
A Tree-Based Algorithm for Ranking Web Services

Fatma Ezzahra Gmati1, Nadia Yacoubi-Ayadi1, Afef Bahri2, Salem Chakhar3,4 and Alessio Ishizaka3,4

1RIADI Research Laboratory, National School of Computer Sciences, University of Manouba, Manouba, Tunisia
2MIRACL Laboratory, High School of Computing and Multimedia, University of Sfax, Sfax, Tunisia

3Portsmouth Business School, University of Portsmouth, Portsmouth, UK
4Centre for Operational Research and Logistics, University of Portsmouth, Portsmouth, UK

{fatma.ezzahra.gmati, nadia.yacoubi.ayadi, afef.bahri}@gmail.com, {salem.chakhar, alessio.ishizaka}@port.ac.uk

Keywords: Web service, Service scoring, Service ranking, Tree structure, Algorithm

Abstract: The aim of this paper is to propose a new algorithm for Web services ranking. The proposed algorithm relies
on a tree data structure that is constructed based on the scores of Web services. Two types of scores are
considered, which are computed by respectively selecting the edge with the minimum or the edge with the
maximum weight in the matching graph. The construction of the tree requires the successive use of both
scores, leading to two different versions of the tree. The final ranking is obtained by applying a pre-order
traversal on the tree and picks out all leaf nodes ordered from the left to the right. The performance evaluation
shows that the proposed algorithm is most often better than similar ones.

1 INTRODUCTION

Although the semantic matchmaking (Paolucci et al.,
2002; Doshi et al., 2004; Bellur and Kulkarni, 2007;
Fu et al., 2009; Chakhar, 2013; Chakhar et al., 2014;
Chakhar et al., 2015) permits to avoid the problem
of simple syntactic and strict capability-based match-
making, it is not very suitable for efficient Web ser-
vice selection. This is because it is difficult to distin-
guish between a pool of similar Web services (Rong
et al., 2009).

A possible solution to this issue is to use some
appropriate techniques and some additional informa-
tion to rank the Web services delivered by the seman-
tic matching algorithm and then provide a manage-
able set of ‘best’ Web services to the user from which
s/he can select one Web service to deploy. Several ap-
proaches have been proposed to implement this idea
(Manikrao and Prabhakar, 2005; Maamar et al., 2005;
Kuck and Gnasa, 2007; Gmati et al., 2014; Gmati
et al., 2015).

The objective of this paper is to introduce a new
Web services ranking algorithm. The proposed al-
gorithm relies on a tree data structure that is con-
structed based on the scores of Web services. Two
types of scores are considered, which are computed
by respectively selecting the edge with the minimum
or the edge with the maximum weight in the match-
ing graph. The construction of the tree requires the

successive use of both scores, leading to two differ-
ent versions of the tree. The final ranking is obtained
by applying a pre-order traversal on the tree and picks
out all the leaf nodes ordered from the left to the right.

The rest of the paper is organized as follows. Sec-
tion 2 provides a brief review of Web services match-
ing. Section 3 shows how the similarity degrees are
computed. Section 4 presents the Web services scor-
ing technique. Section 5 details the tree-based rank-
ing algorithm. Section 6 evaluates the performance
of the proposed algorithm. Section 7 discusses some
related work. Section 8 concludes the paper.

2 MATCHING WEB SERVICES

The main input for the ranking algorithm is a set of
Web services satisfying the user requirements. In
this section, we briefly review three matching algo-
rithms that can be used to identify this set of Web
services. These algorithms support different levels of
customization. This classification of matching algo-
rithms according to the levels of customization that
they support enrich and generalize our previous work
in (Chakhar, 2013; Chakhar et al., 2014; Gmati et al.,
2014; Gmati et al., 2014).

In the rest of this paper, a Web service S is defined
as a collection of attributes that describe the service.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29589012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Let S.A denotes the set of attributes of service S and
S.Ai denotes each member of this set. Let S.N denotes
the cardinality of this set.

2.1 Trivial Matching

The trivial matching assumes that the user can spec-
ify only the functional specifications of the desired
service. Let SR be the Web service that is requested,
and SA be the Web service that is advertised. A suffi-
cient trivial match exists between SR and SA if for ev-
ery attribute in SR.A there exists an identical attribute
of SA.A and the similarity between the values of the
attributes does not fail. Formally,

∀i∃ j(SR.Ai = SA.A j)∧µ(SR.Ai = SA.A j)≻ Fail
⇒ SuffTrivialMatch(SR,SA) 1≤ i≤ SR.N.

(1)

where: µ(SA
i .A j,SR.A j) (j = 1, · · · ,N) is the similarity

degree between the requested Web service and the ad-
vertised Web service on the jth attribute A j. Accord-
ing to this definition, all the attributes of the requested
service SR should be considered during the matching
process. This is the default case with no support of
customization.

The trivial matching is formalized in Algorithm 1.
This algorithm follows directly from Sentence (1).

Algorithm 1: Trivial Matching
Input : SR, // Requested service.

SA, // Advertised service.
Output: Boolean, // fail/success.
while

(
i≤ SR.N

)
do1

Append SR.Ai to rAttrSet;2
while

(
k ≤ SA.N

)
do3

if
(
SA.Ak = SR.Ai

)
then4

Append SA.Ak to aAttrSet;5

k←− k+1;6

i←− i+1;7

while
(
t ≤ SR.N

)
do8

if (µ(rAttrSet[t],aAttrSet[t]) = Fail) then9
return fail;10

t←− t +1;11

return success;12

The definition of the semantic degrees used in
Sentence (1) and Algorithm 1 (and also in the two
other matching algorithms presented later) is given in
Section 3.

2.2 Partially Parameterized Matching

In this case, the user can specify the list of attributes
to consider during the matching process. In order to
allow this, we use the concept of Attributes List that

serves as a parameter to the matching process. An
Attributes List, L, is a relation consisting of one at-
tribute, L.A that describes the service attributes to be
compared. Let L.Ai denotes the service attribute value
in the ith tuple of the relation. L.N denotes the total
number of tuples in L. We assume that the order of
attributes in L is randomly specified.

Let SR be the service that is requested, SA be the
service that is advertised, and L be an Attributes List.
A sufficient partially parameterized match exists be-
tween SR and SA if for every attribute in L.A there ex-
ists an identical attribute of SR and SA and the similar-
ity between the values of the attributes does not fail.
Formally,

∀i∃ j,k(L.Ai = SR.A j = SA.Ak)∧µ(SR.A j ,SA.Ak)≻ Fail
⇒ SuffPartiallyParamMatch(SR,SA) 1≤ i≤ L.N.

(2)

According to this definition, only the attributes spec-
ified by the user in the Attributes List are considered
during the matching process.

The partially parameterized matching is formal-
ized in Algorithm 2 that follows directly from Sen-
tence (2).

Algorithm 2: Partially Parameterized Matching
Input : SR, // Requested service.

SA, // Advertised service.
L, // Attributes List.

Output: Boolean, // fail/success.
while (i≤ L.N) do1

while
(

j ≤ SR.N
)

do2
if
(
SR.A j = L.Ai

)
then3

Append SR.A j to rAttrSet;4

j←− j+1;5

while
(
k ≤ SA.N

)
do6

if
(
SA.Ak = L.Ai

)
then7

Append SA.Ak to aAttrSet;8

k←− k+1;9

i←− i+1;10

while (t ≤ L.N) do11
if (µ(rAttrSet[t],aAttrSet[t]) = Fail) then12

return fail;13

t←− t +1;14

return success;15

2.3 Fully Parameterized Matching

The fully parameterized matching supports three cus-
tomizations by allowing the user to specify: (i) the list
of attributes to be considered; (ii) the order in which
these attributes are considered; and (iii) a desired sim-
ilarity degree for each attribute. In order to support all
the above-cited customizations, we used the concept
of Criteria Table, introduced by (Doshi et al., 2004).

A Criteria Table, C, is a relation consisting of two
attributes, C.A and C.M. C.A describes the service
attribute to be compared, and C.M gives the least pre-
ferred similarity degree for that attribute. Let C.Ai and
C.Mi denote the service attribute value and the desired
degree in the ith tuple of the relation. C.N denotes the
total number of tuples in C.

Let SR be the service that is requested, SA be the
service that is advertised, and C be a Criteria Table.
A sufficient fully parameterized match exists between
SR and SA if for every attribute in C.A there exists an
identical attribute of SR and SA and the values of the
attributes satisfy the desired similarity degree as spec-
ified in C.M. Formally,

∀i∃ j,k(C.Ai = SR.A j = SA.Ak)∧µ(SR.A j ,SA.Ak)≽C.Mi

⇒ SuffFullyParamMatch(SR,SA) 1≤ i≤C.N.
(3)

According to this definition, only the attributes speci-
fied by the user in the Criteria Table C are considered
during the matching process. The fully parameterized
matching is formalized in Algorithm 3 that follows
directly from Sentence (3).

Algorithm 3: Fully Parameterized Matching
Input : SR, // Requested service.

SA, // Advertised service.
C, // Criteria Table.

Output: Boolean, // fail/success.
while (i≤C.N) do1

while
(

j ≤ SR.N
)

do2
if
(
SR.A j =C.Ai

)
then3

Append SR.A j to rAttrSet;4

j←− j+1;5

while
(
k ≤ SA.N

)
do6

if
(
SA.Ak =C.Ai

)
then7

Append SA.Ak to aAttrSet;8

k←− k+1;9

i←− i+1;10

while (t ≤C.N) do11
if (µ(rAttrSet[t],aAttrSet[t])≺C.Mt) then12

return fail;13

t←− t +1;14

return success;15

The complexity of the matching algorithms are
detailed in (Gmati, 2015).

3 SIMILARITY DEGREE
COMPUTING APPROACH

In this section, we first define the similarity degree
used in the matching algorithms and then discuss how
it is computed.

3.1 Similarity Degree Definition

A semantic match between two entities frequently in-
volves a similarity degree that quantifies the semantic
distance between the two entities participating in the
match. The similarity degree, µ(·, ·), of two service at-
tributes is a mapping that measures the semantic dis-
tance between the conceptual annotations associated
with the service attributes. Mathematically,

µ : A×A→ {Exact, Plug-in, Subsumption, Container,
Part-of, Fail}

where A is the set of all possible attributes. The
definitions of the mapping between two conceptual
annotations are given in (Doshi et al., 2004; Chakhar,
2013; Chakhar et al., 2014).

A preferential total order is established on the
above mentioned similarity maps: Exact ≻ Plug-in
≻ Subsumption ≻ Container ≻ Part-of ≻ Fail; where
a ≻ b means that a is preferred over b.

3.2 Similarity Degree Computing

To compute the similarity degrees, we generalized
and implemented an idea proposed by (Bellur and
Kulkarni, 2007). This idea starts by constructing a bi-
partite graph where the vertices in the left side corre-
spond to the concepts associated with advertised ser-
vices, while those in the right side correspond to the
concepts associated with the requested service. The
edges correspond to the semantic relationships be-
tween concepts. The authors in (Bellur and Kulka-
rni, 2007) assign a weight to each edge and then ap-
ply the Hungarian algorithm (Kuhn, 1955) to iden-
tify the complete matching that minimizes the maxi-
mum weight in the graph. The final returned degree is
the one corresponding to the maximum weight in the
graph.

We generalize this idea as follows. Let first as-
sume that the output of the matching algorithm is a
list mServices of matching Web services. The generic
structure of a row in mServices is as follows:

(SA
i ,µ(S

A
i .A1,SR.A1), · · · ,µ(SA

i .AN ,SR.AN)),

where: SA
i is an advertised Web service, SR is

the requested Web service, N the total number of at-
tributes and µ(SA

i .A j,SR.A j) (j = 1, · · · ,N) is the sim-
ilarity degree between the requested Web service and
the advertised Web service on the jth attribute A j.

Two versions can be distinguished for the defi-
nition of the list mServices, along with the way the
similarity degrees are computed. The first version of
mServices is as follows:

(SA
i ,µmax(SA

i .A1,SR.A1), · · · ,µmax(SA
i .AN ,SR.AN)),

where: SA
i , SR and N are as defined above; and

µmax(SA
i .A j,SR.A j) (j = 1, · · · ,N) is the similarity de-

gree between the requested Web service and the ad-
vertised Web service on the jth attribute A j computed
by selecting the edge with the maximum weight in
the matching graph.

The second version of mServices is as follows:
(SA

i ,µmin(SA
i .A1,SR.A1), · · · ,µmin(SA

i .AN ,SR.AN)),

where SA
i , SR and N are as defined above; and

µmin(SA
i .A j,SR.A j) (j = 1, · · · ,N) is the similarity de-

gree between the requested Web service and the ad-
vertised Web service on the jth attribute A j computed
by selecting the edge with the minimum weight in
the matching graph.

4 SCORING WEB SERVICES

In this section, we propose a technique to compute the
scores of the Web services based on the input data.

4.1 Score Definition

First, we need to assign a numerical weight to ev-
ery similarity degree as follows: Fail: w1, Part-of:
w2, Container: w3, Subsumption: w4, Plug-in: w5
and Exact: w6. These degrees correspond to the pos-
sible values of µ⋄(SA

i .A j,SR.A j) with (j = 1, · · · ,N)
and where SA

i , SR and N are as defined above; and
⋄ ∈ {min,max}. In this paper, we assume that the
weights are computed as follows:

w1 ≥ 0, (4)
wi = (wi−1 ·N)+1, i = 2, · · · ,N; (5)

where N is the number of attributes. This way of
weights computation ensures that a single higher sim-
ilarity degree will be greater than a set of N similarity
degrees of lower weights taken together. Indeed, the
weights values verify the following condition:

wi > w j ·N, ∀i > j. (6)

Then, the initial score of an advertised Web service
SA is computed as followers:

ρ⋄(SA) =
i=N

∑
i=1

wi. (7)

The scores as computed by Equation (7) are not in the
range 0-1. Hence, we need to normalize these scores
by using the following procedure:

ρ′⋄(S
A) =

ρ⋄(SA)−minK ρ⋄(SK)

maxK ρ⋄(SK)−minK ρ⋄(SK)
. (8)

This normalization procedure assigns to each adver-
tised Web service SA the percentage of the extent
of the similarity degrees scale (i.e., maxK ρ⋄(SK)−
minK ρ⋄(SK)). It ensures that the scores cover all the
range [0,1]. In other words, the lowest score will be
equal to 0 and the highest score will be equal to 1. We
note that other normalization procedures can be used
(see (Gmati, 2015) for more details on these proce-
dures).

4.2 Score Computing Algorithm

The computing of the normalized scores is opera-
tionalized by Algorithm 4. This algorithm takes as in-
put a list mServices of Web services each is described
by a set of N similarity degrees where N is the num-
ber of attributes. The data structure mServices used
as input assumed to be defined as:

(SA
i ,µ⋄(S

A
i .A1,SR.A1), · · · ,µ⋄(SA

i .AN ,SR.AN)),

where: SA
i is an advertised Web service, SR is the re-

quested Web service, N the total number of attributes;
⋄ ∈ {min,max}, and µ⋄(SA

i .A j,SR.A j) (j = 1, · · · ,N)
is the similarity degree between the requested Web
service and the advertised Web service on the jth at-
tribute A j computed using one of the of two versions
given in Section 3.2.

Algorithm 4: ComputeNormScores
Input : mServices , // List of Web services.

N, // Number of attributes.
Output: mServices , // List of Web services with normalized scores.
r←−length (mServices);1
t←− 1;2
while (t ≤ r) do3

simDegrees←− the tth row in mServices ;4

s←− ComputeInitialScore(simDegrees,N,w);5
mServices [t,N +2]←− s;6

a←− mServices [1,N +2];7
b←− mServices [1,N +2];8
t←− 1;9
while (t < r) do10

if (a > mServices[t +1,N +2])) then11
a←− mServices [t +1,N +2];12

if (b < mServices[t +1,N +2])) then13
b←− mServices [t +1,N +2];14

t←− 1;15
while (t ≤ r) do16

ns←− (mServices [t,N +2]−a)/(b−a);17
mServices [t,N +2]←− ns;18

return mServices ;19

At the output, Algorithm 4 provides an updated
version of mServices by adding to it the normalized
scores of the Web services:
(SA

i ,µ⋄(S
A
i .A1,SR.A1), · · · ,µ⋄(SA

i .AN ,SR.AN),ρ′⋄(SA
i)),

where ρ′⋄(SA
i) is the normalized score of Web service

SA
i .

The function ComputeInitialScore in Algorithm 4
permits to compute the initial scores of Web services
using Equation (7). Function ComputeInitialScore
takes a row simDegrees of similarity degrees for a
given Web service and computes the initial score of
this Web service based on Equation (7). The list
simDegrees is assumed to be defined as follows:

(SA
i ,µ⋄(S

A
i .A1,SR.A1), · · · ,µ⋄(SA

i .AN ,SR.AN)),

where SA
i , SR, N and µ⋄(SA

i .A j,SR.A j) (j = 1, · · · ,N)
are as defined previously. It is easy to see that the list
simDegrees is a row from the data structure mSer-
vices introduced earlier.

The complexity of the score computing algorithm
is detailed in (Gmati, 2015).

5 TREE-BASED RANKING OF
WEB SERVICES

In this section, we propose a new algorithm for Web
services ranking.

5.1 Principle

The basic idea of the proposed ranking algorithm is
to use the two types of scores introduced in Section
3.2 to first construct a tree T and then apply a pre-
order tree traversal on T to identify the final and best
ranking. The construction of the tree requires thus to
use the score computing algorithm twice, once using
the minimum weight value and once using a the maxi-
mum weight value (see Section 3.2). In what follows,
we assume that the input of the ranking algorithm is
a list of matching Web services mServScores defined
as follows:

(SA
i ,ρ′min(S

A
i),ρ′max(S

A
i)),

where: SA
i is an advertised Web service; and ρ′min(S

A
i)

and ρ′max(S
A
i) are the normalized scores of SA

i that are
computed based on the minimum weight value and
the maximum weight value, respectively.

The tree-based ranking algorithm given later in
Section 5.3 is composed of two main phases. The ob-
jective of the first phase is to construct the tree T . The
objective of the second phase is to identify the final
ranking using a pre-order tree traversal on T .

5.2 Tree Construction

The tree construction process starts by defining a root
node containing the initial list of Web services and

then uses different node splitting functions to progres-
sively split the nodes of each level into a collection of
new nodes. The tree construction process is designed
such that each of the leaf nodes will contain a sin-
gle Web service. Let first introduce the node splitting
functions.

5.2.1 Node Splitting Functions

The first node splitting function is formalized in Al-
gorithm 5. This function receives in entry one node
with a list of Web services and generates a ranked list
of nodes each with one or more Web services. The
function SortScoresMax and SortScoresMin in Algo-
rithm 5 permit to sort Web services based either on
the maximum edge value or the minimum edge value,
respectively. Function Split permit to split the Web
services in L0 into a set of sublists, each with a subset
of services having the same score. The instructions in
lines 8-11 in Algorithm 5 permit to create a node for
each sublist in Sublists. The algorithm outputs a list
T of nodes ordered, according to the scores of Web
services in each node, from the left to the right.

Algorithm 5: Node splitting
Input : Node, // A node.

NodeSplittingType , // Node splitting type.
Output: L, // List of ranked nodes.
L← /0;1
L0← Node.mServScores;2
if (NodeSplittingType= ′Max′) then3

L0← SortScoresMax (L0);4

else5
L0← SortScoresMin (L0);6

SubLists ← Split (L0);7
for (f or each elem in SubLists) do8

create node n;9
n.add(elem);10
L.add(n);11

return L;12

The second node splitting function is formalized
in Algorithm 6. This functions permits to split ran-
domly a node into a set of nodes, each with one Web
service.

5.2.2 Tree Construction Algorithm

The tree construction process contains four steps:
1. Construction of Level 0. In this initialization

step, we create a root node r containing the list of Web
services to rank. At this level, the tree T contains only
the root node.

2. Construction of Level 1. Here, we split the
root node into a set of nodes using the node splitting

function (Algorithm 5) with the desired sorting type
(i.e. based either on the maximum edge value or the
minimum edge value). At the end of this step, a new
level is added to the tree T . The nodes of this level
are ordered from left to right. Each node of this level
will contain one or several Web services. The Web
services of a given node will have the same score.

3. Construction of Level 2. Here, we split the
nodes of the previous level that have more than one
Web services using the node splitting function (Algo-
rithm 5) with a different sorting type than the previous
step. At the end of this step, a new level is added to
the tree T . The nodes of this level are ordered from
left to right. Each node of this level will contain one
or several Web services. The Web services of a given
node will have the same score.

4. Construction of Level 3. Here, we apply the
random splitting function given in Algorithm 6 to ran-
domly split the nodes of the previous level that has
more than one Web service. At the end of this step, a
new level is added to the tree T . All the nodes of this
level contain only one Web service.

Algorithm 6: Random Node Splitting
Input : Node, // A node.
Output: L, // List of ranked nodes.
L← /0;1
L0← Node.mServScores;2
i← |L|;3
Z← L0;4
while i > 0 do5

select randomly a service n from Z;6
create node n ;7
n.add(elem);8
L.add(n);9
i← i−1;10
Z← Z \{n};11

return L;12

Figure 1 provides an example of a tree constructed
based on this idea.

Figure 1: Tree structure.

We may distinguish two version for the tree con-
struction process. The first version, which is shown in

Algorithm 7, uses the node splitting based on the Max
to generate the nodes of the second level and then the
node splitting based on the Min to generate the nodes
of the third level. The second version, which is not
give in this paper, uses an opposite order.

Algorithm 7: Tree Construction (Max-Min)
Input : mServScores, // Initial list of services with their scores.
Output: T , // Tree.
create node Node;1
Node.add(mServScores);2
add Node as root of the tree T ;3
FirstLevelNodes ← NodeSplitting(Node,′Max′);4
for each node n1 in FirstLevelNodes do5

add n1 as a child of the root;6
if n1 is not a leaf then7

SecondLevelNodes ← NodeSplitting(Node,′Min′);8
for each node n2 in SecondLevelNodes do9

add n2 as a child of n1;10
if n2 is not a leaf then11

ThirdLevelNodes ←12
RandomNodeSplitting(n2);
for each node n3 in ThirdLevelNodes do13

add n3 as a child of n2;14

return T ;15

5.3 Tree-Based Ranking Algorithm

We propose here a new algorithm for implementing
the solution proposed in Section 5.1. The idea of the
algorithm is to construct first a tree T using one of the
algorithms discussed in the previous section and then
scanning through this tree in order to identify the final
ranking. The identification of the best and final rank-
ing needs to apply a tree traversal (also known as tree
search) on the tree T . The tree traversal refers to the
process of visiting each node in a tree data structure,
exactly once, in a systematic way. Different types of
traversals are possible: pre-order, in-order and post-
order. They differ by the order in which the nodes are
visited. In this paper, we will use the pre-order type.

The idea discussed in the previous paragraph is
implemented by Algorithm 8. The main input for this
algorithm is the initial list mServScores of Web ser-
vices with their scores. This list is assumed to have
the same structure as indicated in Section 5.1. The
output of Algorithm 8 is a list FinalRanking of ranked
Web services.

The functions ComputeNormScoresMax and
ComputeNormScoresMin are not given in this paper.
They are similar to function ComputeNormScores
introduced previously in Algorithm 4. The scores
in function ComputeNormScoresMax are computed

by selecting the edge with the maximum weight
in the matching graph while the scores in function
ComputeNormScoresMin are computed by selecting
the edge with the minimum weight in the matching
graph.

Algorithm 8: Tree-Based Ranking
Input : mServScores, // List of matching services with their scores.

N, // Number of attributes.
SplittingOrder , // Nodes splitting order.

Output: FinalRanking , // Ranked list of Web services.
T ← /0;1
mServScores← ComputeNormScoresMax(mServScores,N);2
mServScores← ComputeNormScoresMin(mServScores,N);3
if (SplittingOrder= ′MaxMin′) then4

T ← ConstructTreeMaxMin(mServScores);5

else6
T ← ConstructTreeMinMax(mServScores);7

FinalRanking ← TreeTraversal (T);8
return FinalRanking ;9

Algorithm 8 can be organized into two phases.
The first phase concerns the construction of the tree
T . This phase is implemented by the instructions in
lines 1-7. According to the type of nodes splitting or-
der (Max-Min or Min-Max), Algorithm 8 uses either
function ConstructTreeMaxMin (for Max-Min order)
or function ConstructTreeMinMax (for Min-Max or-
der) to construe the tree.

The second phase of Algorithm 8 concerns the
identification of the best and final ranking by apply-
ing a pre-order tree traversal on the tree T . The pre-
order tree traversal contains three main steps: (1) ex-
amine the root element (or current element); (2) tra-
verse the left subtree by recursively calling the pre-
order function; and (3) traverse the right subtree by
recursively calling the pre-order function. The pre-
order tree traversal is implemented by Algorithm 9.

Algorithm 9: Tree Traversal
Input : T , // Tree.
Output: L, //Final ranking.
L← /0;1
CurrNode ← T.R;2
if CurrNode contains a single Web service then3

Let currService be the single Web service in CurrNode ;4
L.Append(currService);5

for each child f of CurrNode do6
Traverse (f ,CurrNode);7

return L;8

Algorithm 9 takes as input a tree T and generates
the final ranking list L. Algorithm 9 scans the tree T
and picks out all leaf nodes of T ordered from the left
to the right.

The complexity of the tree-based ranking algo-
rithms are detailed in (Gmati, 2015).

6 PERFORMANCE EVALUATION

In what follows, we first compare the tree-based al-
gorithm presented in this paper to the score-based
(Gmati et al., 2014) and rule-based (Gmati et al.,
2015) ranking algorithms and then discuss the effect
of the edge weight order on the final results.

The SME2 (Klusch et al., 2010; Küster and
König-Ries, 2010), which is an open source tool for
testing different semantic matchmakers in a consistent
way, is used for this comparative study. The SME2
uses OWLS-TC collections to provide the matchmak-
ers with Web service descriptions, and to compare
their answers to the relevance sets of the various
queries.

The experimentations have been conducted on a
Dell Inspiron 15 3735 Laptop with an Intel Core I5
processor (1.6 GHz) and 2 GB of memory. The
test collection used is OWLS-TC4, which consists of
1083 Web service offers described in OWL-S 1.1 and
42 queries.

Figures 2.a and 2.b show that the tree-based rank-
ing algorithm has better average precision and recall
precision than score-based ranking algorithm. Figure
2.c shows that the tree-based ranking algorithm has a
slightly better average precision than rule-based rank-
ing algorithm. Figure 2.d shows that rule-based rank-
ing algorithm is slightly faster than tree-based ranking
algorithm.

The tree-based ranking algorithm is designed to
work with either the Min-Max or Max-Min versions
of the tree construction algorithm. As discussed in
Section 5.2.2, the main difference between these ver-
sions is the order in which the edge weight values are
used. To study the effect of tree construction versions
on the final results, we conduced a series of experi-
ments using the OWL-TC test collection. We evalu-
ated the two versions in respect to the Average Preci-
sion and the Recall/Precision metrics.

The result of the comparison is shown in Fig-
ures 2.e and 2.f. According to these figures, we con-
clude that Min-Max version outperforms the Max-
Min. However, this final constatation should not be
taken as a rule since it might depend on the consid-
ered test collection.

(a) (b) (c)

(d) (e) (f)
Figure 2: Performance analysis.

7 RELATED WORK

We may distinguish three basic Web services rank-
ing approaches, along with the nature of information
used for the ranking process: (i) ranking approaches
based only on the Web service description informa-
tion; (ii) ranking approaches based on external infor-
mation; and (iii) ranking approaches based on the user
preferences.

The first ranking approach relies only on the
information available in the Web service descrip-
tion, which concerns generally the service capability
(IOPE attributes), the service quality (QoS attributes)
and/or the service property (additional information).
This type of ranking is the most used, since all the
needed data is directly available in the Web service
description. Among the methods based on this ap-
proach, we cite (Manoharan et al., 2011) where the
authors combine the QoS and the fuzzy logic and pro-
pose a ranking matrix. However, this approach is cen-
tered only on the QoS and discards the other Web
service attributes. We also mention the work of (Sk-
outas et al., 2010) where the authors propose a rank-
ing method that computes a dominance score between
services. The calculation of these scores requires a
pairwise comparison that increases the time complex-
ity of the ranking algorithm.

The second ranking approach uses both the Web
service description and other external information
(see, e.g., (Kuck and Gnasa, 2007)(Kokash et al.,
2007)(Maamar et al., 2005)(Manikrao and Prabhakar,
2005)(Segev and Toch, 2011)). For instance, the au-

thors in (Kuck and Gnasa, 2007) take into account
additional information concerning time, place and lo-
cation in order to rank Web services. In (Kokash
et al., 2007), the authors rank Web services on the
basis of the user past behavior. The authors in (Maa-
mar et al., 2005) rely their ranking on the customer
and providers situations. However, these additional
constraints make the system more complex. The au-
thors in (Segev and Toch, 2011) extract the context
of Web services and employ it as an additional infor-
mation during the ranking. The general problem with
this type of approaches is that the use of external in-
formation can only be performed in some situations
where the data is available, which is not always the
case in practice.

The third ranking approach is based on the user
preference. In (Beck and Freitag, 2006), for instance,
the authors use some constraints specified by the user.
A priority is then assigned to each constraint or group
of constraints. The algorithm proposed by (Beck and
Freitag, 2006) uses then a tree structure to perform the
matching and ranking procedure.

8 CONCLUSION

In this paper, we proposed a new algorithm for
Web services ranking. This algorithm relies on a tree
data structure that is constructed based on two types
of Web services scores. The final ranking is obtained
by applying a pre-order traversal on the tree and picks

out all leaf nodes ordered from the left to the right.
The tree-based algorithm proposed in this paper is
compared two other ones: score-based algorithm and
rule-based algorithm. The performance evaluation of
the three algorithms shows that the tree-based algo-
rithm outranks the score-based algorithm in all cases
and most often better than the rule-based algorithm.

REFERENCES

Beck, M. and Freitag, B. (2006). Semantic matchmaking
using ranked instance retrieval. In Proceedings of the
1st International Workshop on Semantic Matchmak-
ing and Resource Retrieval, Seoul, South Korea.

Bellur, U. and Kulkarni, R. (2007). Improved matchmaking
algorithm for semantic Web services based on bipar-
tite graph matching. In IEEE International Confer-
ence on Web Services, pages 86–93, Salt Lake City,
Utah, USA.

Chakhar, S. (2013). Parameterized attribute and service
levels semantic matchmaking framework for service
composition. In Fifth International Conference on Ad-
vances in Databases, Knowledge, and Data Applica-
tions (DBKDA 2013), pages 159–165, Seville, Spain.

Chakhar, S., Ishizaka, A., and Labib, A. (2014). Qos-
aware parameterized semantic matchmaking frame-
work for Web service composition. In Monfort, V.
and Krempels, K.-H., editors, WEBIST 2014 - Pro-
ceedings of the 10th International Conference on
Web Information Systems and Technologies, Volume
1, Barcelona, Spain, 3-5 April, 2014, pages 50–61,
Barcelona, Spain. SciTePress.

Chakhar, S., Ishizaka, A., and Labib, A. (2015). Seman-
tic matching-based selection and qos-aware classifi-
cation of web services. In Selected Papers from The
10th International Conference on Web Information
Systems and Technologies (WEBIST 2014), Lecture
Notes in Business Information Processing. Springer-
Verlag, Berlin, Heidelberg, Germany. forthcoming.

Doshi, P., Goodwin, R., Akkiraju, R., and Roeder,
S. (2004). Parameterized semantic matchmaking
for workflow composition. IBM Research Report
RC23133, IBM Research Division.

Fu, P., Liu, S., Yang, H., and Gu, L. (2009). Matching algo-
rithm of Web services based on semantic distance. In
International Workshop on Information Security and
Application (IWISA 2009), pages 465–468, Qingdao,
China.

Gmati, F. E. (2015). Parameterized semantic matchmaking
and ranking framework for web service composition.
Master thesis, Higher Business School of Tunis (Uni-
versity of Manouba) and Institute of Advanced Busi-
ness Studies of Carthage (University of Carthage),
Tunisia.

Gmati, F. E., Yacoubi-Ayadi, N., Bahri, A., Chakhar, S., and
Ishizaka, A. (2015). PMRF: Parameterized matching-

ranking framework. Studies in Computational Intelli-
gence. Springer. forthcoming.

Gmati, F. E., Yacoubi-Ayadi, N., and Chakhar, S. (2014).
Parameterized algorithms for matching and ranking
Web services. In Proceedings of the On the Move to
Meaningful Internet Systems: OTM 2014 Conferences
2014, volume 8841 of Lecture Notes in Computer Sci-
ence, pages 784–791. Springer.

Klusch, M., Dudev, M., Misutka, J., Kapahnke, P., and
Vasileski, M. (2010). SME2 Version 2.2. User Man-
ual. The German Research Center for Artificial Intel-
ligence (DFKI), Germany.

Kokash, N., Birukou, A., and DAndrea, V. (2007). Web
service discovery based on past user experience. In
Proceedings of the 10th International Conference on
Business Information Systems, pages 95–107.

Kuck, J. and Gnasa, M. (2007). Context-sensitive service
discovery meets information retrieval. In Fifth Annual
IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom’07),
pages 601–605.

Kuhn, H. (1955). The Hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2:83–
97.

Küster, U. and König-Ries, B. (2010). Measures for bench-
marking semantic Web service matchmaking correct-
ness. In Proceedings of the 7th International Con-
ference on The Semantic Web: Research and Appli-
cations - Volume Part II, ESWC’10, pages 45–59,
Berlin, Heidelberg. Springer-Verlag.

Maamar, Z., Mostefaoui, S., and Mahmoud, Q. (2005).
Context for personalized Web services. In In Proceed-
ings of the 38th Annual Hawaii International Con-
ference on System Sciences (HICSS’05), pages 166b–
166b.

Manikrao, U. and Prabhakar, T. (2005). Dynamic selec-
tion of Web services with recommendation system. In
Proceedings of the International Conference on Next
Generation Web Services Practices (NWeSP 2005),
pages 117–121.

Manoharan, R., Archana, A., and Cowla, S. (2011). Hybrid
Web services ranking algorithm. International Jour-
nal of Computer Science Issues, 8(2):83–97.

Paolucci, M., Kawamura, T., Payne, T., and Sycara, K.
(2002). Semantic matching of web services capabili-
ties. In Proceedings of the First International Seman-
tic Web Conference on The Semantic Web, ISWC ’02,
pages 333–347, London, UK, UK. Springer-Verlag.

Rong, W., Liu, K., and Liang, L. (2009). Personalized Web
service ranking via user group combining association
rule. In IEEE International Conference on Web Ser-
vices (ICWS 20090, pages 445–452.

Segev, A. and Toch, E. (2011). Context based matching
and ranking of Web services for composition. IEEE
Transactions on Services Computing, 3(2):210–222.

Skoutas, D., Sacharidis, D., Simitsis, A., and Sellis, T.
(2010). Ranking and clustering Web services using
multicriteria dominance relationships. IEEE Transac-
tions on Services Computing, 3(3):163–177.

