
Grid Service Discovery with Rough Sets
Maozhen Li, Member, IEEE, Bin Yu, Omer Rana, and Zidong Wang, Senior Member, IEEE

Abstract—The computational grid is rapidly evolving into a service-oriented computing infrastructure that facilitates resource sharing

and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilizing grid facilities. This

paper presents ROSSE, a Rough sets-based search engine for grid service discovery. Building on the Rough sets theory, ROSSE is

novel in its capability to deal with the uncertainty of properties when matching services. In this way, ROSSE can discover the services

that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct

nonfunctional properties related to the quality of service (QoS), ROSSE introduces a QoS model to further filter matched services with

their QoS values to maximize user satisfaction in service discovery. ROSSE is evaluated from the aspects of accuracy and efficiency in

discovery of computing services.

Index Terms—Grid computing, Semantic Web, grid service discovery, QoS modeling, Rough sets.

Ç

1 INTRODUCTION

WITH the development of Web service technologies [1],
the computational grid [2] is rapidly evolving into a

service-oriented computing infrastructure that facilitates
resource sharing and large-scale problem solving over the
Internet [3]. The Open Grid Services Architecture (OGSA)
[4], promoted by the Open Grid Forum (OGF, http://
www.ogf.org) as a standard service-oriented architecture
(SOA) for grid applications, has facilitated the evolution. It
is expected that the Web Service Resource Framework
(WSRF) [5] will be acting as an enabling technology to drive
this evolution further. The promise of SOA is the enabling
of loose coupling, robustness, scalability, extensibility, and
interoperability for large-scale grid systems.

As shown in Fig. 1, various resources on the Internet
including processors, disk storage, network links, instru-
mentation and visualization devices, domain applications,
and software libraries can be exposed as OGSA/WSRF-
based grid services, which are usually registered with a
service registry. A service bus building on service-oriented
grid middleware technologies such as Globus [6] enables
the instantiation of grid services. A grid environment may
host a large number of services. Therefore, service dis-
covery becomes an issue of vital importance in utilizing
grid facilities.

Grid services are implemented as software components,
the interfaces of which are used to describe their functional

and nonfunctional properties (attributes). Advertising
services in a grid environment means that service-asso-
ciated properties are registered with a service registry.
Service discovery involves a matching process in which the
properties of a service query are matched with that of a
service advertisement.

In a grid environment, service publishers may advertise
services independently using their predefined properties to
describe services. Therefore, uncertainty of service proper-
ties exists when matching services. An uncertain property is
defined as a service property that is explicitly used by one
advertised service but does not appear in another service
advertisement that belongs to the same service category.
This can be further illustrated using Table 1. For example,
property P1, which is explicitly used by service S1 in its
advertisement, does not appear in the advertisement of
service S2. Similarly, property P3, which is explicitly used
by service S2, does not appear in the advertisement of
service S1. When services S1 and S2 are matched with a
service query using properties P1, P2, P3, and P4, property
P1 becomes an uncertain property in matching service S2,
and property P3 becomes an uncertain property in match-
ing service S1. Consequently, both S1 and S2 may not be
discovered because of the existence of uncertainty of
properties even though the two services are relevant to
the query.

It is worth noting that properties used in service
advertisements may have dependencies, e.g., both P1 and
P3 may be dependent properties of P2 when describing
services S1 and S2, respectively. Both S1 and S2 can be
discovered if P1 and P3 (which are uncertain properties in
terms of the user query) are dynamically identified and
reduced in the matching process. To increase the accuracy
of service discovery, a search engine should be able to deal
with uncertainty of properties when matching services.

In this paper, we present ROSSE [21], [22], [23], [24]: a
search engine for grid service discovery. Building on Rough
sets theory [25], ROSSE is novel in its capability to deal with
uncertainty of service properties when matching services.
This is achieved by dynamically identifying and reducing
dependent properties that may be uncertain properties

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008 851

. M. Li is with the School of Engineering and Design, Brunel University,
Uxbridge, UB8 3PH, UK. E-mail: Maozhen.Li@brunel.ac.uk.

. B. Yu is with Level E Limited, ETTC, The King’s Buildings, Mayfield
Road, Edinburgh, EH9 3JL, UK. E-mail: Bin.Yu@levelelimited.com.

. O. Rana is with the School of Computer Science, Cardiff University,
Queen’s Buildings, 5 The Parade, Roath, Cardiff, CF24 3 AA, UK.
E-mail: O.F.Rana@cs.cardiff.ac.uk.

. Z. Wang is with the School of Information Systems, Computing, and
Mathematics, Brunel University, Uxbridge, UB8 3PH, UK.
E-mail: Zidong.Wang@brunel.ac.uk.

Manuscript received 10 Apr. 2007; revised 20 Sept. 2007; accepted 6 Dec.
2007; published online 19 Dec. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-04-0151.
Digital Object Identifier no. 10.1109/TKDE.2007.190744.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

when matching a service query. In this way, ROSSE

increases the accuracy in service discovery. In addition,

functionally matched services may have distinct nonfunc-

tional properties related to the quality of service (QoS). To

maximize user satisfaction in service discovery, ROSSE

introduces a QoS model to further filter matched services

with their QoS values. Finally, ROSSE is evaluated from the

aspects of accuracy and efficiency in discovery of comput-

ing services.
The remainder of the paper is organized as follows:

Section 2 presents the design of ROSSE with a focus on

dependent property reduction (DPR). Section 3 introduces a

QoS model to filter matched services with their QoS values.

Section 4 briefly describes the implementation of ROSSE

and gives a case study to illustrate the application of ROSSE

for discovery of computing services. Section 5 evaluates the

accuracy and efficiency of ROSSE in service discovery.

Section 6 discusses some related work, and Section 7

concludes the paper.

2 THE DESIGN OF ROSSE

ROSSE considers input and output properties individually

when matching services. For the simplicity of expression,

input and output properties used in a service query are

generally referred to as service properties. The same goes

for service advertisements. Fig. 2 shows ROSSE compo-

nents. The interactions between the components follow two

processes—service publication and service discovery.
Service publication. Service publishers advertise their

services to ROSSE through a Web user interface (step 1).

Advertised services with WSDL interfaces or OWL-S [13]

interfaces are then loaded into the ROSSE Service Reposi-

tory, in which the elements of services such as the names

and properties of services are registered with ROSSE

(step 2). When advertising services, service publishers

may also publish service ontologies that can be defined in

OWL [14]. These OWL ontologies are then parsed by an

OWL parser (step 3) and loaded into the ROSSE Ontology

Repository (step 4). The ontology repository is used by an

inference engine to infer the semantic relationships of
properties when matching services.

Service discovery. A user posts a service query to ROSSE
via its Web user interface (step 5). The query includes a
service category of interest and expected service properties.
The query is then passed to the Irrelevant Property
Identification component (step 6), which accesses the ROSSE
Service Repository (step 7) to identify and mark the
properties of advertised services that are irrelevant to the
properties used in the service query based on the ontologies
defined in the ROSSE Ontology Repository (step 8). The
query is then passed to the DPR component (step 9), which
accesses the ROSSE Service Repository to identify and mark
dependent properties (step 10). Upon completion, the DPR
component invokes the Service Similarity Computing (SSC)
component (step 11), which accesses ROSSE Service Repo-
sitory (step 12) to compute the match degrees of relevant
properties of advertised services to the service query. An
irrelevant property is given a match degree of zero. The SSC
component further computes the similarity degrees of
advertised services to the service query using the match
degrees of their individual properties. It should be noted
that dependent properties that may be uncertain properties
are not involved in the similarity computing process. As a
result, the similarity degrees of advertised services will not
be affected by these uncertain properties. In this way, ROSSE
can discover the services that are most relevant to the service
query. Up to now, advertised services are matched with
their functional properties. As functionally matched services
may have distinct nonfunctional properties related to QoS,
the SSC component invokes the QoS Modeling component
(step 13), which in turn filters functionally matched services

852 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 1. A layered structure of service-oriented grid systems.

TABLE 1
Two Service Advertisements with Uncertain Service Properties

Fig. 2. ROSSE components.

with QoS values (step 14). Finally, a list of discovered
services that are ranked with their functionally matched
degrees is presented to a user (step 16) via the Web user
interface of ROSSE (step 15). Each of the discovered services
has a QoS value associated with it.

In the following sections, we describe in depth the
processes involved in service discovery in ROSSE. First, we
introduce Rough sets for service discovery.

2.1 Rough Sets for Service Discovery

The Rough sets theory can be considered as a mathematical
technique to deal with uncertainty in knowledge discovery
[35]. A fundamental principle of a Rough sets-based
learning system is to discover redundancies and depen-
dencies between the given features of a problem to be
classified. The Rough sets theory approaches a given
concept using lower and upper approximations.

Let

. � be a domain ontology,

. U be a set of N advertised services whose properties
are defined in �, U ¼ fs1; s2; . . . ; sNg, N � 1,

. P be a set of K properties that describe the N
advertised services of the set U , P ¼ fp1; p2; . . . ; pKg,
K � 1,

. PA be a set of M properties that are relevant to the
properties used in a service query Q in terms of �,
PA ¼ fpA1; pA2; . . . ; pAMg, PA � P , M � 1,

. X be a set of advertised services that are relevant to
the service query Q in terms of �, X � U ,

. X be a lower approximation of the set X,

. X be an upper approximation of the set X, and

. ½x�PA be a set of advertised services that are
exclusively defined by the properties of the set PA,
x 2 U .

According to the Rough sets theory, we have

X ¼ fx 2 U : ½x�PA � Xg; ð1Þ

X ¼ fx 2 U : ½x�PA \X 6¼ ;g: ð2Þ

For a service property p 2 PA, we have the following:

. 8x 2 X, x definitely has property p.

. 8x 2 X, x possibly has property p.

. 8x 2 U �X, x absolutely does not have property p.

For a service query, there could be a large number of
matched services. Using the size of the set X, a user can
dynamically determine the size of the set X that would
maximize user satisfaction in service discovery. The
selection of services based on lower and upper approxima-
tions will be further discussed in Section 2.5.

2.2 Irrelevant Property Identification

The properties used in a service advertisement may have
semantic relationships with the properties used in a service
query based on the definition of a domain ontology.

Let

. pQ be a property used in a service query and

. pA be a property used in a service advertisement.

We define the following relationships between pQ and pA
based on the work proposed by Paolucci et al. [15]:

. Exact match. pQ and pA are equivalent, or pQ is a
subclass of pA.

. Plug-in match. pA subsumes pQ.

. Subsume match. pQ subsumes pA.

. Nomatch. There is no subsumption between pQ
and pA.

If pA has a nomatch relationship with each pQ used in a
service query, then pA will be marked as an irrelevant
property when matching the service query.

As introduced in Section 1, uncertainty of properties may
exist in advertised services when matching a service query.
An uncertain property is a service property that is explicitly
used in one advertised service but does not appear in
another service advertisement that belongs to the same
service category. As advertised services are structured as
service records in ROSSE using a database, we define an
uncertain relationship between pQ and pA as follows:

. Uncertain. There is no subsumption between pQ and
pA, and pA has an empty value, which is NULL.

2.3 Dependent Property Reduction

The properties of advertised services may have dependen-
cies by which ROSSE deals with uncertainty of properties.
Dependent properties are indecisive (redundant) properties
that can be reduced when matching services. A reduct is a
set of decisive properties that are sufficient enough to
describe those advertised services that are relevant to a
service query. Based on the Rough sets theory, ROSSE
identifies indecisive properties in the following way:

Let

. �, X, P , and PA be defined as in Section 2.1,

. PD
A be a set of LD decisive properties when

matching a service query Q in terms of �,

PD
A ¼ fpDA1; p

D
A2; . . . ; pDALDg, P

D
A � PA, LD � 1,

. PIND
A be a set of LIND indecisive (dependent)

properties when matching the service query Q in
terms of �,

PIND
A ¼ fpINDA1 ; pINDA2 ; . . . ; pINDALIND

g;
P IND
A � PA; LIND � 1;

. INDðÞ be an indiscernibility relation,

. f be a mapping function from a property to an
advertised service,

. SðQ; sÞ be the similarity degree of an advertised

service s to the service query Q in terms of �, s 2 X
(SðQ; sÞ can be computed using (6) to be presented in

Section 2.4),
. Y be a set of objective services that are relevant to the

service query Q, Y � X (we define Y ¼ f8ðx; yÞ 2
Y ; SðQ; xÞ¼SðQ; yÞ :8s2ðX � Y Þ; SðQ; sÞ<SðQ; xÞg),

. ½Y �PA be a set of objective services that are defined by
the properties of the set PA,

. ½Y �PD
A

be a set of objective services that are defined by

the decisive properties of the set PD
A , and

LI ET AL.: GRID SERVICE DISCOVERY WITH ROUGH SETS 853

. ½Y �ðPA�PIND
A
Þ be a set of objective services that are

defined by the properties of the set PA � PIND
A .

Then, we have

INDðPIND
A Þ ¼ fðx; yÞ 2 X :

8pINDAi 2 PIND
A ; fðx; pINDAi Þ ¼ fðy; pINDAi Þg;

ð3Þ

½Y �PA ¼ ½Y �PD
A
¼ ½Y �ðPA�PIND

A
Þ: ð4Þ

Expression (3) shows that indecisive properties are
dispensable in differentiating advertised services, and (4)
further indicates that the set of objective services can always
be identified regardless of the existence of indecisive
properties. Algorithm 1 shows the discovery of decisive
properties in which lines 1-7 are used to identify individual
indecisive properties, and lines 8-15 are used to check all
possible combinations of these individual indecisive prop-
erties with an aim to compute a maximal set of indecisive
properties. It should be noted that some uncertain proper-
ties of advertised services may be indecisive properties. As
a result, these uncertain properties will be reduced when
computing the similarity degrees of services. In other
words, for a service query, some uncertain properties may
not affect the similarity degree of an advertised service.
Accordingly, ROSSE increases the accuracy of service
discovery.

2.4 Computing Similarity Degrees

As described in Section 2.2, a match between pQ and pA can

be exact, plug-in, subsume, uncertain, or nomatch. For each

match, a numerical degree should be assigned so that the

relationship between pQ and pA can be quantified. Tsetsos

et al. [37] use fuzzy set theory to evaluate service

matchmaking. The relationships between the properties of

advertised services and the properties of service queries are

mapped to fuzzy linguistic variables, e.g., exact is mapped

to very relevant, and plug-in is mapped to relevant. In this

work, linear trapezoidal membership functions are as-

sumed for capturing the vagueness of the various linguistic

terms. The preliminary results show the effectiveness of the

fuzzy linguistic approach in quantifying match degrees for

service matchmaking. However, one major concern with the

approach is that the mapping from a semantic relationship

to a fuzzy variable does not consider the semantic distances

of the properties involved. For example, two plug-in

matches with different semantic distances are mapped to

the same fuzzy variable that is relevant. To increase the

accuracy in assigning matching degrees between pQ and pA,

semantic distances should be taken into account.
Let

. domðpQ; pAÞ be the degree of a match between pQ
and pA and

. kPQ; PAk be the semantic distance between pQ and pA
in terms of a domain ontology �.

Following the work proposed in [36] for assigning match
degrees, we further define domðpQ; pAÞ as follows:

domðPQ; PAÞ ¼

1 exact match;
1
2þ 1

e
ðkPQ;PAk�1Þ plugin match; kPQ; PAk � 2;
1

2�eðkPQ;PAk�1Þ subsume match; kPQ; PAk�1;

0:5 uncertain match;
0 nomatch:

8>>>><
>>>>:

ð5Þ

According to (5), for a plug-in match between pQ and pA,
domðpQ; pAÞ 2 ð0:5; 1Þ. For a subsume match between pQ and
pA, domðpQ; pAÞ 2 ð0; 0:5�.

Let

. PD
A and SðQ; sÞ be defined as in Section 2.3,

. PQ be a set of M properties used in a service query
Q, PQ ¼ fpQ1; pQ2; . . . ; pQMg, M � 1, and

. domðpQi; pAjÞ be a match degree between PQi and PAj
in terms of a domain ontology �, pQi 2 PQ, 1 � i �M,
pAj 2 PD

A , 1 � j � LD.

As every decisive property of an advertised service s has
a maximal match degree when matching all the properties
used in a service query, SðQ; sÞ can be computed using the
following:

SðQ; sÞ ¼
XLD
j¼1

XM
i¼1

maxðdomðpQi; pAjÞÞ
,
LD: ð6Þ

Therefore, each advertised service has a similarity degree
to a service query.

2.5 Lower and Upper Approximations of Matched
Services

For a service query, the number of matched services could
be large. To facilitate users in choosing the services that
would maximally satisfy their queries, the set of discovered
services need to be dynamically determined. We apply the
concept of lower and upper approximations of Rough sets
for this purpose.

Let

. U , X, X, and X be defined as in Section 2.1,

. SðQ; sÞ be defined as in Section 2.3,

. jXj be the cardinality of the set X,

. jXj be the cardinality of the set X,

. � be an approximation degree, � ¼ jXjjXj , 0 < � � 1,
jXj 6¼ 0,

854 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

. X1 be a set of advertised services, 8s 2 X1, SðQ; sÞ ¼
100 percent,

. jX1j be the cardinality of the set X1,

. X2 be a set of advertised services, 8s 2 X2, 0 <
SðQ; sÞ < 100 percent, and

. jX2j be the cardinality of the set X2.

Then, according to (1) and (2), we have

X ¼ X1 jX1j > 0;
X � X2 : jXj ¼ jX2j � � jX1j ¼ 0;

�
ð7Þ

X ¼ X1 jX1j > 0;
X2 jX1j ¼ 0:

�
ð8Þ

If the set X1 exists, then the set X1 will be presented to a

user as both the upper and the lower approximation sets of

matched services for the service query.
If the set X1 does not exist, then a user can apply an

approximation degree � to dynamically determine the

lower approximation set of matched services. In this way,

advertised services with low similarity degrees may not be

presented to the user. The set X2 will be used as the upper

approximation set of matched services for the service query.

3 QOS MODELING

As described in Section 2, ROSSE uses the functional

properties of services to match services. However, services

may have distinct nonfunctional properties related to QoS.

To maximize user satisfaction in a service query, function-

ally matched services should be further filtered with their

QoS properties. Zeng et al. [26] propose a set of QoS

properties for Web service composition. In this section, we

revisit these QoS properties in terms of grid computing

environments. We classify QoS properties into two clas-

ses—system-related properties and non-system-related

properties.

3.1 System-Related QoS Properties

The performance of a service is largely affected by the

capacity of a computing environment that hosts the service.

We discuss three QoS properties in this category, i.e.,

reliability, execution efficiency, and availability.

3.1.1 Reliability

The reliability qreliabilityðsÞ of a service s represents the ability

of the service to perform its required functions under stated

conditions for a specified period of time [40]. In ROSSE, the

qreliabilityðsÞ of service s is measured with its successful

execution rate, which can be computed using the statistical

approach proposed in [26].
Let

. S be a set of services that are functionally matched to
a service query, S ¼ fs1; s2; . . . ; sng, n � 1,

. Ei be the successful execution rate of service si ðsi 2
SÞ for a given period of time, Ei ¼ nexeðsiÞ

NinvokeðsiÞ , where
nexeðsiÞ is the number of times that service si has
been successfully completed within the maximum
expected time frame as specified in the service

description, and NinvokeðsiÞ is the total number of
invocations of service si,

. Emax be the maximal successful execution rate
among the list of

fE1; E2; . . . ; Eng; Emax ¼ maxðE1; E2; . . . ; EnÞ;

and
. Emin be the minimal successful execution rate among

the list of

fE1; E2; . . . ; Eng; Emin ¼ minðE1; E2; . . . ; EnÞ:

Then, we define

qreliabilityðsiÞ ¼
Ei�Emin

Emax�Emin
Emax 6¼ Emin;

1 Emax ¼ Emin:

�
ð9Þ

It should be noted that running a service reliably

demands a certain amount of CPU processing power and

memory space. The reliability of a service is largely affected

by the capacity of the grid that hosts the service. A grid is a

dynamic computing environment in nature. For example,

computing nodes may join or leave the environment

dynamically. Services can be dynamically deployed to a

certain node in the environment upon request. The work-

load of a node may change frequently. Considering the

dynamic nature of grid environments, we further tune the

computed qreliabilityðsiÞ of service si in such a way that

qreliabilityðsiÞ ¼ K � qreliabilityðsiÞ. K is a variable that can be

computed using K ¼ nnodeðsiÞ
Nnode

, where nnodeðsiÞ is the number

of computing nodes in a grid environment that meet both

the CPU and memory requirements of service si at the time

when the service is requested, and Nnode is the total number

of computing nodes in the grid at that time. The resource

information on the usage of CPU and memory of comput-

ing nodes in a grid can be collected using a monitor system

such as Ganglia.1

3.1.2 Execution Efficiency

The execution efficiency qefficiencyðsÞ of a service s refers to
how fast the service can be executed. The qefficiencyðsÞ of
service s is measured in terms of its execution duration,
which could be computed using the approach proposed in
[26]. The execution duration of a service is the sum of the
processing time and the transmission time. It is worth
noting that computing the processing time of a service in a
dynamic grid environment is a challenging issue itself [41],
[42]. The work presented in [26] does not provide an
approach to compute the processing time of a service. In
ROSSE, we measure the execution duration of a service and
compute its execution efficiency in the following way:

Let

. S be a set of services that are functionally matched to
a service query, S ¼ fs1; s2; . . . ; sng, n � 1,

. Ti be a measured execution duration of service
si ðsi 2 SÞ running on a dedicated computing node

LI ET AL.: GRID SERVICE DISCOVERY WITH ROUGH SETS 855

1. http://ganglia.sourceforge.net.

(each service runs exclusively on the node during its
execution),

. Tmax be the maximal execution duration among the
list of fT1; T2; . . . ; Tng, Tmax ¼ maxðT1; T2; . . . ; TnÞ,
and

. Tmin be the minimal execution duration among the
list of fT1; T2; . . . ; Tng, Tmin ¼ minðT1; T2; . . . ; TnÞ.

Then, we define

qefficiencyðsiÞ ¼
Tmax�Ti
Tmax�Tmin

Tmax 6¼ Tmin;
1 Tmax ¼ Tmin:

�
ð10Þ

3.1.3 Availability

The availability qavailabilityðsÞ of a service s is defined as the

probability that service s can be accessed at a particular

time [26]. In ROSSE, qavailabilityðsÞ is computed using

qavailabilityðsÞ ¼ navailðsÞ
NinvokeðsÞ . For a given period of time, navailðsÞ

is the number of successful invocations of service s within

the maximum expected time frame as specified in service

description, and NinvokeðsÞ is the total number of invocations

of service s.

3.2 Non-System-Related QoS Properties

We classify non-system-related QoS properties into cost-

effectiveness and reputation.

3.2.1 Cost-Effectiveness

The cost-effectiveness qcost effectivenessðsÞ of a service s refers

to the effectiveness of cost in using the service. In ROSSE,

cost-effectiveness is computed in the following way:
Let

. S be a set of services that are functionally matched to
a service query, S ¼ fs1; s2; . . . ; sng, n � 1,

. Ci be the cost of using service si, si 2 S, 1 � i � n,

. Cmax be the maximal cost among the list of
fC1; C2; . . . ; Cng, Cmax ¼ maxðC1; C2; . . . ; CnÞ, and

. Cmin be the minimal cost among the list of
fC1; C2; . . . ; Cng, Cmin ¼ minðC1; C2; . . . ; CnÞ.

Then, we define

qcos t effectivenessðsiÞ ¼
Cmax�Ci
Cmax�Cmin

Cmax 6¼ Cmin;
1 Cmax ¼ Cmin:

�
ð11Þ

3.2.2 Reputation

The reputation qreputationðsÞ of a service s is a ranking degree

of a user’s experience in using the service. In ROSSE,

qreputationðsÞ is computed using the following:

qreputationðsÞ ¼
Pk

j¼1 RDjðsÞ
k

;

where RDjðsÞ is a ranking degree of user j on using service

s, 0 � RDjðsÞ � 1, and k is the total number of users

involved in the evaluation process.

3.3 Overall QoS Values of Functionally Matched
Services

Based on the computed values of the aforementioned QoS

properties, the overall QoS value QðsÞ of service s can be

computed using the following:

QðsÞ ¼w1qavailability þ w2qreliability

þ w3qefficiency þ w4qcos t effectiveness þ w5qreputation;

ð12Þ

where w1, w2, w3, w4, and w5 are the weights of
availability, reliability, execution efficiency, cost-effective-
ness, and reputation of service s, respectively, wi 2 ½0; 1�,P5

i¼1 wi ¼ 1. The weights are assigned based on user
preferences.

4 ROSSE CASE STUDY

In this section, we briefly describe the implementation of
ROSSE. Then, we give a case study to illustrate the
application of ROSSE to discover computing services.

4.1 ROSSE Implementation

ROSSE is implemented as a Web system using Java and
Web technologies. ROSSE has a Web user interface, as
shown in Fig. 3, for service publication and discovery.
ROSSE provides users with graphical user interfaces for
publishing services with WSDL interfaces. ROSSE uses the
OWL-S API to directly register services with OWL-S
interfaces. The ROSSE Service Repository consists of a
UDDI registry for WSDL services and a service repository
for OWL-S services. jUDDI and mySQL are used to build
the UDDI registry. The OWL-S service repository is also
structured as a database that records service elements such
as service names and service properties.

To facilitate the reduction of dependent properties,
service records are structured in such a way that each
column has only one property associated with it. Ontologies
defined in OWL documents are loaded into ROSSE using
the Protégé OWL API, which in turn invokes RACER [27] to
infer a semantic relationship between two properties
defined in an OWL ontology. However, we implemented
a light-weighted reasoner in ROSSE to replace RACER. The
main reason for this is that RACER has a high overhead
when parsing multiple OWL documents. Each time RACER
parses an OWL document, it needs an initialization process
that is time consuming. It should be pointed out that ROSSE
services that belong to the same service category may be
defined with distinct ontologies. For example, two ontolo-
gies used by ROSSE may have the same set of service
properties but with different topologies. ROSSE manages
multiple ontologies in its ontology repository. When
requested, ROSSE only loads the ontology repository once,
and it maintains multiple ontologies in memory. The
relationships of the properties defined in these OWL
ontologies are kept in a database. The ROSSE reasoner
accesses these database records to make inferences between
multiple ontologies. We compare the overhead of RACER
with that of the ROSSE reasoner in Section 5.

4.2 Discovery of Computing Services in ROSSE

Fig. 4 shows the ontologies used in this case study defining
the classifications of grid entities, security, virtual organiza-
tion (VO) management, computing resource properties,
CPU properties, and hard-disk properties, respectively.

When matching properties related to VO management,
two ontologies (strictly two ontology topologies) are used to
classify VOs, which are represented respectively by c1-c4

856 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

and g1-g3. Computing services are registered with the

ROSSE Service Repository. In the following parts, we

describe how services are matched and discovered using

the following query:

4.2.1 Building a Decision Table

A service decision table is used to identify dependent

properties among services. As the number of services

registered with ROSSE is large, the decision table is

constructed by sampling registered services. For a specific

query, ROSSE randomly selects a certain number of service

records. An advertised service record is selected if one of its

properties has a valid relationship with a property used in a

service query. The relationship can be exact, plug-in, or

subsume, as described in Section 2.2.
Table 2a shows a segment of the decision table with

13 advertised service records. As can be seen in Table 2a,

the properties of advertised services that are relevant to the

service query are d3, b4, e4, f3, f5, d8, d6, f2, c4/g3, e1, and b3.

If a property in a service record is marked with 1, this

means that the property is explicitly used by the service in

its advertisement. For example, the service S1 has properties

of d3, b4, e4, f3, e1, and b3 in its advertisement. A property

marked with X in a service record means that the service

does not explicitly have the corresponding property in its

advertisement. It should be noted that a property marked

with X in a service record does not necessarily mean that

this property is not relevant to the service. Such a property

could be dependent on other properties used by the service.

ROSSE considers properties marked with X as uncertain

properties when matching services.

4.2.2 Reducing Dependent Properties

Once a service decision table is constructed, the next step is

to identify dependent properties. Using Algorithm 1,

presented in Section 2.3, we identify that properties b4, e4,

and f3 are dependent (indecisive) properties that can be

reduced from the decision table when computing the

similarity degrees of services. Table 2b shows the depen-

dent properties identified, and Table 2c shows the segment

of the decision table without dependent properties.

4.2.3 Computing Similarity Degrees

Decisive properties are used for computing the similarity

degrees of advertised services to a service query. A match

degree can be computed between each decisive property

used in a service advertisement and a property used in the

service query using the ontologies defined in Fig. 4 and (5),

LI ET AL.: GRID SERVICE DISCOVERY WITH ROUGH SETS 857

Fig. 3. The Web user interface of ROSSE.

Fig. 4. Ontologies used in searching for computing services.

TABLE 2
(a) A Segment of the Decision Table; (b) Identified Dependent

Properties; (c) the Decision Table without Dependent
Properties; (d) Match Degrees to the Service Query

presented in Section 2.4. Table 2d shows match degrees of
the decisive properties used in the 13 service records. It
should be noted that both c1 and g1 refers to the same
property vomanage, but they are defined with different
ontology topologies. The match degree of the vomanage
property used in the query to the sharedresource property
used in advertised services is computed in such a way that a
mean of two match degrees using the two ontology
definitions (i.e., 50 percent and 18 percent) is computed,
which is 34 percent.

It is worth noting that for an uncertain property that is
marked with X in Table 2d, a match degree of 50 percent
is given using (5), presented in Section 2.4. The similarity
degree of an advertised service to a service query can be
computed using (6), presented in Section 2.4. For the
service query, for example, service S1 has a similarity
degree of 67 percent, and service S13 has a similarity
degree of 64 percent.

5 ROSSE EVALUATION

To evaluate ROSSE, we conducted a set of experiments. The
evaluation was focused on the accuracy and efficiency of
ROSSE in service discovery. In this section, we present the
evaluation results.

5.1 Accuracy of ROSSE in Service Discovery

ROSSE can discover WSDL/UDDI and OWL-S services. We
compare ROSSE with UDDI keyword matching and the
OWL-S matching [15], respectively, from the aspect of
accuracy in service discovery. First, we show how ROSSE
increases the similarity degrees of relevant services to a
service query.

5.1.1 Increased Similarity Degrees of ROSSE

Table 3 shows five services (S1-S5) that are relevant to a
service query. Each service has five properties (P1-P5), of
which P1 and P4 are dependent properties. Except for
service S1, all the other four services S2-S5 have uncertain
properties in their service records. The match degrees of
exact, plug-in, subsume, and uncertain are assigned 100 percent,
87 percent, 50 percent, and 50 percent, respectively.

We observe that UDDI keyword matching, OWL-S
matching, and ROSSE produce different similarity degrees
when matching the five services. In the case of service S1,
UDDI has a match degree of 40 percent, OWL-S has
85 percent, and ROSSE has 96 percent. UDDI produces the

lowest similarity degree because it only supports an exact
match. ROSSE performs best because of its reduction of
dependent properties (i.e., P1 and P4). OWL-S matching
cannot deal with uncertain properties. As a result, OWL-S
matching produces a similarity degree of zero when
matching services S2-S5 with uncertain properties. In the
case of service S5, UDDI produces a match degree of zero
because there is no exact match in the service advertisement.
ROSSE shows its effectiveness in dealing with uncertain
properties when matching services S2-S5 with a match
degree of 96 percent, 79 percent, 91 percent, and 62 percent,
respectively.

5.1.2 Measuring Precision and Recall

Precision and recall are standard measures that have been
used in information retrieval for measuring the accuracy of
a search method or a search engine [38], [39]. To evaluate
the precision and recall of ROSSE in service discovery, we
selected a set of 30 services, of which 10 services were
relevant to a service query. Each service had five properties,
of which two were dependent properties. We performed
two groups of tests, of which each group involved 10 tests.
For each test, we produced a list in which the 30 services
were listed in a random order. In the tests of group 1, we
enforced two constraints on the selected services. First, no
service had an uncertain property. Second, at least one
property of a service was assigned an exact match. This
ensured that all the relevant services were returned by
UDDI matching, OWL-S matching, and ROSSE, respec-
tively. In the tests of group 2, we removed the two
constraints. We allowed a few services in each of the 10 lists
to have properties that did not have an exact match. We also
assigned some services with uncertain properties. Upon the
completion of matching, the services in each list were
returned with their match degrees in a descending order. It
should be noted that services with a match degree of zero
were not returned.

Let Rel be the set of relevant services, Ret be the set of
returned services, Retrel be the set of returned relevant
services, RC represent recall, and PREC represent preci-
sion. We define

RC ¼
jRe trelj
jRe lj ; PREC ¼

jRe trelj
jRe tj :

Figs. 5 and 6 show the averaged results of the 10 tests in
group 1 and group 2, respectively.

We observe that ROSSE achieves the best performance in
the tests of group 1, whereas UDDI has the worst
performance because of its keyword matching. For exam-
ple, when the recall is 30 percent, the precisions of ROSSE,
OWL-S, and UDDI are 95 percent, 84 percent, and
65 percent, respectively. This is mainly because of the
capability of ROSSE in the reduction of dependent proper-
ties and its use of semantic inference techniques, as outlined
in Sections 2.2 and 2.3, respectively.

We observe that in most cases, ROSSE shows the best
performance in the tests of group 2. However, OWL-S
performs better than ROSSE in two cases when recall is
10 percent and 30 percent, respectively. The reason is that
OWL-S does not deal with uncertain properties. As a result,

858 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

TABLE 3
Some Results of ROSSE in Matching Services

some irrelevant services are not returned because of the
existence of uncertain properties. This leads to a high
precision for some instances. We also observe that in the
tests of group 2, UDDI performs better than OWL-S in some
cases. The reason is that some relevant services that have
uncertain properties are not matched by OWL-S. However,
these relevant services are matched by UDDI because of the
existence of an exact match in their properties.

It should be noted that both OWL-S and UDDI do not
reach a recall of 100 percent in the tests of group 2 because
of their limitations in service matching. For example, OWL-
S only matches six of the 10 relevant services, and UDDI
matches eight relevant services.

We also compared the performance of ROSSE in the tests
of group 1 and group 2, respectively. The results are plotted
in Fig. 7 showing that ROSSE performs better in group 1
than in group 2. This can be explained by the existence of
uncertain properties of services in the tests of group 2 in
which ROSSE loses some useful information on relevant
services when matching the query. It is worth noting that
ROSSE matches all the relevant services in the tests of both
group 1 and group 2, and it performs reasonably well in
terms of precision and recall.

5.2 Efficiency of ROSSE in Service Discovery

ROSSE was evaluated on a Pentium IV 2.6-GHz machine
with 512 Mbytes of RAM running Red Hat Fedora Linux 3.
We compared the efficiency of ROSSE with that of UDDI

and the OWL-S algorithm [15], respectively. RACER was
used by the OWL-S algorithm to reason the relationships of
properties. As described in Section 4.1, RACER has a time-
intensive initialization process for parsing every OWL
document. We implemented a light-weighted reasoner in
ROSSE to overcome the high overhead incurred by RACER
when parsing multiple OWL documents. We compared the
overhead of the ROSSE reasoner with that of RACER using
two ontologies defined in two OWL documents, and the
results are shown in Fig. 8.

We observe that the difference in overhead between
RACER and the ROSSE reasoner gets larger with an
increase in the number of queries. This is because for each
query received, RACER performs two initialization pro-
cesses, which consumes roughly 12 seconds. It takes the
ROSSE reasoner about 3.4 seconds to load the two
ontologies. However, once loaded by the ROSSE reasoner,
the two ontologies are maintained in memory for access.
The overhead to parse a query is just a few hundred
microseconds. As a result, the overhead of the ROSSE
reasoner does not change much with an increase in the
number of queries.

To evaluate the efficiency of ROSSE in service discovery,
we registered 10,000 computing services with ROSSE. Each
service had five properties, of which two were dependent
properties. We posted a service query with two properties.
Therefore, 10 ontology queries were parsed by the ROSSE
reasoner and RACER, respectively, when matching the
query. Service properties were defined in one ontology. We

LI ET AL.: GRID SERVICE DISCOVERY WITH ROUGH SETS 859

Fig. 6. The performance of ROSSE, OWL-S, and UDDI in the tests of

group 2.

Fig. 5. The performance of ROSSE, OWL-S, and UDDI in the tests of

group 1.

Fig. 7. The performance of ROSSE in group 1 and group 2.

Fig. 8. The overhead of the ROSSE reasoner in the access of two

ontologies.

performed two groups of tests. In group 1, we compared the
overhead of ROSSE with that of UDDI and OWL-S,
respectively, in matching services. In group 2, we evaluated
the efficiency of ROSSE when accessing service records.
Figs. 9 and 10 show the evaluation results of the two
groups, respectively.

In Fig. 9, we observe that UDDI has the least overhead
when matching services. This is because UDDI only
supports keyword matching. It does not incur a reasoning
process, which is usually time consuming. The overhead of
ROSSE in matching services is mainly caused by the process
of reducing dependent properties. The reduction process
gets slower with an increase in the number of services. We
observe that the overhead of OWL-S matching does not
change much with an increase in the number of services.
This is because the overhead of OWL-S matching is mainly
caused by the initialization process of RACER. Other
overhead involved in OWL-S matching is small, e.g., the
overhead of RACER in parsing an ontology query is just a
few hundred microseconds. As a result, the number of
services involved does not make much change to the overall
overhead of OWL-S matching.

In Fig. 10, we observe that ROSSE performs best when
accessing service records due to its reduction of dependent
properties. The OWL-S matching has a similar performance
to UDDI in this process.

6 RELATED WORK

As the computational grid is evolving toward a service-
oriented computing infrastructure, service discovery has
been a research focus in the grid community. Grid
information services such as Globus MDS [31] and
R-GMA [32] facilitate discovery of resources and services
in a grid environment. However, they are restricted to
keyword-based queries. UDDI is an industry initiative for
discovery of Web services. UDDI has been utilized by the
grid community for discovery of grid services [7], [8], [11].
Similar to Globus MDS, UDDI only supports keyword
matching when searching for services. Various UDDI
extensions have been proposed to enhance service dis-
covery [9], [10], [11]. Among them, UDDI-M [11] is flexible
in attaching metadata defined in RDF triples to various
entities associated with a service. Building on UDDI, the
Grimoires service registry [33] supports multiple service

description models, and it takes into account robustness,
efficiency, and security issues.

Semantic Web technologies [12] can be used to further
enhance service discovery. As shown in Fig. 1, services can
be annotated with metadata whose relationships are
typically defined with a domain ontology. One key technol-
ogy to facilitate service discovery with semantic annotations
is OWL-S, an OWL-based ontology for encoding properties
of Web services. OWL-S ontology defines a service profile
for encoding a service description, a service model for
specifying the behavior of a service, and a service grounding
for invoking the service. Typically, a service discovery
process involves a matching between the profile of a service
advertisement and the profile of a service request using
domain ontologies described in OWL. The service profile
describes not only the functional properties of a service such
as its inputs, outputs, preconditions, and effects (IOPEs) but
also nonfunctional features such as name, category, and
QoS-related aspects of a service. Srinivasan et al. [34]
enhanced UDDI for service discovery by embedding OWL-
S in a UDDI registry. Paolucci et al. [15] present a
matchmaking algorithm for discovery of services with
OWL-S interfaces. Building on this algorithm, a number of
extensions are available. For example, Jaeger et al. [16]
introduce “contravariance” in matching inputs and outputs
between service advertisements and service requests using
OWL-S, Li and Horrocks [17] introduce an “intersection”
relationship between a service advertisement and a service
request, and Majithia et al. [18] introduce reputation metrics
in matching services.

Besides OWL-S, another prominent effort for semantic
annotations of services is WSMO [19], which is built on four
key concepts—ontologies, standard Web services with
WSDL interfaces, goals, and mediators. WSMO stresses
the role of a mediator in order to support interoperation
between Web services. A mechanism is also proposed for
discovery of WSMO services [20].

Although the aforementioned approaches and algo-
rithms are available to facilitate the discovery of grid
services, these efforts have never considered uncertainty of
properties when matching services. As a result, they may
potentially produce a low accuracy when matching ser-
vices. Building on the Rough sets theory, ROSSE is capable
of reducing uncertain properties. In this way, ROSSE
increases the accuracy of service discovery. ROSSE repre-
sents an initial but significant advance toward solving

860 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 9. The overhead of ROSSE in matching services.
Fig. 10. Efficiency of ROSSE in accessing service records.

uncertainty of properties when matching services for high
accuracy in service discovery.

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented ROSSE, a search engine for
discovery of grid services. ROSSE builds on the Rough sets
theory to dynamically reduce uncertain properties when
matching services. In this way, ROSSE increases the
accuracy of service discovery. The evaluation results have
shown that ROSSE significantly improves the precision and
recall compared with UDDI keyword matching and OWL-S
matching, respectively. We have also introduced a QoS
model to filter functionally matched services with their
QoS-related nonfunctional performance. To maximize user
satisfaction in service discovery, ROSSE dynamically
determines the set of services that will be presented to
users based on the lower and upper approximations of
relevant services. We expect to carry out the following work
to improve ROSSE in the future:

. Efficiency. It has been shown that finding a minimal
reduct in Rough sets is an NP-hard problem when
the number of properties gets large [28]. Heuristic
methods need to be investigated to speed up the
process in service property reduction.

. Scalability. The number of services that are registered
with ROSSE could be large. Scalability is another
issue that needs to be addressed. UDDI version 3
provides supports for multiple registries, but the
specification does not specify how these registries
should be structured to enhance scalability in service
registration. Distributed Hash Table (DHT)-based
Peer-to-Peer (P2P) systems such as Chord [29] and
Pastry [30] have shown their efficiency and scal-
ability in content distribution and lookup. We expect
that ROSSE’s scalability in service discovery can be
improved with DHT-structured P2P systems.

. Deployment. Services, once discovered by ROSSE and
selected by the user, should be dynamically deployed
and invoked [43]. Such deployment could be made
part of an existing workflow engine such as Triana
[47], which could utilize such a discovery technique
like ROSSE as part of the enactment process.

. Ontology alignment [44]. Services may be advertised
with properties that follow distinct ontologies. To
further increase the accuracy of service discovery,
ROSSE needs to be enhanced with the existing
efforts on ontology alignment such as [45] and [46].

REFERENCES

[1] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, “Unraveling the Web Services: An Introduction to
SOAP, WSDL, and UDDI,” IEEE Internet Computing, vol. 6, no. 2,
pp. 86-93, 2002.

[2] I. Foster and C. Kesselman, The Grid, Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1998.

[3] M.P. Atkinson, D. De Roure, A.N. Dunlop, G. Fox, P. Henderson,
A.J.G. Hey, N.W. Paton, S. Newhouse, S. Parastatidis, A.E.
Trefethen, P. Watson, and J. Webber, “Web Service Grids: An
Evolutionary Approach,” Concurrency—Practice and Experience,
vol. 17, no. 2-4, pp. 377-389, 2005.

[4] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke, “Grid Services
for Distributed System Integration,” Computer, vol. 35, no. 6,
pp. 37-46, 2002.

[5] K. Czajkowski, D.F. Ferguson, I. Foster, J. Frey, S. Graham, I.
Sedukhin, D. Snelling, S. Tuecke, and W. Vambenepe, “The WS-
Resource Framework,” http://www.globus.org/wsrf/specs/ws-
wsrf.pdf, Mar. 2004.

[6] B. Sotomayor and L. Childers, Globus Toolkit 4: Programming Java
Services. Morgan Kaufmann, 2005.

[7] S. Banerjee, S. Basu, S. Garg, S. Garg, S.J. Lee, P. Mullan, and P.
Sharma, “Scalable Grid Service Discovery Based on UDDI,” Proc.
Third Int’l Workshop Middleware for Grid Computing (MGC ’05),
pp. 1-6, Dec. 2005.

[8] B. Sinclair, A. Goscinski, and R. Dew, “Enhancing UDDI for Grid
Service Discovery by Using Dynamic Parameters,” Proc. Int’l Conf.
Computational Science and Its Applications (ICCSA ’05), pp. 49-59,
May 2005.

[9] A. ShaikhAli, O.F. Rana, R.J. Al-Ali, and D.W. Walker, “UDDIe:
An Extended Registry for Web Service,” Proc. Symp. Applications
and the Internet Workshops (SAINT ’03), pp. 85-89, Jan. 2003.

[10] A. Powles and S. Krishnaswamy, “Extending UDDI with
Recommendations: An Association Analysis Approach,” Proc.
Joint Workshop Web Services and Model-Driven Enterprise Information
Services (WSMDEIS ’05), pp. 45-54, May 2005.

[11] S. Miles, J. Papay, V. Dialani, M. Luck, K. Decker, T. Payne, and L.
Moreau, “Personalised Grid Service Discovery,” IEE Proc. Soft-
ware, special issue on performance eng., vol. 150, no. 4, pp. 252-
256, 2003.

[12] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific Am., vol. 284, no. 4, pp. 34-43, 2001.

[13] D.L. Martin, M. Paolucci, S.A. McIlraith, M.H. Burstein, D.V.
McDermott, D.L. McGuinness, B. Parsia, T.R. Payne, M. Sabou, M.
Solanki, N. Srinivasan, and K.P. Sycara, “Bringing Semantics to
Web Services: The OWL-S Approach,” Proc. First Int’l Workshop
Semantic Web Services and Web Process Composition (SWSWPC ’04),
pp. 26-42, July 2004.

[14] D.L. McGuinness and F. van Harmelen, OWL Web Ontology
Language Overview, World Wide Web Consortium (W3C) recom-
mendation, http://www.w3.org/TR/owl-features, Feb. 2004.

[15] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic
Matching of Web Service Capabilities,” Proc. First Int’l Semantic
Web Conf. (ISWC ’02), pp. 333-347, June 2002.

[16] M.C. Jaeger, G. Rojec-Goldmann, G. Mühl, C. Liebetruth, and K.
Geihs, “Ranked Matching for Service Descriptions Using OWL-S,”
Proc. Comm. in Distributed Systems (KiVS ’05), pp. 91-102, Feb. 2005.

[17] L. Li and I. Horrocks, “A Software Framework for Matchmaking
Based on Semantic Web Technology,” Int’l J. Electronic Commerce,
vol. 8, no. 4, pp. 39-60, 2004.

[18] S. Majithia, A.S. Ali, O.F. Rana, and D.W. Walker, “Reputation-
Based Semantic Service Discovery,” Proc. 13th IEEE Int’l Workshops
Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE ’04), pp. 297-302, 2004.

[19] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Polleres, C. Feier, C. Bussler, and D. Fensel, “Web Service
Modeling Ontology,” Applied Ontology, vol. 1, no. 1, pp. 77-106,
2005.

[20] U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, and D. Fensel,
“WSMO Discovery,” Working Draft D5.1v0.1, WSMO, http://
www.wsmo.org/2004/d5/d5.1/v0.1/20041112/, 2004.

[21] M. Li and M.A. Baker, The Grid: Core Technologies. John Wiley &
Sons, 2005.

[22] M. Li, P. van Santen, D.W. Walker, O.F. Rana, and M.A. Baker,
“SGrid: A Service-Oriented Model for the Semantic Grid,” Future
Generation Computer Systems, vol. 20, no. 1, pp. 7-18, 2004.

[23] M. Li, B. Yu, C. Huang, and Y.H. Song, “Service Matchmaking
with Rough Sets,” Proc. Sixth IEEE Int’l Symp. Cluster Computing
and the Grid (CCGrid ’06), pp. 23-30, May 2006.

[24] B. Yu, W. Guo, M. Li, Y.H. Song, P. Hobson, and M. Qi, “Service
Matchmaking and Discovery with Rough Sets,” Proc. Second Int’l
Conf. Semantics, Knowledge and Grid (SKG ’06), p. 80, Nov. 2006.

[25] Z. Pawlak, “Rough Sets,” Int’l J. Computer and Information Science,
vol. 11, no. 5, pp. 341-356, 1982.

[26] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “QoS-Aware Middleware for Web Services
Composition,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311-
327, May 2004.

[27] V. Haarslev and R. Möller, “Description of the RACER System
and Its Applications,” Proc. Int’l Workshop Description Logics (DL
’01), Aug. 2001.

LI ET AL.: GRID SERVICE DISCOVERY WITH ROUGH SETS 861

[28] A. Skowron and C. Rauszer, “The Discernibility Matrices and
Functions in Information Systems,” Decision Support by Experi-
ence—Application of the Rough Sets Theory, R. Slowinski, ed. Kluwer
Academic Publishers, pp. 331-362, 1992.

[29] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F.
Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications,” IEEE Trans. Networks,
vol. 11, no. 1, pp. 17-32, 2003.

[30] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
18th IFIP/ACM Int’l Conf. Distributed Systems Platforms (Middleware
’01), pp. 329-350, Nov. 2001.

[31] J.M. Schopf, L. Pearlman, N. Miller, C. Kesselman, I. Foster, M.
D’Arcy, and A. Chervenak, “Monitoring the Grid with the Globus
Toolkit MDS4,” J. Physics: Conf. Series, vol. 46, pp. 521-525, 2006.

[32] A.W. Cooke et al., “The Relational Grid Monitoring Architecture:
Mediating Information about the Grid,” J. Grid Computing, vol. 2,
no. 4, pp. 323-339, 2004.

[33] W. Fang, S. Miles, and L. Moreau, “Performance Analysis of a
Semantics-Enabled Service Registry,” Concurrency and Computa-
tion: Practice and Experience, vol. 20, no. 3, pp. 207-223, 2008.

[34] N. Srinivasan, M. Paolucci, and K.P. Sycara, “An Efficient
Algorithm for OWL-S Based Semantic Search in UDDI,” Proc.
First Int’l Workshop Semantic Web Services and Web Process
Composition (SWSWPC ’04), pp. 96-110, July 2004.

[35] N. Zhong and A. Skowron, “A Rough Set Based Knowledge
Discovery Process,” Int’l J. Applied Math. and Computer Science,
vol. 11, no. 3, pp. 603-619, 2001.

[36] C. Caceres, A. Fernandez, S. Ossowski, and M. Vasirani, “Agent-
Based Semantic Service Discovery for Healthcare: An Organiza-
tional Approach,” IEEE Intelligent Systems, vol. 21, no. 6, pp. 11-20,
2006.

[37] V. Tsetsos, C. Anagnostopoulos, and S. Hadjiefthymiades, “On the
Evaluation of Semantic Web Service Matchmaking Systems,” Proc.
Fourth IEEE European Conf. Web Services (ECOWS ’06), pp. 255-264,
Dec. 2006.

[38] D.A. Buell and D.H. Kraft, “Performance Measurement in a Fuzzy
Retrieval Environment,” Proc. ACM SIGIR ’81, pp. 56-62, 1981.

[39] C. van Rijsbergen, Information Retrieval. Butterworths, 1979.
[40] K. Lee, J. Jeon, W. Lee, S. Jeong, and S. Park, QoS for Web Services:

Requirements and Possible Approaches, World Wide Web Consor-
tium (W3C) Working Group Note 25, 2003.

[41] W. Smith, I. Foster, and V. Taylor, “Predicting Application Run
Times Using Historical Information,” Proc. Fourth Workshop Job
Scheduling Strategies for Parallel Processing, pp. 122-142, 1998.

[42] L. Gong, X. Sun, and E.F. Watson, “Performance Modeling and
Prediction of Nondedicated Network Computing,” IEEE Trans.
Computers, vol. 51, no. 9, pp. 1041-1055, Sept. 2002.

[43] L. Qi, H. Jin, I.T. Foster, and J. Gawor, “HAND: Highly Available
Dynamic Deployment Infrastructure for Globus Toolkit 4,” Proc.
15th Euromicro Int’l Conf. Parallel, Distributed and Network-Based
Processing (PDP ’07), pp. 155-162, 2007.

[44] N.F. Noy, “Semantic Integration: A Survey of Ontology-Based
Approaches,” ACM SIGMOD Record, vol. 33, no. 4, pp. 65-70, 2004.

[45] B. Kryza, R. Slota, M. Majewska, J. Pieczykolan, and J. Kitowski,
“Grid Organizational Memory—Provision of a High-Level Grid
Abstraction Layer Supported by Ontology Alignment,” Future
Generation Computer Systems, vol. 23, no. 3, pp. 348-358, 2007.

[46] R. Pan, Z. Ding, Y. Yu, and Y. Peng, “A Bayesian Network
Approach to Ontology Mapping,” Proc. Int’l Semantic Web Conf.
(ISWC ’05), pp. 563-577, 2005.

[47] I. Taylor, M. Shields, I. Wang, and A. Harrison, “Visual Grid
Workflow in Triana,” J. Grid Computing, vol. 3, nos. 3-4, pp. 153-
169, 2005.

Maozhen Li received the PhD degree from the
Institute of Software, Chinese Academy of
Sciences, Beijing, in 1997. He is a lecturer in
the School of Engineering and Design, Brunel
University. His research interests are in the
areas of grid computing, distributed problem-
solving environments for large-scale simula-
tions, intelligent systems, service-oriented com-
puting, and semantic Web. He has more than
50 publications in these areas. He coauthored

The Grid: Core Technologies, a research-level textbook on grid
computing published by John Wiley & Sons in 2005. He is on the
editorial boards of the Encyclopedia of Grid Computing Technologies
and Applications and the International Journal of Grid and High
Performance Computing. He has been serving as a TPC member for
various conferences in the area of grid computing, e.g., IEEE CCGrid
2005, CCGrid 2006, CCGrid 2007, CCGrid 2008, IEEE SKG 2005, SKG
2006, SKG 2007, and IEEE CSE 2008. He is a member of the IEEE.

Bin Yu received the PhD degree from the
School of Engineering and Design, Brunel
University, in April 2007. He is currently a
system analyst at Levele Ltd., Edinburgh. His
research interests are in the areas of service-
oriented computing, grid computing and ap-
plications, service discovery, and composition
optimization.

Omer Rana received the PhD degree in neural
computing and parallel architectures from the
Imperial College of Science, Technology, and
Medicine, London University. He is a professor
of performance engineering in the School of
Computer Science and the deputy director of the
Welsh eScience Center at Cardiff University,
United Kingdom. His research interests include
high-performance distributed computing, multia-
gent systems, and data mining.

Zidong Wang received the PhD degree in
electrical and computer engineering from the
Nanjing University of Science and Technology,
Nanjing, China, in 1994. He is a professor of
dynamical systems and computing at Brunel
University. His research interests include dyna-
mical systems, signal processing, bioinfor-
matics, and control theory and applications. He
has published more than 80 papers in refereed
international journals. He is currently serving as

an associate editor for the IEEE Transactions on Automatic Control, the
IEEE Transactions on Signal Processing, the IEEE Transactions on
Systems, Man, and Cybernetics—Part C, the IEEE Transactions on
Control Systems Technology, and Circuits, Systems & Signal Proces-
sing, an action editor for Neural Networks, an editorial board member for
the International Journal of Systems Science, Neurocomputing, the
International Journal of Computer Mathematics, and the International
Journal of General Systems, and an associate editor on the conference
editorial board for the IEEE Control Systems Society. He is a senior
member of the IEEE, a fellow of the Royal Statistical Society, a member
of the program committee for many international conferences, and a
very active reviewer for many international journals. He was nominated
as an appreciated reviewer for IEEE Transactions on Signal Processing
in 2006 and an outstanding reviewer for IEEE Transactions on
Automatic Control in 2004 and for the journal Automatica in 2000.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

862 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

