25.1 17.5 to 32.3   27.5 20.5 to 34.0   0.01 

Bladder V40.5Gy (%) 15.3 8.8 to 31.5   15.4 8.9 to 31.0   0.39 
  V52.7Gy (%) 7.8 3.0 to 16.8   8.0 3.3 to 17.9   0.04 
  V56.8Gy (%) 5.3 2.1 to 11.7   5.7 2.3 to 12.8   0.03 
  DMean (Gy) 18.7 13.1 to 30.7   19.1 13.9 to 31.2   0.51 

Bowel V36.5Gy (cm³) 0.0 0.0 to 0.7   0.0 0.0 to 0.9   0.27 
  V44.6Gy (cm³) 0.0 0.0 to 0.0   0.0 0.0 to 0.1   0.32 
  DMean (Gy) 6.4 3.4 to 11.2   7.5 3.9 to 14.1   0.01 

External D1.8cm³  (Gy) 61.6 61.5 to 61.8   61.7 61.2 to 62.4   0.33 

Plan MU MU 600 582 to 653   546 496 to 627   0.01 

Statistical significance: results where p<=0.05 are presented in bold 

CI: Paddick's Conformity Index for the specified PTV.     

Table 3: Dosimetric comparison of VMATAuto and VMATClinical for the validation patient cohort 

A summary of the quantitative comparison of VMATAuto and VMATClinical for the validation 

cohort is presented in Table 3. In comparison with the previous clinical plans, VMATAuto 
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yielded statistically significant (p<0.05) improvements in: PTV conformity indices, high dose 

bladder metrics, mean bowel dose, and the majority of rectum dose metrics. Of particular 

note was the reduction in mean rectum dose (median 25.1 Gy vs. 27.5 Gy), rectum V24.3Gy 

(median 41.1% vs 46.4%), and improvements in CIPTV60 (median 0.86 vs. 0.79) and CIPTV48 

(median 0.84 vs. 0.77). Dosimetric improvements were not at the expense of other dose 

metrics, with observed detriments either statistically or clinically insignificant. In terms of 

modulation, VMATAuto yielded plans with a median MU 10% higher than VMATClinical.  

Extending the comparison across all 20 study patients yielded similar results (supplementary 

tables 4 and 5), with all treatment plans meeting the locally defined mandatory goals for 

clinical acceptability.  

8.6 Discussion 

To the authors’ knowledge this paper presents the first automated planning solution that 

directly incorporates Pareto navigation techniques into the calibration process. Compared to 

clinical practice (Table 3), VMATAuto consistently yielded plans with improved conformity and 

reduced organ at risk doses, with no clinically relevant compromise to other dose metrics. As 

VMATClinical and VMATAuto are generated in differing planning systems (Oncentra vs 

RayStation), these results are not intended to form a robust assessment as to their relative 

efficacy, this is the subject of future work. Instead they provide sound evidence that directly 

calibrating automated solutions through Pareto navigation is feasible and yields plans of 

improved dosimetric quality compared to current clinical practice.    

Utilisation of Pareto navigation within the calibration process was observed to have two 

main benefits. Firstly, exploring differently weighted options via a sliding interface and live 

dose distribution allowed trade-off options to be explored in a visually intuitive manner. 

Secondly, an automated solution was derived in a time efficient manner with minimal trial 

and error. These advantages have been demonstrated on a per-patient basis by a number of 

studies [20,23,26] and this work indicates that similar benefits can be realised by applying 

this technique at a patient cohort level.  

A potential weakness of Pareto navigation is that there can be clinically relevant 

discrepancies between the navigated dose distribution and that of the final deliverable plan 

[27]. To minimise these discrepancies the following approaches were adopted. Firstly, the 
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Pareto surface was sampled one dimension at a time to reduce interpolation errors during 

navigation (whilst maintaining a reasonable computational cost). Secondly, the Pareto 

dataset was populated with deliverable plans, ensuring navigations were performed on 

clinically achievable solutions. By utilising these approaches, discrepancies throughout the 

calibration process were of negligible clinical significance (supplementary table 6). This 

navigation methodology does however have a potential weakness, in that by limiting the 

navigation to one P3 group at a time a full exploration of the Pareto surface is not 

performed. Whilst this was not considered a problem for the relatively simple site of PSV 

cancer, for more complex sites, navigation of multiple P3 groups in parallel may be required 

to derive the most clinically desirable solution. 

An interesting finding from this study was that Pareto navigation across a single patient 

appears sufficient for a successful calibration. Whilst modifications to planning goals were 

required after reviewing results across all calibration patients, these adjustments were due 

to deficiencies in the original set of planning goals, which were highlighted by differing 

patient geometries (e.g. proximity of bowel to PTV demonstrating requirement for bowel 

planning goals), rather than an inappropriate calibration. The ability to calibrate automated 

solutions against small patient cohorts (5-10 subjects) is in-line with examples in the 

literature for εc [49] and PB-AIO [72] solutions, and should enable a more efficient 

automation of novel techniques or protocols than KBP solutions, which require the manual 

generation of large patient datasets for each change in clinical practice.  

The implemented calibration methodology requires algorithms that balance trade-offs 

consistently across differing patients. Dynamically adapting trade-off objective positions and 

weights during the optimisation was hypothesised to fulfil this function. By implementing 

‘dynamic objectives’ a single calibrated AutoPlan protocol was found to yield appropriately 

balanced, clinically acceptable plans across all 20 study patients. In terms of robustness to 

patient geometry, even when PTV/OAR overlap differed considerable from the navigation 

patient, trade-off balancing was observed to be appropriate (Figure 8).  
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In summary, a novel automated planning solution has been developed, which for the first 

time directly incorporates Pareto navigation into the calibration process. The solution has 

been successfully calibrated for the site of PSV, yielding clinically acceptable, appropriately 

balanced treatment plans, fully autonomously.   
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Figure 8: DVH and dose distributions for the navigation patient (LHS) and patient 7 in the validation cohort 
(RHS), demonstrating the robustness of the automated solution to different anatomy. For both patients the 
DVH results for VMATClinical are provided for reference (dashed line). For patient 7 the overlap of rectum 
with PTV60 and PTV48 was 9% and 24% respectively (c.f. 4% and 13% respectively for the navigation 
patient), and for bladder 8% and 19% respectively (c.f. 1% and 4% for the navigation patient). The 
PTV/OAR overlaps for patient 7 were all greater than the 89th percentile when considering the overlaps of 
all 20 study patients. 
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9.2 Highlights 

• An automated treatment planning solution, which is uniquely calibrated using Pareto 

navigation principles, has been evaluated for prostate cancer patients with and 

without elective nodal irradiation. 

• Pareto navigation enabled the intuitive exploration of clinical trade-offs during 

protocol calibration, ensuring automated solutions were closely aligned to 

oncologists’ clinical preference 

• Upon evaluation, automated plans were considered non-inferior to manual planning 

by expert dosimetrists under no time pressures. 

9.3 Abstract 

Background and purpose: Current automated planning methods do not allow for the 

intuitive exploration of clinical trade-offs during calibration. Recently a novel automated 

planning solution, which is calibrated using Pareto navigation principles, has been developed 

to address this issue. The purpose of this work was to clinically validate the solution for 

prostate cancer patients with and without elective nodal irradiation.  

Materials and methods: For 40 randomly selected patients (20 prostate and seminal vesicles 

(PSV) and 20 prostate and pelvic nodes (PPN)) automatically generated plans (VMATAuto) 

were compared against plans created by expert dosimetrists under clinical conditions 

(VMATClinical) and no time pressures (VMATIdeal).  Plans were compared through quantitative 

comparison of dosimetric parameters and blind review by an oncologist. 

Results: Upon blind review 39/40 and 33/40 VMATAuto plans were considered preferable or 

equal to VMATClinical and VMATIdeal respectively, with all deemed clinically acceptable. 

Dosimetrically, VMATAuto, VMATClinical and VMATIdeal were similar, with observed differences 

generally of low clinical significance. Compared to VMATClinical, VMATAuto reduced hands-on 

planning time by 94% and 79% for PSV and PPN respectively. Total planning time was 

significantly reduced from 22.2 mins to 14.0 mins for PSV, with no significant reduction 

observed for PPN. 

Conclusions: A novel automated planning solution has been evaluated, whose Pareto 

navigation based calibration enabled clinical decision-making on trade-off balancing to be 
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intuitively incorporated into automated protocols. It was successfully applied to two sites of 

differing complexity and robustly generated high quality plans in an efficient manner.  

9.4 Introduction 

Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) 

treatment plan generation is a complex process, traditionally performed manually by 

medical physicists or specialist dosimetrists. Manual methods can be time consuming and 

dependent on the treatment planner’s experience [6]. A solution to this problem is 

automated planning, where high quality plans are generated autonomously with minimal 

operator interaction [49–51,66,67,79,118,119].  

A key challenge in automated planning is incorporating treatment planners’ or oncologists’ 

clinical experience and decision-making within the autonomous process. A number of 

different methods have been employed: knowledge based planning (KBP) utilises databases 

of previous clinical plans to correlate the relationship between patient geometry and the 

resultant dose distribution, which then informs the optimisation of new patients 

[34,36,98,118,122]; sequential ε-constraint planning (εc) optimises plans based on a list of 

clinically prioritised goals [44,46,49–51,123]; and protocol based automatic iterative 

optimisation (PB-AIO) adapts optimisation parameters during the planning process, tailoring 

the optimisation to the individual patient [61,66,68,72]. Whilst these techniques have been 

successfully applied to automated planning, a method for intuitive exploration of different 

‘trade-off’ options during their calibration has not yet been demonstrated.   

Recently we developed a fully automated treatment planning solution, which is uniquely 

calibrated using Pareto navigation principles. This novel calibration process allows differing 

trade-off options to be intuitively explored, ensuring clinical experience and decision-making 

can be effectively incorporated into the autonomous plan generation process. Utilisation of 

Pareto navigation techniques on a per patient basis has been shown to improve congruence 

between the oncologist’s clinical preference and the final clinical plan [23], improve 

efficiency [20,23,124], and enable novice operators to generate high quality plans [20]. It is 

anticipated that utilising such an approach to inform and calibrate an automated solution 

would have similar benefits and provide significant advantages over current methods, which 

are reliant on trial and error, or calibration against historical datasets.  
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In a previous publication we presented in detail the algorithms behind our automated 

approach, demonstrated the calibration process for the tumour site of prostate and seminal 

vesicles (PSV), and presented results from a limited proof of principle pilot study on 10 

patients [125]. The objective of this study was to additionally calibrate the solution for the 

complex site of prostate and pelvic nodes (PPN), and for both PSV and PPN perform a 

comprehensive clinical evaluation comparing this new automated technique with plans 

generated manually by expert dosimetrists. It is hypothesised that this novel approach to 

calibration will result in high quality plans that are closely aligned with oncologist clinical 

preferences.   

9.5 Methods and Materials  

9.5.1 Patient Selection and Planning Protocol 

Calibration for the tumour site of PPN was performed on a dataset of 20 previously treated 

patients at Velindre Cancer Centre; 10 randomly selected from patients treated between 

July and December 2015 and 10 selected from a previous research database of patients 

treated between June and September 2014. The subsequent evaluative study was 

performed on an independent validation dataset of 40 subjects (20 PSV and 20 PPN) which 

were randomly selected from patients treated at Velindre Cancer Centre between January 

and June 2016.  

Patients were planned on computed tomography scans with 3mm slice thickness. Prostate, 

seminal vesicles (SV), rectum, bladder, bowel, pelvic nodes (PPN only) and an optional pelvic 

node boost volume covering gross nodal disease (PPN only) were delineated prior to 

planning. The following planning target volumes (PTV) were subsequently generated: 

prostate, pelvic nodes and pelvic node boost expanded by 5 mm (6 mm craniocaudally) to 

form PTV60, PTV44 (PPN only)  and PTV50 (PPN only)  respectively; and prostate + SV 

expanded isotropically by 10 mm to form PTV48. For automated plan generation an 

additional volume, BowelBagRegion, was manually delineated for PPN, with details provided 

in the supplementary file S1.    

Treatments were prescribed for 20 fractions using a simultaneous integrated boost (SIB) 

technique, with the PTV’s suffix denoting its prescribed dose in Gy. The local clinical planning 

goals, adapted from the UK clinical trial PIVOTAL [126], are detailed in the supplementary file 
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S2.  All plans in this study were generated within RayStation (v4.99, Raysearch Laboratories, 

Stockholm) using identical computer clients, treatment units (Elekta Agility, Elekta Ltd, 

Crawley) and VMAT arc configurations (6MV single 360° arc for PSV; 6MV dual 360° arc for 

PPN). 

9.5.2 Automated System Overview 

Automated planning was performed using EdgeVcc: an ‘in-house’ automated treatment 

planning solution, implemented within RayStation using its scripting functionality. This 

section provides an brief overview of the system, with full technical details provided by 

Wheeler et al [125]. 

Prior to automated plan generation a site-specific ‘AutoPlan protocol’ must be created and 

calibrated. The AutoPlan protocol specifies the treatment modality, beam arrangement and 

planning goals for a given tumour site. Planning goals are split into three priority levels: 

primary normal tissue goals (P1), target goals (P2) and trade-off goals (P3). The planning goals 

used in this study for PPN are presented in the supplementary file S3.  

Planning goals do not require any user defined optimisation weighting factors, instead 

weights are automatically assigned during plan generation through one of two processes. 

For P1 and P2 goals, where the handling of competing clinical trade-offs is explicitly defined 

(i.e. target coverage is compromised to maintain normal tissue goals), weights are derived 

from a set of hard-coded nominal weights, which are common to all tumour sites. When 

derived, weighting factors are scaled according to the volume of their corresponding region 

of interest to account for the observation that to obtain the same effect, small volumes 

require lower weighting factors than large volumes.  For P3 goals, interaction between 

conflicting trade-offs is complex, site specific and requires careful balancing of competing 

clinical demands. P3 nominal weights are therefore derived through an intuitive Pareto 

navigation based calibration process, where the operator sequentially explores differently 

weighted options of each P3 goal using an interactive slider GUI, with DVHs and dose 

distributions updated in real-time to inform the decision-making. The calibration is initially 

performed on a single patient, with the resultant solution tested against the remaining 

patients in the calibration cohort to ensure robustness against the whole population. Where 

there are large inter-patient anatomical variations, repeat navigations over population 
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outliers may be required to improve the robustness of the solution. In this situation the 

operator decides if the final weighting is based a particular patient, or averaged over 

multiple patients. Once calibrated, a single high quality treatment plan can be automatically 

generated for delineated patients within that tumour site.  

Treatment plans are generated using RayStation’s native optimiser with optimisation 

objectives derived from the defined planning goals. Plan optimisation is based on a PB-AIO 

framework where the target values and weights of P3 related objectives are dynamically 

adjusted during the optimisation, such that the plan is tailored to the individual patient. 

Implementation of ‘dynamic objectives’ ensures P3 goals are always acted on by the 

optimiser and thus minimised, and additionally is hypothesised to enable a common set of 

calibration weights to be applicable across all patients for a given site. 

9.5.3 Automated Plan Generation 

Using the calibration patient dataset an AutoPlan protocol for PPN was created and 

calibrated. The final PPN protocol and previously calibrated PSV protocol [125] were used to 

generate a single automated plan (VMATAuto) for each patient in the corresponding 

independent validation datasets. Plans were reviewed for clinical acceptability, with manual 

dose scaling performed if required. All work was performed by a single clinical scientist (PW). 

9.5.4 Study Design and Statistical Analysis 

To benchmark VMATAuto, experienced IMRT/VMAT dosimetrists (CJ for PSV; OW for PPN) 

generated two manual treatment plans (VMATClinical & VMATIdeal) for each patient in the 

validation dataset. VMATClinical was generated under simulated clinical conditions following 

standard protocols, which utilise an efficient template-based class-solution methodology. As 

per clinical practice the dosimetrist ceased optimising once a clinically acceptable plan was 

generated. Then, in the absence of time pressure, the dosimetrist used their knowledge and 

expertise to improve VMATClinical as far as they deemed possible to produce an ‘ideal’ 

treatment plan, VMATIdeal. 

Prior to manual plan generation and the calibration of both AutoPlan protocols, all operators 

were briefed on trade-off prioritisation via discussions with a consultant oncologist assigned 

to each clinical site (JS for PSV; NP for PPN). For all three techniques operator hands-on and 

total planning times were recorded. 
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VMATAuto was compared to both VMATClinical and VMATIdeal in terms of plan quality and 

planning efficiency. Plan quality was quantitatively assessed using local clinical planning 

goals; and D98%, D2% and Paddick’s Conformity Index (CI) [121] for each target volume. 

Two-sided Wilcoxon matched-paired signed-rank tests assessed the statistical significance of 

any differences in plan quality and timing metrics. In addition, a blinded qualitative 

assessment was performed by the assigned oncologist to: score overall plan quality using a 

five point scale (1-unacceptable, 2-poor, 3-satisfactory, 4-good, 5-excellent); establish the 

clinical acceptability of each plan; and rank the trio of plans in order of preference, with 

clinically equivalent plans given equal rank.  

9.6 Results 

Calibration for the complex site of PPN was challenging and iterative due to the high number 

of competing trade-offs and large inter-patient variability in OAR volumes. Over 40 individual 

navigations across six patients were performed. During PPN calibration the hard coded P1 

nominal weight for primary conformality goals was considered suboptimal and manually 

increased to match the weight for P1 primary OAR goals. The post calibration nominal 

weights are presented in the supplementary file S4. 
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    SVP PPN 
  Metric VMATAuto VMATClinical VMATIdeal VMATAuto VMATClinical VMATIdeal 

PTV60 D98% (Gy) 57.9 ± 0.1 57.8 ± 0.2 57.7 ± 0.1 57.8 ± 0.1 58.0 ± 0.1 57.9 ± 0.1 
  D2% (Gy) 61.6 ± 0.1 61.7 ± 0.2 61.7 ± 0.2 61.7 ± 0.1 61.9 ± 0.2 61.9 ± 0.2 
  CI 0.86 ± 0.01 0.84 ± 0.03 0.88 ± 0.02 0.82 ± 0.02 0.81 ± 0.03 0.81 ± 0.03 

PTV50 D98% (Gy)                   48.2 ± 0.2 48.0 ± 0.3 47.9 ± 0.2 
  D2% (Gy)                   52.3 ± 1.7 52.0 ± 1.0 52.1 ± 0.9 
  CI                   0.41 ± 0.05 0.41 ± 0.07 0.42 ± 0.07 

PTV48  D98% (Gy) 46.8 ± 0.5 46.8 ± 0.4 46.5 ± 0.3 46.6 ± 0.6 46.7 ± 0.4 46.6 ± 0.4 
  D2% (Gy) 58.9 ± 0.2 59.0 ± 0.3 58.6 ± 0.3 59.5 ± 0.3 59.6 ± 0.3 59.6 ± 0.3 
  CI 0.85 ± 0.01 0.82 ± 0.01 0.87 ± 0.01 0.65 ± 0.05 0.59 ± 0.07 0.60 ± 0.07 

PTV44 D98% (Gy)                   42.3 ± 0.1 42.4 ± 0.1 42.4 ± 0.1 
  D2% (Gy)                   47.4 ± 1.6 47.8 ± 1.7 47.7 ± 1.8 
  CI                   0.82 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 

Rectum V24.3Gy (%) 36.7 ± 10.1 40.8 ± 11.1 38.0 ± 9.3 53.3 ± 9.3 59.3 ± 7.3 56.2 ± 8.1 
  V40.5Gy (%) 20.4 ± 7.2 20.4 ± 7.4 20.0 ± 7.2 24.0 ± 6.1 23.8 ± 6.4 23.1 ± 6.5 
  V52.7Gy (%) 8.5 ± 3.7 8.1 ± 3.6 8.0 ± 3.5 10.5 ± 3.0 10.0 ± 2.9 9.6 ± 2.9 
  V60.8Gy (%) 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 
  DMean (Gy) 22.7 ± 3.9 25.1 ± 3.5 23.4 ± 3.5 29.5 ± 2.7 30.4 ± 2.6 29.7 ± 2.6 

Bladder V40.5Gy (%) 19.2 ± 10.7 18.3 ± 9.6 17.4 ± 9.5 24.7 ± 10.4 23.7 ± 8.5 23.7 ± 8.5 
  V52.7Gy (%) 8.8 ± 5.9 8.3 ± 5.2 7.9 ± 5.2 7.4 ± 4.8 7.6 ± 4.8 7.5 ± 4.7 
  V56.8Gy (%) 6.1 ± 4.2 5.7 ± 3.8 5.6 ± 3.9 4.9 ± 3.1 5.3 ± 3.5 5.3 ± 3.5 
  DMean (Gy) 23.0 ± 9.1 22.2 ± 8.6 21.6 ± 8.6 33.0 ± 3.9 31.3 ± 3.5 31.1 ± 3.5 

Bowel V36.5Gy (cc) 0.9 ± 2.0 0.9 ± 1.9 0.7 ± 1.6 48.6 ± 35.9 53.9 ± 38.7 51.2 ± 38.0 
  V44.6Gy (cc) 0.3 ± 0.7 0.3 ± 0.8 0.3 ± 0.8 3.6 ± 6.5 3.5 ± 6.0 3.3 ± 5.6 
  V52.7Gy (cc) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
  DMean (Gy) 8.6 ± 4.7 8.4 ± 4.7 7.7 ± 4.2 18.7 ± 2.6 19.6 ± 2.6 19.3 ± 2.4 

Patient Outline D1.8cm3 (Gy) 61.6 ± 0.1 61.7 ± 0.2 61.7 ± 0.2 61.7 ± 0.1 61.9 ± 0.3 61.9 ± 0.3 
Plan MU MU 616 ± 43 563 ± 58 575 ± 57 714 ± 60 695 ± 69 711 ± 68 

Planning Time Hands on time (mins) 1.3 ± 0.3 22.2 ± 5.3 85.4 ± 39.9 4.4 ± 0.5 20.6 ± 6.3 65.4 ± 21.1 
  Total time (mins) 14.0 ± 1.4 22.2 ± 5.3 85.4 ± 39.9 36.4 ± 3.1 41.8 ± 11.4 200.0 ± 53.1 

Plan Quality Score 5.0 ± 0.2 4.6 ± 0.5 4.9 ± 0.3 5.0 ± 0.2 4.8 ± 0.4 4.8 ± 0.4 

Plan Ranking vs  Plans Superior (%)   5% 15%   0% 20% 
VMATAuto Plans Equivalent (%)   35% 55%   35% 15% 
  Plans Inferior (%)   60% 30%   65% 65% 

Statistical significance: VMATClinical and VMATIdeal dosimetric and timing data are presented in bold where statistically 
significant differences (p<0.05) with VMATAuto are observed.  

CI: Paddick’s Conformity Index for the specified PTV.             

Table 4: Dosimetric comparison of VMATAuto, VMATClinical and VMATIdeal for the treatment sites PSV and PPN 
(mean ± standard deviation) 
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39/40 VMATAuto plans were generated with no user intervention; for one PPN patient the 

plan MU was scaled by 0.3% to ensure PTV44 D99% was within the local clinical planning 

goal. A summary of the quantitative plan comparison is presented in Table 4 and Figure 9, 

with example dose distributions presented in Figure 10. For both PPN and PSV, VMATIdeal led 

to small reductions in all OAR metrics when compared to VMATClinical and across all three 

techniques observed differences were generally considered of low clinical significance. For 

PSV VMATAuto, the noteworthy statistically significant (p<0.05) differences with VMATIdeal and 

VMATClinical were: reductions in rectum mean dose and V24.3Gy, increases in the majority of 

bladder metrics, improved (increased) CI compared to VMATClinical, and decreased CI 

compared to VMATIdeal. For PPN VMATAuto the noteworthy differences (p<0.05) were: 

reduction in bowel V36.5Gy; increased mean bladder dose; increased PTV48 CI; and when 

compared to VMATClinical only, decreased rectum V24.3Gy. For PSV, automation led to a 

Figure 9: Comparison of rectum, bladder and bowel dosimetric plan parameters between automatically 
generated plans (VMATAuto) and plans generated by expert dosimetrists under no time pressure (VMATIdeal). 
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moderate increase in plan MU of 7% and 9% compared to VMATIdeal and VMATClinical 

respectively, which may be indicative of increased modulation. 

 

All 120 plans were considered acceptable upon blind review by the oncologist, with plan 

quality scores either good (4) or excellent (5). Analysis of the plan ranking determined that 

39/40 and 33/40 of VMATAuto plans were considered preferable or equal to VMATClinical and 

VMATIdeal respectively. When compared to VMATClinical, hands-on planning time was 

significantly reduced by 94% and 79% for PSV and PPN respectively. Total planning time was 

Figure 10: DVH and dose distributions for patient 1 in the PPN and PSV validation cohort.  (A) PPN VMATAuto dose 
distribution. (B) PPN VMATIdeal dose distribution. (C) PSV VMATAuto dose distribution. (D) PSV VMATIdeal dose 
distribution. (E) PPN DVH for VMATAuto (solid line) and VMATIdeal (dotted line). (F) PSV DVH for VMATAuto (solid line). 
and VMATIdeal (dotted line). Note: BowelBagRegion ROI omitted from dose distribution images to improve clarity. 
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significantly reduced from 22.2mins to 14.0mins for PSV, with no significant reduction 

observed for PPN.  

9.7 Discussion 

In this study a novel automated treatment planning solution, which is directly calibrated 

using Pareto navigation principles, has been robustly validated for prostate cancer. The 

resultant automated protocols were rigorously evaluated against plans generated by expert 

dosimetrists, with favourable results towards automation. Furthermore the solution’s 

robustness to treatment site complexity was validated through application to PPN; a 

treatment site with up to four PTV prescription levels and wide inter-patient OAR volume 

variation. 

In our previous work we demonstrated that for the simple site of PSV, Pareto navigation 

enabled both the intuitive exploration of competing trade-offs and the creation of a high 

quality solution in a time efficient manner; benefits which are congruent with Pareto 

navigation applied on a per patient basis [20,23,124]. In this study the generalisability and 

versatility of the calibration methodology was demonstrated through successful application 

to PPN, a site of significant complexity. As with PSV, the intuitive exploration of trade-offs 

was considered a key benefit in ensuring alignment between the final automated solution 

and the oncologist’s clinical aims. However, due to wide variations in inter-patient anatomy 

the calibration was more iterative and challenging, with additional navigations required over 

population outliers. This is in contrast to PSV where navigation over a single patient was 

sufficient for successful protocol calibration [125].  

During the calibration process several potential improvements in the implemented 

methodology were identified. Firstly, the hard-coded objective weights for P1 and P2, which 

were based on previous clinical experience, may need further refining, as evidenced by the 

requirement to increase the nominal weight for P1 primary conformality goals for PPN. 

Secondly, challenges during the PPN calibration indicated that the optimum calibration 

weights for a given patient were still correlated with anatomical geometry, even when 

objective positions and weights were dynamically adjusted. Further work will include 

assessing and correcting for this correlation using machine learning. 
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The evaluative study demonstrated that when compared to manual planning under clinical 

conditions, VMATAuto was the superior technique both in terms of quality and efficiency. In 

addition, results indicate VMATAuto is non-inferior to manual planning by expert dosimetrists 

under no time pressure. In general, dosimetric differences between VMATIdeal and VMATAuto 

were small, which was considered supportive evidence that implementation of ‘dynamic 

objectives’ within the automated planning process were yielding plans which were, or were 

near to, Pareto optimal.  

Interestingly clinical preference towards automation was stronger for the more complex site 

of PPN. It is hypothesised that for PPN the high degrees of freedom within the optimisation 

problem made the manual trial and error exploration of trade-offs difficult. In contrast, 

implementation of Pareto navigation techniques allowed intuitive exploration of these 

trade-offs and whilst calibration was challenging, this approach resulted in plans more 

closely aligned to the clinician’s preference. Improved congruence with the clinician’s clinical 

preference is a key benefit of Pareto navigation, which has been demonstrated on a per-

patient level [23] and this work supports the hypothesis that similar benefits can be realised 

by applying this technique at a patient cohort level.  

A potential limitation of this study is its tightly controlled study design, in that for each 

treatment site all manual planning was performed by a single treatment planner, and 

guidance on trade-off balancing and the subsequent blind review was performed by a single 

oncologist. The study was designed such that inter-observer bias was minimised, however as 

a consequence results may not be directly translatable to clinical practice where inter-

observer variability in manual plan quality and oncologist trade-off preferences may be 

significant.   

Compared to existing methods of calibrating automated solutions, Pareto navigation 

presents a clear alternative. For both εc and PB-AIO, automated solution calibrations are 

reliant on trial and error. It is envisaged that the methods presented in this study would 

enhance many of the existing εc and PB-AIO solutions and bring the advantages of intuitive 

trade-off exploration into the wider field of automated planning. When compared to KBP, 

the employed calibration methodology benefits from having no requirement for a database 

of reference treatment plans. Automated solutions are therefore not influenced by the 

quality or quantity of historical plans and new techniques can be developed without the 
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time consuming manual creation of a training dataset. In addition, it is envisaged that due to 

flexibility in the calibration process this approach is ideal for successful implementation in 

radiotherapy centres with differing clinical protocols. 

When comparing to previously published studies, for the tumour site of PSV a thorough 

summary has recently been presented by Heijmen et al [52]; with 12 studies identified as 

demonstrating small differences between automated and manual plans [41,51,61,82,97–

104], and only their more recent multi-centre study showing the overall dosimetric 

superiority of automation through reduced rectum doses [52]. For PPN, to the authors’ 

knowledge two studies have been published. The first being a methodological paper 

presenting results from a single patient [60], which will not be discussed further, and the 

second a 30 patient evaluative study comparing automated planning using εc with manual 

planning under no time pressures [49]. The study demonstrated a clear preference towards 

automated planning, with notable improvements in a wide range of dosimetric parameters. 

Direct comparison between these examples in the literature and results from the study 

presented in this manuscript is not possible or appropriate due to the wide range of 

confounding factors including: patient selection criteria, planner and institutional expertise, 

and clinical protocol complexity. However, what can be ascertained is that results from this 

study, which demonstrate that automated planning is non-inferior to expert manual 

planning, are consistent with existing literature and supportive of Pareto navigation guided 

automated planning. Furthermore, in a recent review on automated planning by Hussein et 

al [11] only two out of the 81 identified evaluative studies were for complex pelvis 

treatments (SIB technique with nodal irradiation) [49,127]. Our work builds on this limited 

evidence base, providing further data in support of automation for even the most complex 

tumour sites. 

9.8 Conclusions 

EdgeVcc is a versatile new automated planning solution whose unique Pareto navigation 

based calibration methodology enabled clinical decision-making on trade-off balancing to be 

intuitively incorporated within automated protocols. It has been successfully applied to two 

sites of differing complexity and robustly generates high quality plans in an efficient manner.  
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10 Critical Appraisal of the Research  

10.1 Overview 

Advanced radiotherapy planning techniques have the potential to transform both the quality 

and efficiency of radiotherapy. This project focused on integrating two advanced techniques, 

through developing an automated solution that was calibrated using MCOposteriori methods. 

The rationale behind this integrative approach being that MCO would provide a more 

intuitive calibration methodology than existing methods and yield automated solutions that 

were aligned with oncologists’ treatment wishes. 

The first proffered paper presented the full methodology of the developed automated 

solution, alongside a proof of principle validation for prostate cancer patients without nodal 

irradiation. The second paper presented the results of a robust study that evaluated the 

technique for prostate patients with and without elective nodal irradiation. 

What follows is a critical appraisal of the research conducted in this project, which includes: 

evaluating its contribution to theory and clinical practice, appraising the developed 

automated solution and research process taken, and finally summarising clinical 

implementation of the solution and opportunities for further research. 

10.2 Contribution to Theory and Practice 

10.2.1  Contribution to Theory 

The key contribution of this work is demonstrating that incorporation of Pareto navigation 

techniques natively into an automated planning solution’s calibration process is feasible and 

yields results which are non-inferior to manual planning performed under no time pressures. 

Whilst MCOposteriori techniques have been utilised to populate datasets on which KBP 

solutions are trained [21,89], this is the first automated solution which has been purpose 

built around the concept of a Pareto navigation calibration process. Developing a purpose 

built solution, rather than merging two existing implementations of MCOposteriori and AP, has 

a key advantage as implementation of the Pareto navigation concept could be tailored to 

match the requirements of an AP calibration process (where navigation accuracy is of 

highest importance), rather than individual patient planning (where efficiency is a key 

requirement). This is important as for existing MCOposteriori commercial solutions the 

approximation error can reach clinically significant levels [27], which could result in large 
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systematic errors in the resulting AP solution. For AP calibration, it is therefore preferable to 

sacrifice computational efficiency to minimise the approximation error as far as reasonably 

practicable. 

The developed Pareto navigation methodology utilised three core methods for reducing the 

approximation error to a negligible level. Firstly, the Pareto plan dataset that samples the 

Pareto surface was generated using deliverable plans as opposed to undeliverable fluence 

based plans, which at the time of development was the method implemented within 

RayStation’s commercial MCOposteriori solution. Whilst this substantially increased the Pareto 

dataset generation time (100 iterations for PSV typically takes ~20 seconds for fluence vs 

~120 seconds for deliverable optimisations), it ensured navigation was performed on plans 

that were accurate representations of the potential clinical solutions, rather than idealised 

non-deliverable distributions. Secondly, when not using advanced sampling methodologies 

(e.g. sandwich algorithm [28]) the sampling requirements of multi-dimensional navigation 

increases to the power of the number of dimensions. Therefore in this initial 

implementation, Pareto navigation was performed one dimension (or trade-off) at a time. 

This substantially reduced the number of plans required to accurately sample the Pareto 

surface, ensuring Pareto navigation errors could be minimised without impractical 

computational times. Finally, generation of the Pareto dataset was fully customisable, in that 

the operator could choose the range of weights and number of plans to be used for a given 

trade-off when generating the dataset. Unlike commercial solutions of MCOposteriori, where 

Pareto databases typically sample the whole Pareto front for each trade-off, the 

customisable approach enables operators to focus on the clinically relevant parts of the 

Pareto front, reducing the search space and therefore the sampling requirements of the 

problem. Through implementing these three methods, when using a sampling frequency of 5 

plans per trade-off the approximation error of Pareto navigation during the calibration 

process was kept at low levels (<0.9 Gy or <1.2% volume across all dose metrics 

(supplementary table 6)). This ensured the risk of potential systematic errors in calibration 

due to errors in the Pareto navigation process was minimised. These results are in contrast 

to the clinically relevant approximation errors highlighted by McGarry et al. and Kryodio et 

al. [14,27] and underlie the importance of tailoring the Pareto navigation approach to the 

specific requirements of AP.      
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A second key contribution of this work is strengthening the evidence base on utilising 

dynamic objectives to both improve the optimality of the resultant treatment plan and 

reduce the dependence of the optimisation process on individual patient anatomy. As 

discussed in section 7.3.2.3, utilisation of dynamic objectives is the key component of a 

whole subcategory of PB-AIO solutions (PB-AIOB). This work hypothesised that dynamic 

objectives could be utilised for two functions. Firstly, by adapting the position of objectives 

based on the individual patient’s dose distribution, OAR doses could be automatically 

minimised and driven towards Pareto optimality. Secondly, by adapting objective weights to 

drive the objective value (OV) towards a target OV, the relative importance of the objectives, 

and thus the balancing of trade-offs, could be kept consistent between patients. This should 

enable a common set of objectives to be utilised across all patients within a single treatment 

site. Results of the evaluative study presented in section 9 provided supportive evidence on 

this hypothesis, with the nominally equivalent OAR doses between VMATAuto and VMATIdeal 

evidence of Pareto optimality and alignment of AP plans with oncologist preference (Table 4) 

indicative of consistent trade-off balancing across all study patients. This is in direct contrast 

to standard ‘static’ objectives implemented within commercial systems, where optimum 

objective weights for a given patient exhibit a strong correlation with patient anatomy [128] 

and therefore must be adapted on a patient-by-patient basis.  

The third key contribution this work makes to theory is building on the evidence base that 

calibrating on small patient datasets is feasible (n < 10 for PSV, n < 20 for PPN). This is in 

direct contrast to KBP solutions, which form 83% of the evidence base [11], where datasets 

of > 75 patients are generally utilised for DVH prediction using regression methods [39]. 

Calibration on small datasets ensures AP solutions can be dynamic and adaptable to novel 

techniques or clinical protocols, without the resource intensive requirements to generate 

and curate large training datasets.  Calibration on small datasets has been demonstrated for 

both εc [49] and PB-AIO [72] solutions, and this work strengthens this evidence base. 

However, this work also provides initial evidence that for simple sites (i.e. PSV), calibrating 

on a single patient may yield clinically optimal solutions. To the author’s knowledge this has 

not yet been demonstrated in the literature. Whilst calibrating on a single patient may 

initially seem counter-intuitive and unfeasible due to natural variations in patient anatomy, 

it is hypothesised that as dynamic objectives ensure trade-off balancing is consistent 
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between patients, only one patient is required to capture the intended balancing for a given 

site. Further work is however required to fully test this hypothesis as it is possible these 

results represent a false positive and that calibrations based on different patients are not 

robust across the whole patient cohort.  

The final contribution this work makes is providing robust evidence that automation of a 

highly complex site (PPN) is feasible. As highlighted in section 7.3.4, five studies have been 

identified which present evidence comparing AP with MP for PPN [49,74,75,92,108], with 

only two considered to provide high quality and robust data (n ≥ 20, no further manual 

optimisation of AP plans post generation) [49,92]. Furthermore as these two studies 

evaluate εc and KBP solutions, there is minimal robust evidence in the use of PB-AIO 

methodologies for planning complex PPN treatments. The evaluative study presented in the 

second paper (section 9) has a reasonable sample size (n = 20), uses a gold standard 

comparator (plans generated by expert planners under no time pressure) and includes a 

blinded qualitative review of plan quality by an oncologist. This work therefore provides high 

quality evidence on the efficacy of AP for PPN; filling a gap in the literature for PB-AIO 

solutions and building on the limited evidence across all AP methodologies. In addition, with 

patients treated with up to four SIB prescriptions, the study’s treatment protocol represents 

a higher complexity than all five identified studies, which were limited to 1-2 SIB volumes.  

10.2.2 Contribution to Practice 

The automated planning solution developed in this work has two core implications for local 

practice, relating to both the quality and efficiency of the service. 

Firstly, when compared to current clinical practice, implementation of AP would yield 

substantial efficiency savings with no sacrifice to plan quality. The evaluative study 

presented in the second paper provided clear, robust evidence on this matter, 

demonstrating that hands-on planning time could be reduced by 79% - 94%, with no 

compromise in quality for even the most complex situations (PPN with four SIB volumes). 

These efficiency savings would not only release resources within a busy treatment planning 

department, but also have the potential to aid in streamlining the planning pathway with the 

aim of reducing the time from decision to treat to start of treatment. Reduction of this key 

metric could have a substantial impact on patients’ care due to its strong correlation with 
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treatment outcome for many cancer sites [129]. In addition, a second area of potential 

efficiency saving is the ability to readily adapt the solution to new prescriptions or treatment 

protocols. For example, updating to a new prescription requires no calibration, just manual 

amendment to the existing AutoPlan protocol and introduction of a new OAR (e.g. penile 

bulb or femoral heads) would generally only require Pareto navigation across that individual 

OAR to recalibrate the solution. Furthermore, new solutions can be automatically run over a 

large set of test patients to ensure their suitability for clinical use. This is in contrast to the 

current template-based class solution approach, where adjustments are iterative and time 

consuming, and testing the resultant solution on multiple patients prior to clinical release 

must be done manually. 

Secondly, a key hypothesis of the developed approach was that AP plans are Pareto optimal 

and due to the Pareto navigation process, highly aligned with the clinical aims of the 

treatment. The evaluative study provides initial evidence in support of this hypothesis (Table 

4); AP dose metrics are closely aligned with VMATideal (indicating Pareto optimality) and 

oncologist preference is skewed toward AP plans. Locally, based on the data comparing 

VMATAuto and VMATClinical (Table 4), any potential improvement in clinical practice through 

introduction of AP is considered small and likely of minimal clinical significance. In 

comparison with some studies in the literature, which demonstrate substantial 

improvements in plan quality with AP [49,52], this may be considered a negative result with 

respect to the optimality of the algorithms developed in this study. On the contrary, since 

the introduction of VMAT at Velindre Cancer Centre, substantial work has been performed 

on developing robust, patient tailored planning methodologies [130]. It is therefore instead 

considered that these results reflect the high quality of local clinical planning methods, 

which yield plans of nominal equivalence to both VMATAuto and VMATIdeal. This work 

therefore contributes to practice, not by improving treatment quality, but rather by 

providing an effective audit of current clinical practice and confidence that introduction of 

AP will maintain the same high quality of treatments provided.    

10.3 Advantages and Limitations of the Developed Automated Approach 

10.3.1 Advantages 

The key novel and advantageous aspect of this work is the integration of Pareto navigation 

into the AP calibration process. Whilst the non-inferiority of AP has been demonstrated 
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across a wide range of publications [11], there are clear challenges when it comes to the 

calibration methods implemented within the various AP approaches. Prior to this work two 

core methods were utilised for calibrating AP solutions: simple trial and error, and use of 

machine learning to train AP algorithms on historical patients. Fundamentally both have the 

same weakness as they, explicitly or implicitly, heavily rely on trial and error, either when 

adjusting calibration parameters, or when generating plans for use in a calibration dataset. 

The key issue with trial and error approaches is that the search space is large and feedback 

loops are slow (at least 5 minutes per optimisation loop). The process is therefore prone to 

be time-consuming and/or deliver sub-optimal solutions due to the solution space not being 

fully explored. Utilising MCOposteriori within the calibration process offers a clear alternative. 

By generating a set of Pareto plans a priori, the search space is pre-populated, enabling the 

operator to navigate seamlessly across the different treatment options with feedback given 

in real-time. In this study, whilst navigation was limited to one trade-off at a time, the 

methodology enabled the operator to intuitively navigate the impact of varying the 

emphasis of a given trade-off through real-time updates to the whole 3D dose distribution 

and DVHs. Figure 7, provides a good example of the benefits of the interface. In this example 

the operator is navigating through different weightings of the conformality trade-off, with 

the mean rectum dose increasing as a consequence of a tighter (improved) conformality. 

The key decision the operator must make is how to optimally balance this trade-off. This 

decision is complex, it involves not only an assessment of the clinical acceptability/optimality 

of the current navigated distribution, but also an understanding of the rate of change of the 

different dose metrics as the balancing of any trade-off is adjusted. The rate of change is key 

for any decision making; for example a detriment in the Paddick’s conformality index of 0.05 

may be acceptable if the mean rectum dose reduces by 0.5 Gy but likely unacceptable if the 

rectum dose reduces by 0.05 Gy. In the example in Figure 7, the rate of change in the mean 

rectum dose was small as the conformality was increased, therefore a calibration with a high 

conformality was selected. Current trial and error methods provide no readily available 

information on the rate of change of a metric and therefore decision making is hindered. It is 

the author’s view that at present Pareto navigation is the only method which provides the 

operator with ready access to this key information when calibrating an automated solution 

(via both the DVH and whole 3D dose distribution); ensuring that informed decisions can be 

made on the appropriate balancing of trade-offs.  
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A second key advantage of the developed approach is it can be calibrated on small datasets. 

As discussed in section 10.2.1, the ability to calibrate on small datasets is in-line with existing 

PB-AIO and εc solutions [49,72], but offers a key advantage over KBP solutions where large 

datasets are required [39]. Small calibration datasets ensure that automated solutions can 

be dynamic and adaptable to an ever-changing technological environment, without the need 

to continually update and curate more substantial patient datasets. Whilst a range of studies 

have demonstrated broad scope KBP models can be created that are suitable across multiple 

institutions or differing protocols [108,111,115], in these publications the models have been 

developed specifically for transferability. Clinically implemented KBP solutions are unlikely to 

be developed in this manner and therefore their suitability and optimality to differing 

protocols cannot be guaranteed. Furthermore, for novel protocols it is highly likely that 

existing KBP models would be completely unsuitable, with a full model generation required. 

For example, in 2019 the phase III PACE-B trial reported results that established the non-

inferiority of extreme hypo-fractionated prostate radiotherapy (EHRT) (40 Gy in 5#) when 

compared to a conventional hypo-fractionated technique (60 Gy in 20#) [131].  The two 

treatment protocols differed substantially in terms of their PTV and OAR prioritisation and 

therefore KBP implementation of AP for EHRT would require creation of a new model 

trained on a dataset of >40 EHRT patient plans. This is in stark contrast to the approach 

developed in this body of work (and existing PB-AIO and εc solutions) where new AP 

solutions can be created using small patient datasets (5 ≤ n ≤ 20) with no requirement for a 

reference treatment plan. 

Having no requirement for reference treatment plans during the AP calibration process is 

another key advantage of the developed approach, which again is in-line with PB-AIO and εc 

solutions, and is in contrast to KBP solutions where reference plans are a fundamental 

requirement. Unlike KBP, automated solutions will therefore not be influenced by the quality 

of planning databases. This is vitally important to ensure the optimality of an AP solution, as 

calibration datasets are generally populated with manually produced clinical plans that are: 

(i) prone to inter-observer variation [6], (ii) may generate plans that are not fully aligned 

with oncologist treatment aims [23], and (iii) can yield clinically suboptimal results [132]. 

Within the KBP based literature there is a growing evidence base both on the dependence of 

the AP solutions on the underlying database [40,90,133] and on the development of a range 
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of strategies to mitigate this issue. Strategies include calibrating using multiple training 

loops, which aim to incrementally improve the quality in the underlying dataset [91,92] and 

populating databases using MCOposteriori [21,89] or alternative AP solutions [43,90,134] in a 

bid to train on Pareto optimal plans. Therefore, whilst KBP offers a conceptually attractive 

AP approach (i.e. learn from historical plans to treat novel patients), the non-trivial 

requirement to train on large, high quality datasets, leads to substantial and significant 

disadvantages over the approach developed in this work.  

A further potential benefit of the developed approach is utilisation of dynamic objectives to 

drive plans towards Pareto optimality. As discussed in section 10.2.2, results of the 

evaluative study provide indicative evidence that dynamic objectives fulfil this function, 

which is key to delivering optimal plans for individual patients. This approach is in-line with 

PB-AIO and εc methodologies, and offers a key advantage over KBP, where OAR doses are 

not minimised to achieve Pareto optimality, but rather to match predicted doses based on 

the training dataset.  

Finally, whilst the automated solution developed in this body of work is implemented within 

RayStation, a key advantage of the approach taken is that the core concepts (calibration via 

Pareto navigation and implementation of dynamic objectives) are generalisable to differing 

planning systems or automated solutions. In terms of calibration via Pareto navigation, this 

could theoretically be applied to any automated system where plan generation is based on 

an input template (i.e. PB-AIO and εc). The key requirements for implementation are 

developing methods to: generate a range of plans (Pareto dataset) using different input 

template parameters, perform real-time navigation of the dataset and reduce the 

approximation error to clinically negligible levels. In terms of dynamic objectives, there are 

already a range of examples within the literature where similar methodologies have been 

implemented across differing systems, generally via scripting [64–68]. It is therefore 

expected that the approach developed in this work would be readily implementable in a 

range of planning systems either via scripting, or for maximum benefit through native 

integration in a commercial optimiser.  
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10.3.2 Disadvantages 

A key limitation of the implemented approach is that Pareto navigation could only be 

performed on one trade-off at a time, meaning that a full exploration of the Pareto surface 

was not performed. For the simple site of PSV, this was not considered a key issue as there 

were relatively few competing trade-offs, and balancing those trade-offs with a single slider 

was straightforward. However for the complex site of PPN, trade-off balancing was more 

complex and there were occasions where navigating multiple competing trade-offs 

simultaneously would have been advantageous to derive the most clinically desirable 

solution. This was most notable in the abdominal area where bladder, bowel and PTV 

conformity were challenging to balance effectively. Extending the Pareto navigation 

functionality to enable multi-dimensional navigation is a key area where the developed 

solution could be improved.  

A further disadvantage of the approach is the time required to generate a treatment plan. 

On an individual patient basis, the measured plan generation time of 14.0 mins and 36.4 

mins for PSV and PPN respectively is in-line with manual planning and perfectly suitable for 

standard clinical practice. However, radiotherapy is rapidly evolving and online adaptive 

radiotherapy (where patients are scanned, planned and treated within a single treatment 

slot) is likely to become a significant part of the radiotherapy pathway for a range of cancer 

indications in the future. For online adaptive radiotherapy, plan generation time needs to be 

in the order of minutes, an order of magnitude quicker than is possible with the currently 

implemented methodology. In addition, planning time also limits the number of plans which 

can be realistically generated within a Pareto plan dataset. For single slider navigations this is 

not a major issue as 5 plans can be generated within 70 and 182 minutes for PSV and PPN 

respectively. However, for multi-dimensional navigation with no advanced sampling 

algorithms the computational cost increases to the power of the number of dimensions. For 

PSV a 3 and 4 dimensional navigation would require 29.2 and 145.8 hours to generate a 

suitable Pareto plan set; current plan generation times therefore significantly hinder the 

number of dimensions that can be navigated in parallel. Native optimisations within 

RayStation are actually relatively fast (for PSV, ~120 seconds per 100 iterations), the primary 

reason for the slow generation time with the developed method is instead related to 

updating the dynamic objectives at multiple intervals as the optimisation progresses. This is 
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a surprisingly slow process using the scripting interface, taking ~0.25 seconds to read or 

write a single objective parameter. With each objective having multiple parameters (e.g. 

weight, dose level and volume) and ~26 objectives required for a typical SVP optimisation, 

updating all dynamic objectives within the optimisation problem is a time consuming 

process, taking ~20 seconds. There is therefore no simple method to speed up the plan 

generation process without significant changes to RayStation’s scripting implementation, 

which is outside of the user’s control. Importantly though, the core automated planning 

methodology (i.e. implementation of dynamic objectives) is not inherently slow. In fact, it is 

assumed that if dynamic objectives were implemented natively within a treatment planning 

optimiser, automated plan generation time would be no slower than a standard 

optimisation round (e.g. for PSV, ~120 second per 100 iterations). 

A final potential limitation in the developed approach is the assumption that through 

implementing dynamic objectives, a standard set of calibration weights is suitable and 

optimal for all patients in a given treatment protocol. For PSV, experience during the 

calibration and results of the evaluative study provide indicative evidence that this 

assumption is valid. The solution was successfully calibrated on a single patient and robust 

across a range of patient anatomies (Figure 8). However for PPN, where there is a large 

inter-patient variation in the anatomy in the abdominal cavity, it was considered that the 

challenges observed during the calibration were indicative that the optimum calibration 

weights for a given patient were still correlated with anatomical geometry. Nevertheless, 

even if the calibration weights were not fully optimum for all patients, results from the 

evaluative study demonstrated AP was still considered non-inferior to expert planners 

operating under no time pressure. It is therefore assumed that by refining the calibration 

across a larger dataset, the solution could be tailored toward the average anatomy of the 

patient population and therefore remain robust across the whole spread of anatomical 

variation. It is also important to note that when compared to existing AP approaches, these 

results do not point to any inferiority of the developed solution. For example, Cagni et al. 

[43] demonstrated that even when calibrated against a Pareto optimal dataset, for 62% of 

prostate cancer patients KBP yielded modelling errors corresponding to a deviation of ±10% 

in the predicted NTCP for rectal bleeding. Similarly, for PB-AIO Janssen et al. [88] identified 
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that 8%-25% of prostate plans generated using Pinicale’s AutoPlan across two institutions 

were considered suboptimal.  

10.4 Strengths and Weaknesses of the Research Process 

10.4.1 Strengths 

The key strength of the work undertaken in this project is that the automated system was 

developed by clinical experts within a commercial system. It has been built from the ground 

up with a focus on practical, broad scope clinical implementation and therefore has the 

potential for rapid translation into the patient care pathway.  Whilst this report has focused 

on presenting the methodology of the developed solution and evaluating its application to 

prostate cancer, at Velindre Cancer Centre additional work has been undertaken in a wide 

programme of work which has built a substantive evidence base on the solution’s 

generalisability. To date the solution has been robustly evaluated for PSV, PPN, prostate 

EHRT, head and neck cancer, and PSV at two external centres [135]. Across the 134 plans 

evaluated in these studies all VMATAuto plans were deemed clinically acceptable, with 93% 

considered equivalent or better than VMATManual upon review by a clinical oncologist. 

Furthermore, as will be discussed in section 10.5.1, the automated solution has been 

clinically implemented for prostate EHRT, rectum, and head and neck patients. Additional 

solutions have also been developed and validated for lung, anus, oesophagus and prostate 

bed cancers, to support a widespread implementation during 2021 and early 2022.   

A further strength of the research is the sound design used in the main evaluative study 

(section 9.5.4). There are two aspects of the study design which are considered particularly 

strong. Firstly, utilisation of two comparators (VMATClinical and VMATIdeal) ensured that robust 

evidence was generated not only on the likely impact AP would have on clinical practice, but 

also on the optimality of automated plans when compared to a gold standard (VMATIdeal). 

This is in contrast to a high proportion of published studies where previous clinical plans are 

selected as the comparator. As already discussed, there is significant evidence that clinical 

plans generated manually are prone to unwarranted variation and sub optimal quality 

[6,132]. Therefore, unlike the study presented in this work, the published studies only using 

clinical plans as a comparator cannot provide sound conclusions as to the optimality of the 

automated approach. Secondly, this study included a blind qualitative review by an 

experienced oncologist, which is considered vital to ensure the clinical suitability of 
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automated plans. As with the discussion on comparators, a significant proportion of 

published literature has no qualitative assessment of the generated plans, with only 

quantitative analysis of dose metrics given. This is considered a real weakness in studies 

comparing AP with MP, as it is easy for dose metrics to hide sub-optimality as they remove 

important spatial information on the dose distribution. For example, consider two plans, 

both with the PTV D99% equalling 95% of the prescribed dose (a common dose metric 

constraint). In Plan A the area of PTV receiving a dose <95% is limited to the periphery of the 

volume but in Plan B the under-dose is central and over an area where there is known 

disease. In terms of dose metrics the plans are equivalent, however a qualitative review of 

the 3D dose-distribution would likely highlight Plan B as being sub-optimal and possibly, 

clinically unapprovable.  

The final core strength of this work is that there has been substantive patient involvement 

throughout the project, from conception to clinical implementation, with two patient 

research partners (RP) recruited as part of the project delivery team. Patient involvement 

had a number of benefits. Firstly it ensured that the team was continually focused on the 

end goal of delivering patient benefit, which can sometimes be lost in a highly technical 

project. Secondly, co-producing the research with patient representatives added a weight 

and validity to the body of work, which would not be possible otherwise; acknowledgement 

of the impact of the work via both professional colleagues and representatives of those who 

use the service adds a level of significance to the research. Finally, with RPs being external to 

the department and organisation, their participation in the project was also considered to 

add an additional layer of external governance to the process, with RPs given opportunity 

through the project to communicate any concerns they had in the direction of the work or 

the manner in which it was undertaken.   

10.4.2 Weaknesses 

The key weakness of the research process as a whole was that whilst the evaluative study 

provided robust evidence on the efficacy of the developed approach compared to MP, 

minimal evidence was generated that justified and validated the individual methodological 

approaches adopted within the solution. Key examples include: the use of a variety of hard 

coded weight scaling factors (Table 2) including a volume scaling factor (fv) for P2 target 

objectives, implementation of an optional ‘modulation optimisation’ (Figure 6), the values of 
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parameters and ranges within the PB-AIO framework (Figure 6) and most importantly 

calibration using Pareto navigation. The research process as a whole instead focused on the 

AP output as providing the overall justification of the approach undertaken, rather than 

critically analysing each component separately. This approach had the advantage that an 

automated solution could be constructed in an efficient manner, relying on previous 

planning experience or publications to justify implementing a method rather than a time 

consuming critical analysis of each component. However, it also led to a number of 

weaknesses. Firstly, which is especially the case for the weight scaling factors, it is highly 

likely the method or factors are not fully optimised. Secondly, it is feasible that the 

implemented methods do not fulfil their intended function or have unintended 

consequences. For example, the volume scaling factor fv may have the unintended 

consequence of diluting the OAR objective weights for patient with large PTVs, resulting in 

shift in the balancing of the plan away from OAR minimisation and towards PTV coverage. 

Thirdly, when disseminating the work, readers are reliant on the author’s observations, 

rather than scientific results when considering the influence, impact and benefits of the 

implemented methodologies. This is particularly relevant for the novel aspect of calibration 

through Pareto navigation. As an operator, the successful application of this methodology is 

clear; plans generated on novel patients exhibit similar balancing of competing trade-offs as 

the navigation patients. However to the reader, there is no substantial evidence 

demonstrating the impact different navigations have on the resultant automated solution, 

only that the overall automated planning methodology yielded plans which were non-

inferior to MP.  

One approach that would have made this research stronger, without excessive additional 

work, would have been to perform a sensitivity analysis on the different hardcoded 

parameters or methodologies. In this approach, the values of a range of variables are 

modified and the impact on the distribution explored. For example, by assessing the effect 

of the output if the ∆𝑖 bounds during the stage 1 optimisation (Figure 6) are changed from 

[0.15 – 0.5] to [0.25 – 0.6] and [0.05 – 0.4] the importance of the tuning of these parameters 

on the distribution is explored. Specifically for the Pareto navigation calibration process, 

which is the core novelty of this work, a simple approach would have been to calibrate the 

solution on a single patient according to two different preferences of trade-off balancing, 
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one focusing on conformality and homogeneity, and the other on driving down OAR doses. 

Through comparing the distributions of these two calibrations for both the calibration 

patient and a selection of novel patients, the impact of Pareto navigation on the resultant 

solution could have been clearly demonstrated.  

An additional weakness of the research is that the patient dataset is relatively small, and 

may not reflect the full diversity of the patient cohort due to the patient selection criteria 

(for example, patients with prosthetic hips were excluded from the study). Furthermore, 

whilst plans were generated by expert planners under no time pressure, there is the 

potential this is not the best comparator. Plans generated in this manner are still reliant on 

trial and error, with the quality limited by the skills and experience of the individual 

operator. This research could therefore be strengthened by running additional studies across 

multiple institutions and through including MCOposteriori and alternative AP techniques as 

comparators. In this way results would not be limited to the tools, techniques or experience 

within the local institution. A final weakness of this research is that Pareto Navigation is 

performed one trade-off at a time. It is acknowledged that this is a simplified approach, 

chosen for a first stage implementation, however it could be challenged whether this is true 

Pareto navigation as the full search space cannot be explored by the operator. Extension of 

the approach to multiple dimensions should alleviate this potential criticism. 

10.5 Clinical Implementation and Further Research 

10.5.1 Clinical Implementation 

A key challenge with any research in the field of healthcare is its timely translation into 

clinical practice for the benefit of patients. Following the strong results of the evaluative 

study a programme of work was put in place to implement the automated planning methods 

developed in this project at Velindre Cancer Centre. This included validating the software for 

clinical use according to best practice (i.e. documentation, risk assessments, independent 

code review and software testing) and developing automated protocols for new sites. To 

date automation has been implemented for the sites of rectum, prostate EHRT, and head 

and neck patients. In addition, solutions have been developed for prostate bed, anus, 

oesophagus, lung and prostate cancer patients, with clinical implementation of these groups 

expected by early 2022. Finally, following a successful multi-centre study for prostate cancer 
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[135], discussions are underway on the feasibility of clinical implementation at external NHS 

centres.  

Clinical implementation is a key success of this work. It is testament to the value of 

embedding research within the clinical workforce who have a deep understanding of the key 

challenges in healthcare and can establish novel, yet practical solutions to help resolve them. 

10.5.2 Further Research 

Throughout this critical appraisal a number of areas for future research have been identified. 

These included: additional validations across new clinical sites, external institutions and 

differing comparators (e.g. MCOPosteriori and alternative AP solutions); extension to multi-

dimensional Pareto navigation; and further investigation into individual components of the 

methodology (e.g. validation or refinement of scaling factors). As discussed, as part of a 

continuing program of work on this subject at Velindre Cancer Centre, the automated 

solution has already been calibrated across a range of new treatment sites. Furthermore, the 

extension to multi-dimensional Pareto navigation and its validation across two external 

institutions has been completed for prostate cancer. Results demonstrated that multi-

dimensional navigation was feasible (albeit with a substantially increased Pareto dataset 

generation time due the extra dimensions) and upon blind review by an oncologist, the 

resultant AP solutions were considered equivalent or better than manually generated clinical 

plans in 37/40 cases. Interestingly, unlike the results presented in this work, automation led 

to a substantial reduction in rectal doses at the lower dose levels across both institutions, 

with the V24.3 Gy dose metric reduced by more than 8% [135]. This was considered to 

provide supportive evidence on the benefit of using dynamic objectives to drive down OAR 

doses towards optimality. Due to the growing evidence base supporting both the optimality 

and generalisability of the developed approach, future research on refining the 

methodology’s individual components is now not considered necessary. Therefore future 

research will instead focus on more novel work relating to Pareto navigation, machine 

learning and comparison with alternative advanced techniques.   

In terms of Pareto navigation, the updated tool enables efficient multi-dimensional 

exploration of trade-offs, where each position on the Pareto front is represented by a 

specific set of automated planning calibration factors (wnom, section 8.4.2.4). Through 
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running the calibration process independently across a database of patients, the ideal set of 

automated planning calibration factors for each individual patient can be determined. If the 

developed automated solution operated perfectly, these factors would be consistent across 

the patient population. However, based on experience calibrating the solution for PPN it is 

hypothesised there is an underlying correlation between the optimum calibration factors 

and individual patient anatomy. Future research would therefore look at using machine 

learning to identify and correct for these correlations, thereby improving the quality of the 

automated solution. Furthermore as the data on the ideal calibration factors also represent 

the clinically optimal point on the Pareto front for each patient, sampling this data across a 

dataset also has the effect of sampling the clinically relevant parts of the Pareto front for a 

given patient cohort. Further work could therefore investigate using this data on novel 

patients to limit the Pareto front to only include clinically relevant solutions, thereby 

significantly reducing the search space and sampling requirements of the Pareto dataset. 

This could significantly improve the efficiency of MCOposteriori solutions or, by maintaining the 

number of plans in a Pareto dataset, be utilised to significantly reduce the approximation 

error.  

A final area of further research is strengthening the evidence base on the comparison of 

advanced optimisation techniques, which was identified as a key area of weakness in the 

literature (section 7.4). Robust comparison of advanced techniques is however challenging 

as differing solutions are implemented within different planning systems, leading to a range 

of confounding factors that limit the validity of the results. For example, differences in plan 

quality maybe completely unrelated to the implemented advanced approach but rather 

represent differences in the linac treatment planning models, dose calculation engines or 

the quality of the systems native optimisation engine. In this regard, an obvious piece of 

work to undertake is comparison of the developed automated approach with RayStation’s 

MCOposteriori solution. As plans would be generated within the same treatment planning 

system, there would be minimal confounding factors and results would provide sound 

evidence on the comparative effectiveness of AP and MCOposteriori; filling a key gap in the 

literature on both the comparison of advanced techniques and utility of MCOposteriori.   
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10.6 Summary and Key Implications and Recommendations 

In this work a versatile automated planning solution has been developed, which uniquely 

utilises Pareto navigation to enable the intuitive calibration of automated protocols. It has 

been robustly evaluated across two sites of differing complexity (PSV and PPN) and 

efficiently generates high quality plans, which are non-inferior to expert planners. 

Results from this work have led to a broad scope clinical implementation at Velindre Cancer 

Centre, with a view to improve the quality and efficiency of the treatment planning service. 

To date, automated solutions have been developed for PSV, PPN, prostate bed, prostate 

EHRT, anus, rectum, oesophagus, lung and head and neck, which demonstrates the 

generalisability and versatility of the developed approach. 

In this section the developed solution and results of the research have been critically 

appraised. Based on this analysis the work presented in this thesis is considered to have the 

following key implications for theory and practice: 

• Pareto Navigation is an effective calibration tool for automated planning solutions 

and presents a clear alternative to existing calibration methods.  

• Dynamic objectives are effective in both ensuring the Pareto optimality of generated 

plans and reducing the dependence of optimisation parameters on patient anatomy. 

There is a strong case that commercial planning systems should support dynamic 

objectives natively within their inverse optimiser. 

• Automated planning is non-inferior to manual planning and there is a strong rational 

for its rollout across UK radiotherapy services to ensure the quality and efficiency of 

radiotherapy plan generation.  
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Appendix A – Literature Review Search Strategy 

1 Structured Search: 

1. knowledge-based.mp.  
2. knowledge based.mp.  
3. KBP.mp.  
4. (Auto* adj5 planning).mp.  
5. Pareto.mp.  
6. multicriteria optimi*.mp.  
7. multi-criteria optimi*.mp.  
8. MCO.mp.  
9. Artificial Intelligence/  
10. AI.mp.  
11. neural network.mp.  
12. Deep Learning/  
13. RapidPlan.mp.  
14. AutoPlan.mp.  
15. IMRT planning.mp.  
16. IMRT treatment planning.mp.  
17. VMAT planning.mp.  
18. VMAT treatment planning.mp.  
19. intensity modulated radiotherapy planning.mp.  
20. intensity modulation radiotherapy treatment planning.mp.  
21. volume* modulated arc therapy planning.mp.  
22. volume* modulated arc therapy planning.mp.  
23. radiotherapy planning.mp.  
24. radiotherapy treatment planning.mp.  
25. radiation therapy planning.mp.  
26. radiation therapy treatment planning.mp.  
27. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14  
28. 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 25 or 26  
29. 27 and 28 

 

2 Databases Searched: 

1. Ovid MEDLINE(R) <1946 to March Week 2 2021> 
2. Ovid EMBASE <1974 to Week 11 2021> 
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Appendix B – Journal Article 1: Supplementary Information 

1 Supplementary Information S1: Algorithms for AuxROI Generation 

1.1 Abbreviations 

Abbreviations Definition 

DPresc Prescribed treatment dose 

DPTV Prescribed treatment dose of individual PTV 

Tp1a 
Dose target for primary OAR goals (priority one) as defined in the 
AutoPlan protocol 

Tp1b 
Dose target for primary conformity goals (priority one) as defined in 
the AutoPlan protocol 

z 
Distance specified for primary conformity objectives (priority one) as 
defined in the AutoPlan protocol 

 

1.2 AuxROI Generation 

1.2.1 Priority 2 AuxROIs 

The following AuxROI generation algorithm is run for each PTV dose level: 

Generate AuxPTVSV-1 

1. TmpROIA = PTV expanded 1 mm isotropically with option (specified by user) not to 

expand into specifically defined ROIs 

2. TmpROIB = TmpROIA retracted from PTVs with higher dose prescriptions and skin 

surface by 4 mm 

3. AuxPTVSV-1 = TmpROIB retracted away x cm (x/3 cm craniocaudally) from each 

primary OAR specified in the AutoPlan protocol where x is defined by the following 

equation: 

𝑥 =
(𝐷𝑃𝑇𝑉−𝑇𝑝1𝑎)

0.5𝐷𝑃𝑟𝑒𝑠𝑐
 

Generate AuxPTVSV-2 

1. TmpROIA = PTV retracted from skin surface by 4 mm 

2. AuxPTVSV-2 = TmpROIA subtracted from original PTV  

Generate AuxPTVSV-3 

1. TmpROIA = PTV retracted from skin surface by 4 mm 

2. AuxPTVSV-3 = AuxPTVSV-1 subtracted from TmpROIA 
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1.2.2 Priority 3 AuxROIs 

The following AuxROI generation algorithm is run for each priority 3 dose fall off goal: 

If POFallOffType == “Normal Tissue Fall Off”  

Generate AuxConfA 

1. TmpROIA = PTV defined by field ‘ROI Name’ expanded 15 mm isotropically 

2. AuxConfA = PTV defined by field ‘ROI Name’ subtracted from TmpROIA 

Else If POFallOffType == “Normal Tissue Fall Off (Sup)” 

Generate AuxConfB 

1. TmpROIA = PTV defined by field ‘ROI Name’ expanded 30 mm isotropically 

2. AuxConfB =Delete all TmpROIA contours except those superior to defined PTV  

Else If POFallOffType == “Normal Tissue Fall Off (Inf)” 

Generate AuxConfC: 

1. TmpROI A= PTV defined by field ‘ROI Name’ expanded 30mm isotropically 

2. AuxConfC =Delete all TmpROIA contours except those inferior to defined PTV  

1.2.3 Priority 1 AuxROIs 

The following AuxROI generation algorithm is run for each priority 1 primary conformality 

objective: 

Generate AuxConfD 

1. TmpROIA = Summation of all PTVs expanded by  x cm (x/3 cm caudally) where  x is 

defined by the following equation: 

𝑥 = 𝑧 +
max (0, (𝐷𝑃𝑇𝑉−𝑇𝑝1𝑏))

0.33𝐷𝑃𝑟𝑒𝑠𝑐
 

2. AuxConfD = TmpROIA subtracted from body outline  
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2 Supplementary Information S2: Derivation of Initial Optimisation Objectives 

2.1 Abbreviations 

Abbreviations Definition 

DPresc Prescribed treatment dose 

DPTV Prescribed treatment dose of individual PTV 

Tp2 Dose target for P2 target goals as defined in the AutoPlan protocol 

Tp3HDL 
High dose level target for P3 dose fall-off goals as defined in the AutoPlan 
protocol 

Tp3LDL 
Low dose level target for P3 dose fall-off goals as defined in the AutoPlan 
protocol 

Tp3DG 
Dose gradient target for P3 dose fall-off goals as defined in the AutoPlan 
protocol 

RHDL Dose fall off objective parameter: high dose level 

RLDL Dose fall off objective parameter: low dose level 

Rr Dose fall off objective parameter: distance 

 

2.2 Description of Dose Fall off Objectives 

The proposed solution utilises RayStation’s dose fall off objectives during automated plan 

generation. As these objectives are atypical, a brief description is provided below:   

For a standard max dose objective function a single target dose (DT) is applied to all voxels 

within the ROI. For dose fall off objectives the target dose of a given voxel is instead 

dependent on its radial distance from the PTV, with DT calculated according to the following 

rules: at the PTV surface DT =RHDL; at a radial distance equal to or greater than Rr, DT=RLDL; 

and for radial distances between the PTV surface and Rr, DT is calculated though linear 

interpolation of RHDL and RLDL.  

2.3 Derivation of Initial Optimisation Objectives 

Initial optimisation objectives are derived from the defined planning goals according to the 

following rules: 

1. For planning goals where an associated AuxROI(s) has been generated, optimisation 

objectives are applied to the AuxROI(s) not the ROI defined in the planning goal.   

2. For PTVs where DPTV<Dpresc, P2 Dmax planning goals are implemented using dose fall-

off optimisation objectives in order to reduce conflict between PTVs of differing dose 

prescriptions. Optimisation objective parameters are assigned according to the 

following table:  
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Dose Fall-Off Objective 

Parameter 

Assigned Value 

RHDL (Gy) 1.5𝐷𝑃𝑟𝑒𝑠𝑐 

RLDL (Gy) Tp2 

Rr (cm) 
(𝐷𝑃𝑟𝑒𝑠𝑐 −  𝐷𝑃𝑇𝑉)

0.25𝐷𝑃𝑟𝑒𝑠𝑐
 

 

3. For P3 dose fall-off goals, the parameters of the corresponding optimisation objective 

are assigned according to the following table: 

Dose Fall-Off Objective 

Parameter 

Assigned Value 

RHDL (Gy) Tp3HDL 

RLDL (Gy) Tp3LDL 

Rr (cm) 
(𝑇𝑝3𝐻𝐷𝐿

−  𝑇𝑝3𝐿𝐷𝐿
)

𝑇𝑝3𝐷𝐺
𝐷𝑃𝑟𝑒𝑠𝑐

 

 

4. For all dose fall off objectives ‘adapt to target dose levels’ is enabled 

5. For all other planning goals a direct translation to RayStation’s native optimisation 

objectives is performed. 
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3 Supplementary Information S3: Definition and Description of 𝑭𝑽
𝒊 , 𝑭𝑻

𝒊 , 𝑭𝑪
𝒊  and 

𝑭𝑵
𝒊  Scaling Factors 

3.1 Abbreviations 

Abbreviations are consistent with the main manuscript 

3.2 Definition and Description of 𝑭𝑽
𝒊  

Previous planning experience indicated that optimum objective weights were dependant on 

the volume of their corresponding ROI (𝑉𝑅𝑂𝐼
𝑖 ), with small volumes requiring lower weighing. 

𝐹𝑉
𝑖  enables correction of this dependency through scaling the objective weight according to: 

𝐹𝑉
𝑖 = (1 − 𝑓𝑣

𝑖) + (
𝑓𝑣

𝑖𝑉𝑅𝑂𝐼
𝑖

100
) 

where, 𝑓𝑣
𝑖 is hard coded for each priority level (supplementary table 3), with values 

determined through previous clinical planning experience and initial testing of the proposed 

methodology. When 𝑓𝑣
𝑖 equals zero, no scaling is applied. When 𝑓𝑣

𝑖 equals 1.0, weights are 

scaled according to 𝑉𝑅𝑂𝐼
𝑖 , normalised to a reference volume of 100 cm3. By selecting a value 

of 𝑓𝑣
𝑖 within the range 0-1 a combination of these two methods can be selected. 

3.3 Definition and Description of 𝑭𝑻
𝒊  

RayStation objective functions (excluding dose-fall-off objectives, c.f. section 2.2) include a 

normalisation denominator equal to the target dose, 𝐷𝑇
𝑖 , squared. The resultant objective 

function value is therefore inversely proportional to (𝐷𝑇
𝑖 )2; a dependency which was 

considered unintuitive and undesirable as it leads to high penalties for functions with low 

𝐷𝑇
𝑖 .  𝐹𝑇

𝑖
 scales the objective weight according to: 

𝐹𝑇
𝑖 = (

𝐷𝑇
𝑖

𝐷𝑃𝑟𝑒𝑠𝑐
)

2

 

where DPresc is the prescribed treatment dose. This replaces the objective function’s (𝐷𝑇
𝑖 )2 

denominator with DPresc
2, thereby removing this unwanted dependency. For dose-fall-off 

objectives the denominator is a more complex function, however a similar dependency on 

𝐷𝑇
𝑖  exists and therefore 𝐹𝑇

𝑖  is universally applied across all objective types for simplicity.  
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3.4 Definition and Description of 𝑭𝑪
𝒊  

𝐹𝐶
𝑖  is a hardcoded constant that enables objective weights to be individually adjusted. 𝐹𝐶

𝑖  is 

applied to PTV sub-volume objectives in order to avoid skin boosting and reduce conflicts 

within the PTV/OAR overlap region. Based on previous planning experience, 𝐹𝐶
𝑖  is set at 

0.001 and zero for min dose objectives applied to PTVSV-2 and PTVSV-3 respectively. For all 

other objectives 𝐹𝐶
𝑖  is set to unity. 

3.5 Definition and Description of 𝑭𝑵
𝒊  

P3 objective weights are modulated during the optimisation process. For some objectives, 

especially those applied to ROIs with a large volume, the final modulated objective weight 

(𝑤𝑓
𝑖) maybe orders of magnitude different from its initial value. 𝐹𝑁

𝑖  is a user defined 

constant, stored within the AutoPlan protocol, which allows 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖  to be adjusted such that 

this difference is reduced and the objective weight’s convergence to 𝑤𝑓
𝑖  is more rapid. By 

default 𝐹𝑁
𝑖  is set to unity and was not adjusted during the course of this study. 
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4 Supplementary Information S4: Definition of 𝑶𝑽𝒕
𝒊  and Limits on 𝒘𝒑𝟑

𝒊  Adjustments 

4.1 Abbreviations 

Abbreviations are consistent with the main manuscript. 

4.2 Definition of 𝑶𝑽𝒕
𝒊

 

𝑂𝑉𝑡
𝑖 is defined by the follow equation: 

𝑂𝑉𝑡
𝑖 =

𝑤𝑛𝑜𝑚
𝑖  

10,000
 

The denominator (10,000) corresponds to the nominal weight required to obtain an OV of 

1.0 for a standard dose volume objective (DVO) where ∆𝑖=0.05 and serves to normalise the 

correspondence between 𝑂𝑉𝑡
𝑖 and 𝑤𝑛𝑜𝑚

𝑖 .  

4.3 Limits on 𝒘𝒑𝟑
𝒊  adjustments 

During the plan generation process, to ensure 𝑤𝑝3
𝑖  stays within reasonable bounds for easily 

achievable objectives, its value is limited to 20𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖 . This limit is not applied to P3 dose-

fall-off objectives as the correspondence between 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖  and the final dynamically adjusted 

𝑤𝑝3
𝑖  value was observed to be less predictable. 
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5 Supplementary Information S5: Flowchart of the Calibration Process 
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6 Supplementary Information: Tables 

Supplementary Table 1 

Local Clinical Planning Goals for PSV 

    
Priority 1: Primary OAR Goals   

ROI Name Dose Parameter Actionable*   

Bowel D0.1 cm3 ≤52.7 Gy   
        
Priority 2: Target and Max Dose Goals   

ROI Name Dose Parameter Actionable*   

All PTVs D99% ≥95% of PTV prescription 
Patient 
Outline 

D1.8 cm3 ≤107% of Prescribed Dose 

        
Priority 3: Secondary OAR Goals   

ROI Name Dose Parameter Optimal Actionable* 

Rectum V24.3 Gy ≤80% - 
Rectum V32.4 Gy ≤65% - 
Rectum V40.5 Gy ≤50% ≤60% 
Rectum V48.6 Gy ≤35% ≤50% 
Rectum V52.7 Gy ≤30% ≤30% 
Rectum V56.8 Gy ≤15% ≤15% 
Rectum V60.8 Gy ≤3% ≤5% 
Bladder V40.5 Gy ≤50% - 
Bladder V48.6 Gy ≤25% - 
Bladder V52.7 Gy - ≤50% 
Bladder V56.8 Gy ≤5% ≤35% 
Bowel V36.5 Gy ≤78 cm3 ≤158 cm3 
Bowel V40.5 Gy ≤17 cm3 ≤110 cm3 
Bowel V44.6 Gy ≤14 cm3 ≤28 cm3 
Bowel V48.6 Gy ≤0.5 cm3 ≤6 cm3 
        
*Deviations from actionable planning goals are permissible if 
approved by the treating oncologist.  
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Supplementary Table 2         
Planning goals for the PSV AutoPlan protocol       

Priority 1: Primary OAR Goals       

ROI Name Dose Parameter Target (Gy)       

Bowel Dmax 51.0       
            
Priority 1: Primary Conformality Goals     

ROI Name Dose Parameter Target (Gy) Distance (cm)     

PTV48 Dmax 37.4 1.5     
            
Priority 2: Target Goals       

ROI Name Dose Parameter 
Target  
(%Presc,PTV)       

PTV60 Dmin 96.5       
PTV60 Dmax 102.5       
PTV60 D50% max 99.5       
PTV48 Dmin 96.5       
PTV48 Dmax 105.0       
            
Priority 3: Trade-off Goals (Standard) 

ROI Name Dose Parameter 
Target  
(Gy or %Vol) Group     

Rectum V23.4Gy (%) 0.0 1     
Rectum V31.5Gy (%) 0.0 1     
Rectum V39.6Gy (%) 0.0 1     
Rectum V47.7Gy (%) 0.0 1     
Rectum V51.8Gy (%) 0.0 1     
Rectum V55.9Gy (%) 0.0 1     
Rectum Dmean (Gy) 5.0 2     
Bladder V30.0Gy (%) 0.0 3     
Bladder V39.6Gy (%) 0.0 3     
Bladder V47.7Gy (%) 0.0 3     
Bladder V51.8Gy (%) 0.0 3     
Bladder V55.9Gy (%) 0.0 3     
Bladder Dmax (Gy) 54.0 3     
Rectum Dmax (Gy) 60.0 6     
Bowel V36.0Gy (%) 0.0 7     
Bowel V45.6Gy (%) 0.0 7     
            
Priority 3: Trade-off Goals (Dose Fall Off)    

ROI Name Fall Off Type 
High Dose 
Level (Gy) 

Low Dose Level 
(Gy) 

Dose Gradient 
(%Presc cm-1) Group 

PTV48 
Normal Tissue 
Falloff 57.0 40.8 50% 4 

PTV48 Intra PTV Falloff 54.0 52.8 50% 5 
            
Abbreviations:  %Presc, PTV = % of individual PTV prescription dose; %Presc = % of overall treatment 
prescription; %Vol = % volume of ROI. 

Notes: Priority 3 target = 0.0 by default, but can be specified if desired. The target is dynamically 
adjusted during optimisation and therefore initial values have negligible impact plan quality, but 
may decrease planning time if correctly defined. 
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Supplementary Table 3     
fi

v and wi
nom values for the calibrated PSV AutoPlan protocol planning goals 

Priority Type/Group wi
nom* fi

v 

Priority 1 Primary OAR Goals 1000 1.00 
  Primary Conformality Goals 50 0.00 
Priority 2 Target Goals 250 0.75 
Priority 3 Group 1 1.04 0.00 
  Group 2 4.04 0.00 
  Group 3 0.583 0.00 
  Group 4 35.0 0.00 
  Group 5 19.8 0.00 
  Group 6 1.08 0.00 
  Group 7 0.762 0.00 

* Rounded to 3 significant figures     

Notes: Hard coded values which are common across all tumour sites are 
presented in bold 
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Table 4: Dosimetric data from validation patient cohort  

    VMATAuto 

  Metric 
Patient 
Val01 

Patient 
Val02 

Patient 
Val03 

Patient 
Val04 

Patient 
Val05 

Patient 
Val06 

Patient 
Val07 

Patient 
Val08 

Patient 
Val09 

Patient 
Val10 

PTV60 D98% (Gy) 57.79 57.87 57.73 57.82 57.79 57.87 57.84 57.92 57.79 57.96 
  D2% (Gy) 61.68 61.67 61.71 61.64 61.58 61.63 61.68 61.58 61.63 61.67 
  CI 0.87 0.85 0.85 0.86 0.86 0.85 0.86 0.86 0.86 0.87 
  HI 0.065 0.063 0.066 0.064 0.063 0.063 0.064 0.061 0.064 0.062 

PTV48  D98% (Gy) 46.53 47.15 46.62 46.86 46.74 47.09 46.84 46.52 46.59 47.41 
  D2% (Gy) 58.55 59.21 58.71 58.81 58.70 59.05 58.99 58.78 58.67 58.96 
  CI 0.84 0.82 0.84 0.84 0.85 0.87 0.83 0.86 0.83 0.87 
  HI 0.233 0.223 0.236 0.227 0.230 0.222 0.225 0.242 0.236 0.213 

Rectum V24.3Gy (%) 45.47 53.39 42.82 34.33 37.20 27.27 50.41 63.57 36.98 39.42 
  V32.4Gy (%) 35.55 39.95 32.43 23.62 29.51 20.95 41.48 51.62 27.03 30.86 
  V40.5Gy (%) 27.08 28.92 24.28 16.79 22.39 15.34 33.01 39.62 18.14 24.12 
  V48.6Gy (%) 15.30 17.45 15.49 10.56 13.91 9.98 22.61 21.28 7.96 17.63 
  V52.7Gy (%) 10.28 13.46 11.78 8.13 9.47 7.20 16.51 12.99 4.73 13.78 
  V56.8Gy (%) 5.85 8.00 7.06 4.43 5.49 3.79 10.73 7.90 2.41 8.36 
  V60.8Gy (%) 0.37 0.02 0.29 0.01 0.10 0.01 0.48 0.05 0.00 0.07 
  DMean (Gy) 25.82 29.08 25.88 21.17 22.66 17.47 28.26 32.26 21.45 24.41 

Bladder V40.5Gy (%) 23.22 10.88 15.35 16.14 18.55 15.33 31.53 8.80 13.43 9.28 
  V48.6Gy (%) 16.60 7.60 9.96 10.88 12.28 10.72 21.26 4.45 8.17 6.47 
  V52.7Gy (%) 12.27 6.13 7.30 8.26 8.83 8.20 16.80 2.99 5.58 5.06 
  V56.8Gy (%) 8.49 4.34 4.79 5.80 6.14 5.77 11.72 2.07 3.54 3.78 
  DMean (Gy) 26.41 14.60 17.36 27.71 22.56 19.00 30.73 14.78 18.38 13.10 

Bowel V36.5Gy (cm³) 0.10 0.00 0.63 0.70 0.00 0.00 0.00 0.00 0.00 0.00 
  V40.5Gy (cm³) 0.00 0.00 0.22 0.19 0.00 0.00 0.00 0.00 0.00 0.00 
  V44.6Gy (cm³) 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  V48.6Gy (cm³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  V52.7Gy (cm³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  DMean (Gy) 7.31 8.99 11.20 7.75 4.54 5.50 8.24 3.81 3.40 4.23 

External D1.8cm³ (Gy) 61.67 61.78 61.62 61.65 61.53 61.58 61.71 61.57 61.63 61.70 
Plan MU MU 600.6 599.3 614.0 653.0 598.1 583.8 611.9 586.9 617.3 581.5 
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Table 4 (continued): Dosimetric data from validation patient cohort  

    VMATManual 

  Metric 
Patient 
Val01 

Patient 
Val02 

Patient 
Val03 

Patient 
Val04 

Patient 
Val05 

Patient 
Val06 

Patient 
Val07 

Patient 
Val08 

Patient 
Val09 

Patient 
Val10 

PTV60 D98% (Gy) 57.97 58.06 57.95 58.22 57.86 58.28 57.64 57.95 57.90 57.66 
  D2% (Gy) 61.74 62.20 61.27 61.96 61.74 61.68 61.51 61.29 61.82 62.07 
  CI 0.80 0.82 0.76 0.80 0.78 0.78 0.79 0.79 0.80 0.81 
  HI 0.063 0.069 0.056 0.062 0.065 0.056 0.065 0.056 0.065 0.074 

PTV48  D98% (Gy) 46.65 47.13 47.01 47.04 47.07 47.74 47.69 46.59 46.82 47.03 
  D2% (Gy) 59.31 59.79 59.21 59.59 59.35 59.54 59.47 58.80 59.22 59.71 
  CI 0.78 0.76 0.77 0.75 0.77 0.79 0.76 0.77 0.78 0.79 
  HI 0.238 0.231 0.230 0.232 0.227 0.212 0.212 0.233 0.236 0.229 

Rectum V24.3Gy (%) 50.84 55.81 49.88 38.31 42.97 30.61 59.91 66.10 42.54 41.83 
  V32.4Gy (%) 36.90 39.53 34.71 23.93 31.31 22.56 46.13 52.47 28.22 30.17 
  V40.5Gy (%) 28.26 28.64 25.43 16.42 23.85 16.67 36.51 41.15 18.42 23.64 
  V48.6Gy (%) 18.12 17.21 16.93 10.64 15.82 10.60 25.50 23.42 8.33 18.17 
  V52.7Gy (%) 12.62 13.08 13.20 8.29 10.75 7.94 18.87 14.99 5.62 14.54 
  V56.8Gy (%) 7.35 8.19 8.46 5.43 6.30 4.72 12.90 10.04 3.36 9.64 
  V60.8Gy (%) 0.02 0.31 0.00 0.00 0.00 0.01 0.29 0.00 0.00 0.00 
  DMean (Gy) 27.61 29.72 28.99 25.07 26.87 20.50 32.07 33.97 23.39 27.40 

Bladder V40.5Gy (%) 22.79 9.66 15.34 15.40 19.31 16.02 31.01 8.95 12.87 9.21 
  V48.6Gy (%) 16.18 6.78 10.28 10.27 12.48 11.04 22.00 4.79 8.20 6.07 
  V52.7Gy (%) 13.03 5.59 7.73 8.24 9.73 8.89 17.94 3.27 5.74 5.09 
  V56.8Gy (%) 9.51 4.05 5.45 5.97 6.67 6.61 12.83 2.27 3.70 3.63 
  DMean (Gy) 26.56 13.86 17.94 25.41 23.59 19.55 31.18 14.28 18.60 13.93 

Bowel V36.5Gy (cm³) 0.39 0.00 0.86 0.59 0.00 0.00 0.03 0.00 0.00 0.00 
  V40.5Gy (cm³) 0.09 0.00 0.32 0.13 0.00 0.00 0.00 0.00 0.00 0.00 
  V44.6Gy (cm³) 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  V48.6Gy (cm³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  V52.7Gy (cm³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  DMean (Gy) 8.93 9.26 14.08 8.97 5.53 6.08 9.13 3.86 3.90 5.18 

External D1.8cm³  (Gy) 61.72 62.38 61.16 61.98 61.70 61.62 61.55 61.25 61.83 62.12 
Plan MU MU 545.5 626.9 515.7 608.1 518.8 503.7 549.0 496.3 562.1 546.6 
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Table 4 (continued): Dosimetric data from validation patient cohort 

    VMATAuto  VMATManual    

  Metric Median Min Max  Median Min Max  p value 

PTV60 D98% (Gy) 57.83 57.73 57.96  57.95 57.64 58.28  0.17 
  D2% (Gy) 61.66 61.58 61.71  61.74 61.27 62.20  0.33 
  CI 0.86 0.85 0.87  0.79 0.76 0.82  0.01 
  HI 0.064 0.061 0.066  0.064 0.056 0.074  0.72 

PTV48  D98% (Gy) 46.79 46.52 47.41  47.04 46.59 47.74  0.06 
  D2% (Gy) 58.79 58.55 59.21  59.41 58.80 59.79  0.01 
  CI 0.84 0.82 0.87  0.77 0.75 0.79  0.01 
  HI 0.228 0.213 0.242  0.230 0.212 0.238  0.65 

Rectum V24.3Gy (%) 41.12 27.27 63.57  46.42 30.61 66.10  0.01 
  V32.4Gy (%) 31.64 20.95 51.62  33.01 22.56 52.47  0.02 
  V40.5Gy (%) 24.20 15.34 39.62  24.64 16.42 41.15  0.06 
  V48.6Gy (%) 15.39 7.96 22.61  17.07 8.33 25.50  0.01 
  V52.7Gy (%) 11.03 4.73 16.51  12.85 5.62 18.87  0.01 
  V56.8Gy (%) 6.46 2.41 10.73  7.77 3.36 12.90  0.01 
  V60.8Gy (%) 0.06 0.00 0.48  0.00 0.00 0.31  0.09 
  DMean (Gy) 25.12 17.47 32.26  27.50 20.50 33.97  0.01 

Bladder V40.5Gy (%) 15.34 8.80 31.53  15.37 8.95 31.01  0.39 
  V48.6Gy (%) 10.34 4.45 21.26  10.27 4.79 22.00  0.72 
  V52.7Gy (%) 7.75 2.99 16.80  7.99 3.27 17.94  0.04 
  V56.8Gy (%) 5.28 2.07 11.72  5.71 2.27 12.83  0.03 
  DMean (Gy) 18.69 13.10 30.73  19.08 13.86 31.18  0.51 

Bowel V36.5Gy (cm³) 0.00 0.00 0.70  0.00 0.00 0.86  0.27 
  V40.5Gy (cm³) 0.00 0.00 0.22  0.00 0.00 0.32  0.29 
  V44.6Gy (cm³) 0.00 0.00 0.04  0.00 0.00 0.06  0.32 
  V48.6Gy (cm³) 0.00 0.00 0.00  0.00 0.00 0.00  na, zero error 
  V52.7Gy (cm³) 0.00 0.00 0.00  0.00 0.00 0.00  na, zero error 
  DMean (Gy) 6.41 3.40 11.20  7.50 3.86 14.08  0.01 

External D1.8cm³  (Gy) 61.64 61.53 61.78  61.71 61.16 62.38  0.33 
Plan MU MU 600.0 581.5 653.0  546.0 496.3 626.9  0.01 
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Table 5: Dosimetric data from all study patients. Patient Cal01 represents the navigation patient.                 

   VMATAuto 

  Metric 
Patient 
Cal01 

Patient 
Cal02 

Patient 
Cal03 

Patient 
Cal04 

Patient 
Cal05 

Patient 
Cal06 

Patient 
Cal07 

Patient 
Cal08 

Patient 
Cal09 

Patient 
Cal10 

Patient 
Val01 

Patient 
Val02 

Patient 
Val03 

Patient 
Val04 

Patient 
Val05 

Patient 
Val06 

Patient 
Val07 

Patient 
Val08 

Patient 
Val09 

Patient 
Val10 

PTV60 D98% (Gy) 57.88 57.87 57.97 57.71 57.82 57.80 57.92 57.91 57.80 57.94 57.79 57.87 57.73 57.82 57.79 57.87 57.84 57.92 57.79 57.96 

 D2% (Gy) 61.62 61.63 61.58 61.72 61.58 61.66 61.60 61.70 61.70 61.59 61.68 61.67 61.71 61.64 61.58 61.63 61.68 61.58 61.63 61.67 

 CI 0.86 0.87 0.87 0.86 0.85 0.84 0.87 0.85 0.86 0.86 0.87 0.85 0.85 0.86 0.86 0.85 0.86 0.86 0.86 0.87 
  HI 0.062 0.063 0.060 0.067 0.063 0.064 0.061 0.063 0.065 0.061 0.065 0.063 0.066 0.064 0.063 0.063 0.064 0.061 0.064 0.062 

PTV48  D98% (Gy) 46.76 46.69 46.85 47.35 46.52 46.46 46.58 47.11 46.80 46.74 46.53 47.15 46.62 46.86 46.74 47.09 46.84 46.52 46.59 47.41 

 D2% (Gy) 58.76 58.84 59.01 58.95 58.47 59.02 58.89 58.94 58.95 59.11 58.55 59.21 58.71 58.81 58.70 59.05 58.99 58.78 58.67 58.96 

 CI 0.84 0.84 0.84 0.85 0.86 0.86 0.84 0.87 0.88 0.86 0.84 0.82 0.84 0.84 0.85 0.87 0.83 0.86 0.83 0.87 
  HI 0.230 0.230 0.233 0.215 0.239 0.239 0.233 0.220 0.227 0.231 0.233 0.223 0.236 0.227 0.230 0.222 0.225 0.242 0.236 0.213 

Rectum V24.3Gy (%) 31.78 59.39 26.03 33.99 45.39 29.94 44.79 19.25 31.44 27.19 45.47 53.39 42.82 34.33 37.20 27.27 50.41 63.57 36.98 39.42 

 V32.4Gy (%) 22.92 47.04 17.05 25.79 36.80 22.41 35.74 13.38 24.26 19.17 35.55 39.95 32.43 23.62 29.51 20.95 41.48 51.62 27.03 30.86 

 V40.5Gy (%) 17.33 35.81 11.09 19.01 27.96 16.38 27.10 9.61 18.76 13.74 27.08 28.92 24.28 16.79 22.39 15.34 33.01 39.62 18.14 24.12 

 V48.6Gy (%) 12.71 22.94 7.01 12.87 16.49 9.40 16.85 6.06 13.29 9.33 15.30 17.45 15.49 10.56 13.91 9.98 22.61 21.28 7.96 17.63 

 V52.7Gy (%) 9.85 15.75 5.24 9.47 11.43 5.70 12.39 4.39 10.36 7.18 10.28 13.46 11.78 8.13 9.47 7.20 16.51 12.99 4.73 13.78 

 V56.8Gy (%) 5.74 8.13 2.75 5.16 6.40 3.02 8.46 2.29 5.83 4.15 5.85 8.00 7.06 4.43 5.49 3.79 10.73 7.90 2.41 8.36 

 V60.8Gy (%) 0.00 0.00 0.00 0.17 0.04 0.02 0.54 0.00 0.00 0.07 0.37 0.02 0.29 0.01 0.10 0.01 0.48 0.05 0.00 0.07 
  DMean (Gy) 21.48 30.66 18.24 19.74 26.23 19.79 24.86 13.06 19.64 19.63 25.82 29.08 25.88 21.17 22.66 17.47 28.26 32.26 21.45 24.41 

Bladder V40.5Gy (%) 6.44 36.84 21.04 12.43 16.67 6.34 19.33 4.60 11.81 25.63 23.22 10.88 15.35 16.14 18.55 15.33 31.53 8.80 13.43 9.28 

 V48.6Gy (%) 4.04 25.29 11.85 8.16 7.88 4.02 12.85 3.10 6.52 18.39 16.60 7.60 9.96 10.88 12.28 10.72 21.26 4.45 8.17 6.47 

 V52.7Gy (%) 3.09 19.89 8.74 6.01 4.54 3.05 9.44 2.38 4.25 15.12 12.27 6.13 7.30 8.26 8.83 8.20 16.80 2.99 5.58 5.06 

 V56.8Gy (%) 2.09 13.61 6.27 4.24 2.90 2.14 6.07 1.61 2.22 11.15 8.49 4.34 4.79 5.80 6.14 5.77 11.72 2.07 3.54 3.78 
  DMean (Gy) 12.02 35.81 27.99 19.42 23.24 10.50 24.18 8.83 20.63 29.65 26.41 14.60 17.36 27.71 22.56 19.00 30.73 14.78 18.38 13.10 

Bowel V36.5Gy (cm³) 1.04 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.27 0.10 0.00 0.63 0.70 0.00 0.00 0.00 0.00 0.00 0.00 

 V40.5Gy (cm³) 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00 0.00 0.22 0.19 0.00 0.00 0.00 0.00 0.00 0.00 

 V44.6Gy (cm³) 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 V48.6Gy (cm³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 V52.7Gy (cm³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  DMean (Gy) 7.12 10.27 7.29 3.09 7.70 3.67 2.53 1.21 1.96 8.89 7.31 8.99 11.20 7.75 4.54 5.50 8.24 3.81 3.40 4.23 

External D1.8cm³ (Gy) 61.64 61.69 61.62 61.70 61.49 61.55 61.65 61.63 61.67 61.62 61.67 61.78 61.62 61.65 61.53 61.58 61.71 61.57 61.63 61.70 
Plan MU MU 647.0 560.7 668.1 628.5 615.0 675.7 553.6 583.6 639.7 675.6 600.6 599.3 614.0 653.0 598.1 583.8 611.9 586.9 617.3 581.5 
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Table 5 (continued): Dosimetric data from all study patients. Patient Cal01 represents the navigation patient.                 

   VMATManual 

  Metric 
Patient 
Cal01 

Patient 
Cal02 

Patient 
Cal03 

Patient 
Cal04 

Patient 
Cal05 

Patient 
Cal06 

Patient 
Cal07 

Patient 
Cal08 

Patient 
Cal09 

Patient 
Cal10 

Patient 
Val01 

Patient 
Val02 

Patient 
Val03 

Patient 
Val04 

Patient 
Val05 

Patient 
Val06 

Patient 
Val07 

Patient 
Val08 

Patient 
Val09 

Patient 
Val10 

PTV60 D98% (Gy) 58.25 58.29 57.70 57.97 58.67 58.07 57.95 57.79 58.32 58.35 57.97 58.06 57.95 58.22 57.86 58.28 57.64 57.95 57.90 57.66 

 D2% (Gy) 61.84 61.85 61.57 61.95 62.13 61.38 61.73 61.78 61.87 61.89 61.74 62.20 61.27 61.96 61.74 61.68 61.51 61.29 61.82 62.07 

 CI 0.79 0.80 0.81 0.78 0.70 0.76 0.82 0.78 0.77 0.80 0.80 0.82 0.76 0.80 0.78 0.78 0.79 0.79 0.80 0.81 
  HI 0.060 0.059 0.064 0.066 0.058 0.055 0.063 0.067 0.059 0.059 0.063 0.069 0.056 0.062 0.065 0.056 0.065 0.056 0.065 0.074 

PTV48  D98% (Gy) 47.16 47.14 46.64 47.61 47.20 47.10 46.80 47.35 47.05 47.11 46.65 47.13 47.01 47.04 47.07 47.74 47.69 46.59 46.82 47.03 

 D2% (Gy) 59.35 59.44 59.39 59.65 59.55 59.35 59.32 59.44 59.76 59.62 59.31 59.79 59.21 59.59 59.35 59.54 59.47 58.80 59.22 59.71 

 CI 0.76 0.77 0.79 0.75 0.74 0.75 0.79 0.74 0.77 0.78 0.78 0.76 0.77 0.75 0.77 0.79 0.76 0.77 0.78 0.79 
  HI 0.227 0.227 0.238 0.216 0.237 0.224 0.231 0.218 0.229 0.227 0.238 0.231 0.230 0.232 0.227 0.212 0.212 0.233 0.236 0.229 

Rectum V24.3Gy (%) 36.87 58.40 59.80 39.43 47.81 36.21 47.21 22.03 38.51 32.81 50.84 55.81 49.88 38.31 42.97 30.61 59.91 66.10 42.54 41.83 

 V32.4Gy (%) 22.85 45.91 32.93 27.37 36.21 24.63 35.84 14.37 24.02 18.86 36.90 39.53 34.71 23.93 31.31 22.56 46.13 52.47 28.22 30.17 

 V40.5Gy (%) 16.73 36.18 13.30 20.55 28.98 18.07 27.35 10.01 18.39 13.09 28.26 28.64 25.43 16.42 23.85 16.67 36.51 41.15 18.42 23.64 

 V48.6Gy (%) 12.55 23.64 7.18 13.87 18.50 10.66 18.27 6.31 13.54 9.09 18.12 17.21 16.93 10.64 15.82 10.60 25.50 23.42 8.33 18.17 

 V52.7Gy (%) 10.57 17.39 5.32 10.59 13.73 7.14 13.73 4.67 11.11 7.40 12.62 13.08 13.20 8.29 10.75 7.94 18.87 14.99 5.62 14.54 

 V56.8Gy (%) 7.23 10.62 3.02 6.43 9.06 4.23 9.39 2.78 7.14 4.81 7.35 8.19 8.46 5.43 6.30 4.72 12.90 10.04 3.36 9.64 

 V60.8Gy (%) 0.01 0.08 0.00 0.00 0.06 0.00 0.00 0.01 0.01 0.00 0.02 0.31 0.00 0.00 0.00 0.01 0.29 0.00 0.00 0.00 
  DMean (Gy) 25.28 31.78 25.52 22.26 29.21 23.50 26.91 14.73 23.67 22.96 27.61 29.72 28.99 25.07 26.87 20.50 32.07 33.97 23.39 27.40 

Bladder V40.5Gy (%) 6.15 34.81 22.03 12.99 17.03 6.38 19.41 4.75 12.10 23.71 22.79 9.66 15.34 15.40 19.31 16.02 31.01 8.95 12.87 9.21 

 V48.6Gy (%) 3.86 24.64 11.39 8.49 9.29 4.21 13.10 3.28 6.22 18.70 16.18 6.78 10.28 10.27 12.48 11.04 22.00 4.79 8.20 6.07 

 V52.7Gy (%) 3.05 19.87 8.81 6.41 5.67 3.30 9.88 2.57 4.27 15.74 13.03 5.59 7.73 8.24 9.73 8.89 17.94 3.27 5.74 5.09 

 V56.8Gy (%) 2.11 14.50 6.31 4.81 3.68 2.28 6.52 1.74 2.44 11.35 9.51 4.05 5.45 5.97 6.67 6.61 12.83 2.27 3.70 3.63 
  DMean (Gy) 11.74 35.75 29.99 20.64 22.81 10.32 23.80 9.10 22.43 26.79 26.56 13.86 17.94 25.41 23.59 19.55 31.18 14.28 18.60 13.93 

Bowel V36.5Gy (cm³) 1.81 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.39 0.00 0.86 0.59 0.00 0.00 0.03 0.00 0.00 0.00 

 V40.5Gy (cm³) 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.09 0.00 0.32 0.13 0.00 0.00 0.00 0.00 0.00 0.00 

 V44.6Gy (cm³) 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 V48.6Gy (cm³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 V52.7Gy (cm³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  DMean (Gy) 8.53 9.84 8.50 3.40 10.76 3.58 2.66 1.58 2.27 9.11 8.93 9.26 14.08 8.97 5.53 6.08 9.13 3.86 3.90 5.18 

External D1.8cm³  (Gy) 61.87 61.93 61.61 61.91 61.96 61.24 61.79 61.72 61.83 61.92 61.72 62.38 61.16 61.98 61.70 61.62 61.55 61.25 61.83 62.12 
Plan MU MU 547.0 578.5 492.7 533.9 543.3 482.6 509.0 564.6 536.2 568.3 545.5 626.9 515.7 608.1 518.8 503.7 549.0 496.3 562.1 546.6 
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Table 5 (continued): Dosimetric data from all study patients. Patient Cal01 represents the navigation patient. 

    VMATAuto  VMATManual    

  Metric  Median Min Max  Median Min Max  p value 

PTV60 D98% (Gy)  57.86 57.71 57.97  57.97 57.64 58.67  0.01 

 D2% (Gy)  61.63 61.58 61.72  61.80 61.27 62.20  0.05 

 CI  0.86 0.84 0.87  0.79 0.70 0.82  0.00 
  HI  0.063 0.060 0.067  0.062 0.055 0.074  0.22 

PTV48  D98% (Gy)  46.75 46.46 47.41  47.08 46.59 47.74  0.00 

 D2% (Gy)  58.91 58.47 59.21  59.44 58.80 59.79  0.00 

 CI  0.85 0.82 0.88  0.77 0.74 0.79  0.00 
  HI  0.230 0.213 0.242  0.229 0.212 0.238  0.31 

Rectum V24.3Gy (%)  37.09 19.25 63.57  42.76 22.03 66.10  0.00 

 V32.4Gy (%)  28.27 13.38 51.62  30.74 14.37 52.47  0.02 

 V40.5Gy (%)  20.70 9.61 39.62  22.10 10.01 41.15  0.01 

 V48.6Gy (%)  13.60 6.06 22.94  14.85 6.31 25.50  0.00 

 V52.7Gy (%)  10.07 4.39 16.51  10.93 4.67 18.87  0.00 

 V56.8Gy (%)  5.78 2.29 10.73  7.18 2.78 12.90  0.00 

 V60.8Gy (%)  0.03 0.00 0.54  0.00 0.00 0.31  0.08 
  DMean (Gy)  22.07 13.06 32.26  26.20 14.73 33.97  0.00 

Bladder V40.5Gy (%)  15.34 4.60 36.84  15.37 4.75 34.81  0.63 

 V48.6Gy (%)  9.06 3.10 25.29  9.78 3.28 24.64  0.94 

 V52.7Gy (%)  6.72 2.38 19.89  7.07 2.57 19.87  0.00 

 V56.8Gy (%)  4.57 1.61 13.61  5.13 1.74 14.50  0.00 
  DMean (Gy)  20.03 8.83 35.81  21.53 9.10 35.75  0.50 

Bowel V36.5Gy (cm³)  0.00 0.00 1.27  0.00 0.00 1.81  0.40 

 V40.5Gy (cm³)  0.00 0.00 0.72  0.00 0.00 1.11  0.50 

 V44.6Gy (cm³)  0.00 0.00 0.34  0.00 0.00 0.53  0.11 

 V48.6Gy (cm³)  0.00 0.00 0.00  0.00 0.00 0.00  na, zero error 

 V52.7Gy (cm³)  0.00 0.00 0.00  0.00 0.00 0.00  na, zero error 
  DMean (Gy)  6.31 1.21 11.20  7.29 1.58 14.08  0.00 

External D1.8cm³  (Gy)  61.63 61.49 61.78  61.81 61.16 62.38  0.06 
Plan MU MU  612.9 553.6 675.7  544.4 482.6 626.9  0.00 
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Table 6: Comparison of navigation and segmented dosimetric data from the first round of navigations on P3 groups 1-6. 

      Navigation Doses  Segmented Doses 

  Navigation Group   Group1 Group2 Group3 Group4 Group5 Group6  Group1 Group2 Group3 Group4 Group5 Group6 

PTV60 D98% (Gy)   58.30 58.23 58.02 57.85 57.85 57.79  58.04 58.04 57.82 57.85 57.75 57.73 
  D2% (Gy)   61.14 61.14 61.11 61.49 61.44 61.45  61.27 61.42 61.40 61.50 61.59 61.55 
  CI   0.69 0.69 0.72 0.85 0.87 0.87  0.69 0.71 0.73 0.85 0.87 0.87 
  HI   0.048 0.049 0.052 0.061 0.060 0.061  0.054 0.057 0.060 0.061 0.064 0.064 

PTV48  D98% (Gy)   47.07 47.26 47.16 46.67 46.83 46.73  46.74 47.01 46.80 46.66 46.71 46.69 
  D2% (Gy)   59.72 59.82 60.28 59.14 58.74 58.76  60.23 60.03 60.24 58.98 58.62 58.72 
  CI   0.60 0.61 0.65 0.85 0.85 0.85  0.60 0.62 0.66 0.85 0.84 0.84 
  HI   0.228 0.226 0.242 0.238 0.229 0.232  0.244 0.235 0.248 0.235 0.229 0.231 

Rectum V24.3Gy (%)   29.49 27.38 28.74 31.52 32.14 32.34  30.01 28.17 29.92 31.71 31.95 32.39 
  V32.4Gy (%)   22.10 21.12 21.65 22.93 22.96 23.09  22.08 21.53 22.59 23.09 22.96 23.28 
  V40.5Gy (%)   17.01 16.75 16.78 17.04 17.13 17.16  16.90 16.84 17.05 17.22 17.25 17.52 
  V48.7Gy (%)   12.50 12.55 12.48 12.33 12.37 12.26  12.49 12.59 12.46 12.33 12.40 12.34 
  V52.7Gy (%)   9.55 9.44 9.46 9.42 9.27 9.23  9.53 9.66 9.32 9.42 9.28 9.29 
  V56.8Gy (%)   5.68 5.72 5.76 5.67 5.71 5.59  5.79 5.73 5.70 5.77 5.67 5.63 
  V60.8Gy (%)   0.00 0.00 0.02 0.00 0.00 0.00  0.03 0.01 0.00 0.01 0.00 0.00 
  DMean (Gy)   22.89 20.56 21.11 22.61 23.01 23.13  21.96 20.58 21.37 22.71 22.79 23.04 

Bladder V40.5Gy (%)   9.78 9.73 6.77 6.02 5.99 6.03  10.09 9.80 6.72 6.06 6.10 6.12 
  V48.7Gy (%)   6.53 6.67 4.12 3.63 3.57 3.56  6.76 6.44 4.10 3.61 3.59 3.59 
  V52.7Gy (%)   4.89 5.19 3.05 2.76 2.69 2.67  5.02 4.92 3.05 2.74 2.68 2.69 
  V56.8Gy (%)   2.98 3.24 1.90 1.79 1.72 1.71  3.09 3.08 1.88 1.80 1.71 1.72 
  DMean (Gy)   13.90 13.14 12.17 11.85 12.13 12.43  13.65 13.29 11.92 11.87 12.35 12.30 

Bowel V36.5Gy (cm³)   2.42 2.21 2.29 1.24 1.28 1.08  2.44 2.33 2.19 1.15 1.50 1.27 
  V40.5Gy (cm³)   2.20 2.05 1.51 0.80 0.71 0.70  1.92 1.96 1.30 0.73 0.73 0.73 
  V44.6Gy (cm³)   1.03 0.80 0.80 0.36 0.51 0.45  0.82 0.82 0.76 0.38 0.43 0.40 
  V48.7Gy (cm³)   0.21 0.02 0.02 0.00 0.00 0.00  0.11 0.18 0.04 0.00 0.00 0.00 
  V52.7Gy (cm³)   0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
  DMean (Gy)   7.94 7.82 8.02 7.23 7.12 7.06  8.05 8.18 8.06 7.21 7.35 7.09 

External D1.8cm³  (Gy)   61.16 61.14 61.20 61.50 61.46 61.47  61.29 61.44 61.43 61.51 61.61 61.57 
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Table 6 (continued): Comparison of navigation and segmented dosimetric data from the first round of navigations on P3 groups 1-6.  

      Approximation Error (Navigation - Segmented) 

  Navigation Group   Group1 Group2 Group3 Group4 Group5 Group6 Median Min Max 

PTV60 D98% (Gy)   0.26 0.19 0.20 0.01 0.10 0.05 0.15 0.01 0.26 
  D2% (Gy)   -0.13 -0.29 -0.29 -0.01 -0.15 -0.10 -0.14 -0.29 -0.01 
  CI   0.00 -0.02 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 
  HI   -0.007 -0.008 -0.008 0.000 -0.004 -0.003 -0.01 -0.01 0.00 

PTV48  D98% (Gy)   0.33 0.25 0.36 0.01 0.12 0.03 0.18 0.01 0.36 
  D2% (Gy)   -0.52 -0.22 0.04 0.16 0.12 0.04 0.04 -0.52 0.16 
  CI   0.00 -0.02 0.00 0.00 0.00 0.01 0.00 -0.02 0.01 
  HI   -0.016 -0.009 -0.006 0.003 0.001 0.001 0.00 -0.02 0.00 

Rectum V24.3Gy (%)   -0.52 -0.79 -1.18 -0.19 0.19 -0.05 -0.35 -1.18 0.19 
  V32.4Gy (%)   0.02 -0.41 -0.93 -0.16 0.00 -0.19 -0.18 -0.93 0.02 
  V40.5Gy (%)   0.11 -0.09 -0.27 -0.18 -0.11 -0.36 -0.15 -0.36 0.11 
  V48.7Gy (%)   0.02 -0.04 0.02 0.00 -0.03 -0.08 -0.01 -0.08 0.02 
  V52.7Gy (%)   0.03 -0.22 0.14 0.00 -0.01 -0.06 -0.01 -0.22 0.14 
  V56.8Gy (%)   -0.10 -0.01 0.07 -0.11 0.04 -0.04 -0.02 -0.11 0.07 
  V60.8Gy (%)   -0.03 -0.01 0.02 -0.01 0.00 0.00 0.00 -0.03 0.02 
  DMean (Gy)   0.92 -0.02 -0.26 -0.10 0.22 0.09 0.03 -0.26 0.92 

Bladder V40.5Gy (%)   -0.31 -0.07 0.05 -0.04 -0.11 -0.08 -0.08 -0.31 0.05 
  V48.7Gy (%)   -0.24 0.23 0.02 0.02 -0.02 -0.03 0.00 -0.24 0.23 
  V52.7Gy (%)   -0.13 0.26 0.01 0.02 0.01 -0.01 0.01 -0.13 0.26 
  V56.8Gy (%)   -0.12 0.16 0.02 -0.01 0.02 -0.01 0.00 -0.12 0.16 
  DMean (Gy)   0.25 -0.16 0.25 -0.03 -0.23 0.13 0.05 -0.23 0.25 

Bowel V36.5Gy (cm³)   -0.03 -0.12 0.10 0.09 -0.22 -0.19 -0.07 -0.22 0.10 
  V40.5Gy (cm³)   0.28 0.09 0.21 0.06 -0.02 -0.03 0.08 -0.03 0.28 
  V44.6Gy (cm³)   0.21 -0.02 0.04 -0.03 0.08 0.05 0.04 -0.03 0.21 
  V48.7Gy (cm³)   0.10 -0.15 -0.02 0.00 0.00 0.00 0.00 -0.15 0.10 
  V52.7Gy (cm³)   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  DMean (Gy)   -0.11 -0.36 -0.04 0.02 -0.23 -0.03 -0.08 -0.36 0.02 

External D1.8cm³  (Gy)   -0.13 -0.30 -0.22 -0.01 -0.15 -0.11 -0.14 -0.30 -0.01 
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Appendix C – Journal Article 2: Supplementary Information 

1 Supplementary Information S1: Additional Manually Delineated AuxROI Required for 
PPN 

1.1 Overview 

The following details the additional anatomically related BowelBagRegion volume which was 

manually delineated for all patients prior to automated plan generation.  

1.2 AuxROI Purpose 

Bowel is delineated as standard for all patients treated at our centre. During the course of 

treatment bowel may move within the abdominal cavity and fall outside regions spared by 

the IMRT/VMAT optimiser. Our clinical practice is therefore to delineate an AuxROI which 

corresponds to the abdominal cavity, and reduce dose to this region during the optimisation. 

This ensures that dose is minimised across the whole abdominal cavity and therefore plans 

are more robust to bowel movement during treatment.  BowelBagRegion is delineated 

manually and does not need to be accurately defined to fulfil its purpose. 

1.3 AuxROI Delineation  

Abdominal cavity and tissue anterior to the cavity delineated. Inferior boundary defined as 

two slices superior to PTV60 and superior boundary defined as at least two slices superior to 

PTV44. Delineated volume retracted from skin surface and all PTVs to create final ROI (Figure 

S1).  

  

Figure S1: Example BowelBagRegion AuxROI (Brown) required for PPN automated planning. PTV60 (red), 
PTV50 (pink), PTV48 (yellow) and PTV44 (blue) ROIs are also shown. 
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2 Supplementary Information S2: Local Clinical Planning Goals for PSV and PPN 

Supplementary Table S2 
Local Clinical Planning Goals for PSV and PPN 
  
Priority 1: Primary OAR Objectives   

ROI Name Dose Parameter Actionable*   

Bowel D0.1 cm3 ≤52.7 Gy   
        
Priority 2: Target and Max Dose Objectives   

ROI Name Dose Parameter Actionable*   

All PTVs D99% ≥95% of PTV prescription 
Patient Outline D1.8 cm3 ≤107% of Prescribed Dose 
        
Priority 3: Secondary OAR Objectives   

ROI Name Dose Parameter Optimal Actionable* 

Rectum V24.3 Gy ≤80% - 
Rectum V32.4 Gy ≤65% - 
Rectum V40.5 Gy ≤50% ≤60% 
Rectum V48.6 Gy ≤35% ≤50% 
Rectum V52.7 Gy ≤30% ≤30% 
Rectum V56.8 Gy ≤15% ≤15% 
Rectum V60.8 Gy ≤3% ≤5% 
Bladder V40.5 Gy ≤50% - 
Bladder V48.6 Gy ≤25% - 
Bladder V52.7 Gy - ≤50% 
Bladder V56.8 Gy ≤5% ≤35% 
Bowel V36.5 Gy ≤78 cc ≤158 cc 
Bowel V40.5 Gy ≤17 cc ≤110 cc 
Bowel V44.6 Gy ≤14 cc ≤28 cc 
Bowel V48.6 Gy ≤0.5 cc ≤6 cc 
Bowel V52.7 Gy ≤0.0 cc ≤0.0 cc 
    
*Deviations from actionable planning goals are permissible if 
approved by the treating oncologist.  
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3 Supplementary Information S3: Planning goals for the PPN AutoPlan Protocol 

Supplementary Table S3 
Planning goals for the PPN AutoPlan protocol  

Priority 1: Primary OAR Goals       

ROI Name Dose Parameter Target (Gy)       

Bowel_1mm Dmax 51.0       
            

Priority 1: Primary Conformality Goals     

ROI Name Dose Parameter Target (Gy) Distance (cm)     

PTV48 Dmax 43.2 1.5     

PTV44 Dmax 37.4 1.5     
            

Priority 2: Target Goals       

ROI Name Dose Parameter Target (%Presc,PTV)       

PTV60 Dmin 96.5       

PTV60 Dmax 102.5       

PTV60 D50% max 99.5       

PTV50 Dmin 96.5       

PTV50 Dmax 102.5       

PTV48 Dmin 96.8       

PTV48 Dmax 105.0       

PTV44 Dmin 96.8       

PTV44 Dmax 102.7       
            

Priority 3: Trade-off Goals (Standard) 

ROI Name Dose Parameter Target (Gy or %Vol) Group     

Rectum V23.4Gy (%) 0.0 12     

Rectum V31.5Gy (%) 0.0 12     

Rectum V39.6Gy (%) 0.0 1     

Rectum V47.7Gy (%) 0.0 1     

Rectum V51.8Gy (%) 0.0 1     

Rectum V55.9Gy (%) 0.0 1     

Rectum Dmax (Gy) 58.8 1     

Rectum Dmean (Gy) 5.0 2     

Bladder V24.0Gy (%) 0.0 3     

Bladder V31.8Gy (%) 0.0 3     

Bladder V39.6Gy (%) 0.0 3     

Bladder V47.7Gy (%) 0.0 3     

Bladder V51.8Gy (%) 0.0 3     

Bladder Dmax (Gy) 55.9 3     

Bowel V36.0Gy (%) 0.0 6     

Bowel V40.9Gy (%) 0.0 6     

Bowel V43.8Gy (%) 0.0 6     

Bowel Dmax (Gy) 48.6 6     

BowelBagRegion V19.8Gy (%) 0.0 11     

BowelBagRegion V28.8Gy (%) 0.0 11     

BowelBagRegion V36.0Gy (%) 0.0 8     

BowelBagRegion V40.9Gy (%) 0.0 8     

BowelBagRegion V43.8Gy (%) 0.0 8     

BowelBagRegion V48.6Gy (%) 0.0 8     
            

Priority 3: Trade-off Goals (Dose Fall Off)   

ROI Name Fall Off Type High Dose Level (Gy) Low Dose Level (Gy) Dose Gradient (%Presc cm-1) Group 

PTV48 Normal Tissue Falloff 54.0 36.5 50.0 4 
PTV48 Intra PTV Falloff 54.0 52.8 50.0 5 
PTV48 Normal Tissue Falloff (Inf) 54.0 31.2 50.0 13 
PTV44 Normal Tissue Falloff 54.0 33.4 50.0 9 
PTV44 Normal Tissue Falloff 54.0 39.6 50.0 14 
PTV44 Intra PTV Falloff 54.0 44.9 50.0 15 
            
Abbreviations: %Presc, PTV = % of individual PTV prescription dose; %Presc = % of overall treatment prescription; %Vol = % volume of ROI. 

Notes: Bowel_1mm ROI generated automatically by EdgeVcc through isotropic expansion of Bowel ROI by 1mm. 
Priority 3 target = 0.0 by default, but can be specified if desired. The target is dynamically adjusted during optimisation and 
therefore initial values have negligible impact plan quality, but may decrease planning time if correctly defined. 
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4 Supplementary Information S4: Post Calibration Nominal Weights for PPN AutoPlan 
Protocol 

 
Supplementary Table S4 
Nominal weights (wn) for the calibrated PPN AutoPlan protocol planning goals 

    
Priority Type/Group wn* 

Priority 1 Primary OAR Goals 1000 
  Primary Conformality Goals** 1000 
Priority 2 Target Goals 250 
Priority 3 Group 1 1.23 
  Group 2 4.65 
  Group 3 0.500 
  Group 4 70.0 
  Group 5 1.73 
  Group 6 6.30 
  Group 7 7.78 
  Group 8 24.00 
  Group 9*** 365 
  Group 10 0.800 
  Group 11 24.0 
  Group 12 5.00 
  Group 13 1.26 
  Group 14*** 31.9 
  Group 15 4.27 

* Rounded to 3 significant figures   
**Nominal weight manually increased during PPN calibration to match Primary 
OAR nominal weight 
***For PTV44 normal tissue fall off goals, the final dynamically adjusted weight 
was observed to be orders of magnitude smaller than the initial weights (wi) 
loaded into the optimiser. This discrepancy was reduced by setting the constant 
FN to 0.01. Details of FN are provided by wheeler et al [1] 
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Appendix D – Innovation Proposal 

1 Project Title 

ASSURE-RT: AI driven quality aSSUrance for RadiothERapy clinical Trials: ensuring safe, 

personalised treatments for UK trial patients. 

2 Lay Summary 

All patients undergoing radiotherapy (RT) require a bespoke, personalised, treatment plan to 

be generated prior to treatment. RT plans aim to maximise the radiation dose to the cancer, 

whilst avoiding sensitive organs. Plan generation is however, complex and the quality of a 

patient’s plan depends on where they are treated and who created the plan.  

Variation in quality is a key issue for clinical trials. It can affect the safety and effectiveness of 

the treatment, but also influence the results of the trial. To address this problem, a national 

RT trials quality assurance group (RTTQA) has been commissioned, which provides an 

independent quality assurance service across all UK RT trials.  

RTTQA’s key role is to ensure the quality of RT plans used within trials. Reviewing treatment 

quality on individual plans is however a time-consuming manual process. As such it is 

performed on less than 1 in 10 trial patients. This is not sufficient to ensure the quality of all 

plans within a trial. 

ASSURE-RT is a proposed software platform that uses artificial intelligence to objectively 

assess the quality of a patient’s RT plan. ASSURE-RT would be used within trials to assess the 

quality of each plan, with results stored in a large database and passed on to the treating 

centre in time for a patient’s plan to be improved.  

ASSURE-RT should enable all trial patients to receive a personalised quality check of their 

plan prior to treatment, leading to safer, more effective treatments. Furthermore, analysis of 

results in the large database would enable the objective assessment of treatment quality 

across the UK. Poor performance could be highlighted, best practice identified and 

information shared to drive quality at a national level. 

3 The Heath Care Problem 

All patients undergoing RT require a bespoke, personalised, treatment plan to be generated 

prior to treatment. RT plans are created on patient CT scans using specialist computer 
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simulation software and aim to maximise the radiation dose to the cancer, whilst avoiding 

sensitive organs. Plan generation, typically performed manually by expert staff, is highly 

complex and time consuming, and there exists substantial variations in plan quality both at 

intra- and inter-institutional level [1].  

The effectiveness of RT is highly dependent on the quality of the treatment plan. Poor 

quality RT negatively affects patient outcomes: it increases the risks of treatment failure; 

increases overall mortality; and detrimentally impacts the patient’s quality of life [2–6]. This 

is a significant issue within RT clinical trials, where standardisation of plan quality is 

paramount; not only to ensure treatment efficacy, but also that clinical trial outcomes reflect 

differences in randomisation schedules, rather than variances in planning practice and 

quality.  

There is growing evidence highlighting the potential magnitude of this problem. For prostate 

cancer, Moore et al [7] demonstrated that that the risk of grade 2 rectal complications 

within a phase III clinical trial could be reduced by 4.7%, solely through improvements in 

planning practice. Similarly, Tol et al showed that for 16% of patients within a phase III head 

and neck (H&N) trial, the probability of a clinically significant reduction (>75%) in salvia flow 

rate could be reduced by >10% [8]. More generally, across the whole RT pathway, a 

systematic review by Weber et al [4] concluded that poor quality RT had a significant impact 

on the primary study end-point in 62.5% of the studies identified in the review.  

In the UK a national RT trials quality assurance group (RTTQA) has been commissioned, at a 

cost of £1,135,000 per year, to provide a centralised independent quality assurance (QA) 

service across all UK RT trials. The core part of this service is governing the safety and 

optimality of RT treatment plans. Reviewing treatment quality on individual patients is 

however a time-consuming manual process. Therefore reviews are mainly limited to ‘pre-

trial benchmark’ cases, which centres must complete prior to enrolling patients, and 

prospective reviews on a small number of on-trial patients (<10%). Whilst an improvement 

on standard practice, current RTTQA practices are insufficient to ensure the consistency and 

quality of all RT treatment plans within UK trials. 

  



118 
 

4 The Proposed Innovation 

 

Figure 1: Overview of the ASSURE-RT platform. ASSURE-RT is hosted by RTTQA and utilises Eclipse (green) and XNAT (blue) 
software 

To help resolve this issue, we propose to develop ASSURE-RT: an AI driven plan QA platform 

for RT clinical trials. ASSURE-RT (Figure 1) will utilise validated AI algorithms (EdgeVcc), 

developed by Velindre Cancer Centre (VCC) [9,10], to automatically generate a personalised, 

gold standard RT reference plan for trial patients uploaded to the platform. Clinical plans will 

be baselined against this AI plan using a range of established plan quality metrics, with 

unwarranted variations in quality identified and flagged. Results will be reported back to the 

treating centre, enabling corrective action to be taken prior to the patient’s treatment. This 

process will be automated, providing the potential to deliver timely, patient specific QA for 

plans of all recruited trial patients in the UK.  

In addition to individual patient QA, ASSURE-RT will store all baseline data within the RTTQA 

centralised database. A data analytics module will enable the rapid analysis of treatment 

quality at an institutional and national level. With nearly every UK RT centre participating in 

trials, this database will act as an auditing tool for UK RT practice. Poor performance can be 
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highlighted, best practice identified and information shared to drive quality at a national 

level.  

5 Benefit of the Innovation 

Due to the resource intensive nature of current manual reviewing techniques, RTTQA only 

performs individual prospective reviews on <10% of trial patients. Furthermore, the 

turnaround time for prospective reviews is 72hrs, which can put increased time pressure on 

the patient pathway. The ASSURE-RT platform will provide a paradigm shift in the 

operational efficiency of RTTQA. It will enable AI-informed reviews on potentially all trial 

patients, but require no additional revenue costs outside of RTTQA’s current budget. 

Furthermore, turnaround times will be reduced from 72hrs to less than 24hrs, ensuring 

feedback is timely and can be acted on before the start of treatment.  

Within trials, breaches in protocols can be frequent (a 2012 systematic review identified a 

28% failure rate [4]) and are correlated with poor outcomes [2–6]. Timely trial QA is a 

powerful tool to detect and intervene on protocol breaches prior to the patient being 

treated. ASSURE-RT will enable the provision of timely prospective plan QA for potentially all 

UK RT trial patients. In addition to protocol breaches, retrospective benchmarking studies 

highlight a wide variation in the optimality of treatment plans within trials [11,12]. Sub-

optimal plans can result in a higher treatment toxicity or lower chance of cure. Through 

comparison against the AI baseline plan, ASSURE-RT will identify clinically significant 

deviations in quality such that corrective action can be taken prior to treatment.  

Finally, results from RT clinical trials lead to sustained change to UK practice [13]. By 

improving the consistency and quality of treatment plans, ASSURE-RT will help deliver higher 

quality trial data on which future UK practice is based. By collating baseline results into 

RTTQA’s centralised database, the ASSURE-RT platform provides a unique opportunity to 

deliver UK wide auditing capability. The data analytics module will enable regular 

comparative analysis of plan quality across the UK; enabling poor performing institutions to 

initiate quality improvement drives and high performing institutions to share best practice. 

RT clinical trials also have a track record of delivering sustained improvements in treatment 

planning practice across the UK for non-trial patients [14,15]. It is expected that 
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improvements in trial plan quality delivered through ASSURE-RT will therefore propagate 

through to standard UK practice as centres apply best practice across their service.  

6 Implementation of the Innovation 

6.1 Patient and Public Involvement (PPI) 

Over the last 5 years PPI representatives have been actively involved in the development 

and evaluation of EdgeVcc. For development and implementation of the innovation it is 

proposed an experienced PPI lead be recruited to maximise engagement opportunities. 

Activities should include: co-producing PPI plans with established VCC Patient and Carer 

Liaison Groups; developing role descriptions for PPI participants; inducting, mentoring and 

developing patient and public participants; establishing PPI evaluation, monitoring and 

impact reporting methods 

6.2 System Development and Evaluation  

Appendix A provides an estimate of the resources required to develop the ASSURE-RT 

platform and evaluate it for two clinical sites (prostate and H&N). An example work plan is 

also provided. In summary, a 3 year project costing an estimated £850k is proposed. The 

project would be a collaboration between VCC, RTTQA and an academic partner (who are 

experts in the X-NAT architecture required for ASSURE-RT) and would generate high quality, 

real world evidence on the efficacy of the innovation. The evaluation would take the form of 

a before and after study, where ASSURE-RT is implement within running prostate and H&N 

clinical trials. Time series analysis across a range of established dose metrics would be 

performed to monitor the impact ASSURE-RT has on RT plan quality within these trials. If 

results are supportive of the innovation the following adoption strategy will implemented.   

6.3 Adoption Strategy 

RTTQA’s nationally agreed remit to provide a centralised QA service for all UK RT trials 

provides a unique opportunity to adopt novel trial QA technologies at scale and at pace. The 

programme of work detailed in section 6.2 will establish all the necessary processes and 

infrastructure required to enable implementation of ASSURE-RT across a broad spectrum of 

clinical trials at a national level. As such, widespread adoption of ASSURE-RT does not 

require substantial financial investment, changes to infrastructure, or adoption of 

significantly new clinical practices, all of which are key barriers in the adoption of 
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technologies within the NHS. Furthermore, due to the expected efficiency savings on current 

practice, adoption of ASSURE-RT would not require additional year on year revenue funding. 

Successful, sustained adoption of ASSURE-RT is therefore relatively straight forward and 

requires the following strategic steps:   

Adoption by Clinical Trial Chief Investigators (CI): For widespread adoption CIs must 

endorse and adopt ASSURE-RT. RTTQA and CIs work in close collaborative partnerships, with 

RTTQA providing expert advice on RT plan QA requirements within trials. We will utilise 

these established collaborations to engage CIs throughout the project. We expect strong CI 

support and already have received statements of support from the CIs of two large UK led 

trials. 

Active Engagement from UK RT Centres: For UK centres to enrol patients into clinical trials 

they must adhere to RTTQA’s plan QA protocols. Adoption of ASSURE-RT by RTTQA will 

naturally lead to adoption by UK centres. RTTQA has close collaborative partnerships with 

UK centres and this will be utilised throughout the course of the implementation to actively 

engage centres and ensure the benefit of ASSURE-RT to a centre’s quality of care is 

maximised.    

6.4 Barriers to Adoption 

RTTQA’s centralised structure and national remit, alongside support from key trial CIs, result 

in minimal barriers to adoption. Automated planning is also widely trusted within the field of 

RT, ensuring incorporation of AI within the RTTQA processes will be understood and 

accepted. 

The key barrier to successful adoption, is engagement from participating centres. The 

concept of ASSURE-RT relies on UK centres utilising baseline results to actively improve 

patient care. Our view is that centres inherently want to deliver good patient care, and by 

engaging and collaborating at an early stage we can remove these barriers and ensure the 

success of the ASSURE-RT platform. 
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8 Innovation Appendix: Estimated Resource Requirements and Example Work Plan 

 

Table 1: Estimated resource requirements (including staff on costs) to develop and evaluate ASSURE-RT for prostate and head and neck 

 

Figure 2: Example work plan to develop and evaluate ASSURE-RT for prostate and head and neck
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Appendix E – Summary of Additional Modules Undertaken as Part of the Doctorate in Clinical Science 

Alliance Manchester Business School – A Units   

Unit title Credits Assignment Word Count 

A1: Professionalism and professional development in the healthcare 

environment 

30 A1 – assignment 1 – 2500 words 

Group work/presentation – 10 minutes (10%) 

A1 – assignment 2 – 3000 words 

A2: Theoretical foundations of leadership 20 A2 – assignment 1 – 3000 words 

A2 – assignment 2 – 3000 words 

A3: Personal and professional development to enhance 

performance 

30 A3 – assignment 1 – 1500 words 

A3 – assignment 2 – 4000 words 

A4: Leadership and quality improvement in the clinical and scientific 

environment 

20 A4 – assignment 1 – 3000 words 

A4 – assignment 2 – 3000 words 

A5: Research and innovation in health and social care 20 A5 – Group work/presentation – 15 minutes (25%) 

A5 – assignment – 4000 words 

 

Medical Physics – B Units   

B1: Medical Equipment Management 10 Group presentation 

1500 word assignment 

B2: Clinical and Scientific Computing 10 Group presentation 

1500 word assignment 

B3: Dosimetry 10 Group presentation 

1500 word assignment 

B4: Optimisation in Radiotherapy and Imaging 10 Group presentation 

1500 word assignment 

B6: Medical statistics in medical physics 10 3000 word assignment 
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B8: Health technology assessment 10 3000 word assignment 

B9: Clinical applications of medical imaging technologies in 

radiotherapy physics 

20 Group presentation 

2000 word assignment 

B10a:  Advanced Radiobiology 10 Virtual experiment/1500 word report  

B10c:  Novel & External Beam Therapy 10 1500 word report 

B10f:  Radiation Protection Advice 10 1500 word report/piece of evidence for portfolio 

 

Generic B Units   

B5: Contemporary issues in healthcare  science 20 1500 word assignment + creative project 

B7: Teaching Learning Assessment 20 20 minute group presentation 

 


