772 research outputs found

    A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance

    Get PDF
    Fuzzy logic system promises an efficient way for obstacle avoidance. However, it is difficult to maintain the correctness, consistency, and completeness of a fuzzy rule base constructed and tuned by a human expert. Reinforcement learning method is capable of learning the fuzzy rules automatically. However, it incurs heavy learning phase and may result in an insufficiently learned rule base due to the curse of dimensionality. In this paper, we propose a neural fuzzy system with mixed coarse learning and fine learning phases. In the first phase, supervised learning method is used to determine the membership functions for the input and output variables simultaneously. After sufficient training, fine learning is applied which employs reinforcement learning algorithm to fine-tune the membership functions for the output variables. For sufficient learning, a new learning method using modified Sutton and Barto's model is proposed to strengthen the exploration. Through this two-step tuning approach, the mobile robot is able to perform collision-free navigation. To deal with the difficulty in acquiring large amount of training data with high consistency for the supervised learning, we develop a virtual environment (VE) simulator, which is able to provide desktop virtual environment (DVE) and immersive virtual environment (IVE) visualization. Through operating a mobile robot in the virtual environment (DVE/IVE) by a skilled human operator, the training data are readily obtained and used to train the neural fuzzy system.published_or_final_versio

    Discussion on Different Controllers Used for the Navigation of Mobile Robot

    Get PDF
    Robots that can comprehend and navigate their surroundings independently on their own are considered intelligent mobile robots (MR). Using a sophisticated set of controllers, artificial intelligence (AI), deep learning (DL), machine learning (ML), sensors, and computation for navigation, MR\u27s can understand and navigate around their environments without even being connected to a cabled source of power. Mobility and intelligence are fundamental drivers of autonomous robots that are intended for their planned operations. They are becoming popular in a variety of fields, including business, industry, healthcare, education, government, agriculture, military operations, and even domestic settings, to optimize everyday activities. We describe different controllers, including proportional integral derivative (PID) controllers, model predictive controllers (MPCs), fuzzy logic controllers (FLCs), and reinforcement learning controllers used in robotics science. The main objective of this article is to demonstrate a comprehensive idea and basic working principle of controllers utilized by mobile robots (MR) for navigation. This work thoroughly investigates several available books and literature to provide a better understanding of the navigation strategies taken by MR. Future research trends and possible challenges to optimizing the MR navigation system are also discussed

    A Fuzzy Logic Controller for Autonomous Wheeled Vehicles

    Get PDF
    Autonomous vehicles have potential applications in many fields, such as replacing humans in hazardous environments, conducting military missions, and performing routine tasks for industry. Driving ground vehicles is an area where human performance has proven to be reliable. Drivers typically respond quickly to sudden changes in their environment. While other control techniques may be used to control a vehicle, fuzzy logic has certain advantages in this area; one of them is its ability to incorporate human knowledge and experience, via language, into relationships among the given quantities. Fuzzy logic controllers for autonomous vehicles have been successfully applied to address various (and sometimes simultaneous) navigational issues

    Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Full text link
    Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments

    A Survey of Offline and Online Learning-Based Algorithms for Multirotor UAVs

    Full text link
    Multirotor UAVs are used for a wide spectrum of civilian and public domain applications. Navigation controllers endowed with different attributes and onboard sensor suites enable multirotor autonomous or semi-autonomous, safe flight, operation, and functionality under nominal and detrimental conditions and external disturbances, even when flying in uncertain and dynamically changing environments. During the last decade, given the faster-than-exponential increase of available computational power, different learning-based algorithms have been derived, implemented, and tested to navigate and control, among other systems, multirotor UAVs. Learning algorithms have been, and are used to derive data-driven based models, to identify parameters, to track objects, to develop navigation controllers, and to learn the environment in which multirotors operate. Learning algorithms combined with model-based control techniques have been proven beneficial when applied to multirotors. This survey summarizes published research since 2015, dividing algorithms, techniques, and methodologies into offline and online learning categories, and then, further classifying them into machine learning, deep learning, and reinforcement learning sub-categories. An integral part and focus of this survey are on online learning algorithms as applied to multirotors with the aim to register the type of learning techniques that are either hard or almost hard real-time implementable, as well as to understand what information is learned, why, and how, and how fast. The outcome of the survey offers a clear understanding of the recent state-of-the-art and of the type and kind of learning-based algorithms that may be implemented, tested, and executed in real-time.Comment: 26 pages, 6 figures, 4 tables, Survey Pape

    Applications of artificial intelligence in ship berthing: A review

    Get PDF
    Ship berthing operations in restricted waters such as ports requires the accurate use of onboard-vessel equipment such as rudder, thrusters, and main propulsions. For big ships, the assistance of exterior supports such as tugboats are necessary, however with the advancement of technology, we may hypothesize that the use of artificial intelligence to support ship berthing safely at ports without the dependency on the tugboats may be a reality. In this paper we comprehensively assessed and analyzed several literatures regarding this topic. Through this review, we seek out to present a better understanding of the use of artificial intelligence in ship berthing especially neural networks and collision avoidance algorithms. We discovered that the use of global and local path planning combined with Artificial Neural Network (ANN) may help to achieve collision avoidance while completing ship berthing operations

    Applications of artificial intelligence in ship berthing: A review

    Get PDF
    855-863Ship berthing operations in restricted waters such as ports requires the accurate use of onboard-vessel equipment such as rudder, thrusters, and main propulsions. For big ships, the assistance of exterior supports such as tugboats are necessary, however with the advancement of technology, we may hypothesize that the use of artificial intelligence to support ship berthing safely at ports without the dependency on the tugboats may be a reality. In this paper we comprehensively assessed and analyzed several literatures regarding this topic. Through this review, we seek out to present a better understanding of the use of artificial intelligence in ship berthing especially neural networks and collision avoidance algorithms. We discovered that the use of global and local path planning combined with Artificial Neural Network (ANN) may help to achieve collision avoidance while completing ship berthing operations

    Mobile robot controller using novel hybrid system

    Get PDF
    Hybrid neuro-fuzzy controller is one of the techniques that is used as a tool to control a mobile robot in unstructured environment. In this paper a novel neuro-fuzzy technique is proposed in order to tackle the problem of mobile robot autonomous navigation in unstructured environment. Obstacle avoidance is an important task in the field of robotics, since the goal of autonomous robot is to reach the destination without collision. The objective is to make the robot move along a collision free trajectory until it reaches its target. The proposed approach uses the artificial neural network instead of the fuzzified engine then the output from it is processed using adaptive inference engine and defuzzification engine. In this approach, the real processing time is reduce that is increase the mobile robot response. The proposed neuro-fuzzy controller is evaluated subjectively and objectively with other approaches and also the processing time is taken in consideration

    Control of autonomous multibody vehicles using artificial intelligence

    Get PDF
    The field of autonomous driving has been evolving rapidly within the last few years and a lot of research has been dedicated towards the control of autonomous vehicles, especially car-like ones. Due to the recent successes of artificial intelligence techniques, even more complex problems can be solved, such as the control of autonomous multibody vehicles. Multibody vehicles can accomplish transportation tasks in a faster and cheaper way compared to multiple individual mobile vehicles or robots. But even for a human, driving a truck-trailer is a challenging task. This is because of the complex structure of the vehicle and the maneuvers that it has to perform, such as reverse parking to a loading dock. In addition, the detailed technical solution for an autonomous truck is challenging and even though many single-domain solutions are available, e.g. for pathplanning, no holistic framework exists. Also, from the control point of view, designing such a controller is a high complexity problem, which makes it a widely used benchmark. In this thesis, a concept for a plurality of tasks is presented. In contrast to most of the existing literature, a holistic approach is developed which combines many stand-alone systems to one entire framework. The framework consists of a plurality of modules, such as modeling, pathplanning, training for neural networks, controlling, jack-knife avoidance, direction switching, simulation, visualization and testing. There are model-based and model-free control approaches and the system comprises various pathplanning methods and target types. It also accounts for noisy sensors and the simulation of whole environments. To achieve superior performance, several modules had to be developed, redesigned and interlinked with each other. A pathplanning module with multiple available methods optimizes the desired position by also providing an efficient implementation for trajectory following. Classical approaches, such as optimal control (LQR) and model predictive control (MPC) can safely control a truck with a given model. Machine learning based approaches, such as deep reinforcement learning, are designed, implemented, trained and tested successfully. Furthermore, the switching of the driving direction is enabled by continuous analysis of a cost function to avoid collisions and improve driving behavior. This thesis introduces a working system of all integrated modules. The system proposed can complete complex scenarios, including situations with buildings and partial trajectories. In thousands of simulations, the system using the LQR controller or the reinforcement learning agent had a success rate of >95 % in steering a truck with one trailer, even with added noise. For the development of autonomous vehicles, the implementation of AI at scale is important. This is why a digital twin of the truck-trailer is used to simulate the full system at a much higher speed than one can collect data in real life.Tesi
    corecore