450 research outputs found

    Semantic Matchmaking Algorithms

    Get PDF

    Grid service discovery with rough sets

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.The computational grid is evolving as a service-oriented computing infrastructure that facilitates resource sharing and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilising grid facilities. This paper presents ROSSE, a Rough sets based search engine for grid service discovery. Building on Rough sets theory, ROSSE is novel in its capability to deal with uncertainty of properties when matching services. In this way, ROSSE can discover the services that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct non-functional properties related to Quality of Service (QoS), ROSSE introduces a QoS model to further filter matched services with their QoS values to maximise user satisfaction in service discovery. ROSSE is evaluated in terms of its accuracy and efficiency in discovery of computing services

    Semantics-aware planning methodology for automatic web service composition

    Get PDF
    Service-Oriented Computing (SOC) has been a major research topic in the past years. It is based on the idea of composing distributed applications even in heterogeneous environments by discovering and invoking network-available Web Services to accomplish some complex tasks when no existing service can satisfy the user request. Service-Oriented Architecture (SOA) is a key design principle to facilitate building of these autonomous, platform-independent Web Services. However, in distributed environments, the use of services without considering their underlying semantics, either functional semantics or quality guarantees can negatively affect a composition process by raising intermittent failures or leading to slow performance. More recently, Artificial Intelligence (AI) Planning technologies have been exploited to facilitate the automated composition. But most of the AI planning based algorithms do not scale well when the number of Web Services increases, and there is no guarantee that a solution for a composition problem will be found even if it exists. AI Planning Graph tries to address various limitations in traditional AI planning by providing a unique search space in a directed layered graph. However, the existing AI Planning Graph algorithm only focuses on finding complete solutions without taking account of other services which are not achieving the goals. It will result in the failure of creating such a graph in the case that many services are available, despite most of them being irrelevant to the goals. This dissertation puts forward a concept of building a more intelligent planning mechanism which should be a combination of semantics-aware service selection and a goal-directed planning algorithm. Based on this concept, a new planning system so-called Semantics Enhanced web service Mining (SEwsMining) has been developed. Semantic-aware service selection is achieved by calculating on-demand multi-attributes semantics similarity based on semantic annotations (QWSMO-Lite). The planning algorithm is a substantial revision of the AI GraphPlan algorithm. To reduce the size of planning graph, a bi-directional planning strategy has been developed

    Matchmaking Framework for B2B E-Marketplaces

    Get PDF
    In the recent years trading on the Internet become more popular. Online businesses gradually replace more and more from the conventional business. Much commercial information is exchanged on the internet, especially using the e-marketplaces. The demand and supply matching process becomes complex and difficult on last twenty years since the e-marketplaces play an important role in business management. Companies can achieve significant cost reduction by using e-marketplaces in their trade activities and by using matchmaking systems on finding the corresponding supply for their demand and vice versa. In the literature were proposed many approaches for matchmaking. In this paper we present a conceptual framework of matchmaking in B2B e-marketplaces environment.B2B Electronic Marketplaces, Conceptual Framework, Matchmaking, Multi- Objective Genetic Algorithm, Pareto Optimal

    A new framework for matching semantic web service descriptions based on OWL-S services

    Get PDF
    Nowadays, semantic web services are published and updated with growing demand for cloud computing. Since a single service is not capable of processing the increase of data and user's demand the improvement is necessary to match and rank semantic web service to achieve the user's goal. In the semantic web service framework, users' request is the input to the system and output is ranking of semantic web service. It has become a limitation to match between requests with the semantic web service description. This paper proposes a new framework for matching and ranking semantic web service based on OWL-S. The proposed new framework can match the keyword in each task and ranking service. This framework is done by using performance ontology-based indexing. The result is obtained and the performance of the services for multiple requests has been measured
    corecore