5,872 research outputs found

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    Personalized video summarization by highest quality frames

    Get PDF
    In this work, a user-centered approach has been the basis for generation of the personalized video summaries. Primarily, the video experts score and annotate the video frames during the enrichment phase. Afterwards, the frames scores for different video segments will be updated based on the captured end-users (different with video experts) priorities towards existing video scenes. Eventually, based on the pre-defined skimming time, the highest scored video frames will be extracted to be included into the personalized video summaries. In order to evaluate the effectiveness of our proposed model, we have compared the video summaries generated by our system against the results from 4 other summarization tools using different modalities

    Intelligent Embedded Software: New Perspectives and Challenges

    Get PDF
    Intelligent embedded systems (IES) represent a novel and promising generation of embedded systems (ES). IES have the capacity of reasoning about their external environments and adapt their behavior accordingly. Such systems are situated in the intersection of two different branches that are the embedded computing and the intelligent computing. On the other hand, intelligent embedded software (IESo) is becoming a large part of the engineering cost of intelligent embedded systems. IESo can include some artificial intelligence (AI)-based systems such as expert systems, neural networks and other sophisticated artificial intelligence (AI) models to guarantee some important characteristics such as self-learning, self-optimizing and self-repairing. Despite the widespread of such systems, some design challenging issues are arising. Designing a resource-constrained software and at the same time intelligent is not a trivial task especially in a real-time context. To deal with this dilemma, embedded system researchers have profited from the progress in semiconductor technology to develop specific hardware to support well AI models and render the integration of AI with the embedded world a reality

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Towards a possibility-theoretic approach to uncertainty in medical data interpretation for text generation

    Get PDF
    Many real-world applications that reason about events obtained from raw data must deal with the problem of temporal uncertainty, which arises due to error or inaccuracy in data. Uncertainty also compromises reasoning where relationships between events need to be inferred. This paper discusses an approach to dealing with uncertainty in temporal and causal relations using Possibility Theory, focusing on a family of medical decision support systems that aim to generate textual summaries from raw patient data in a Neonatal Intensive Care Unit. We describe a framework to capture temporal uncertainty and to express it in generated texts by mean of linguistic modifiers. These modifiers have been chosen based on a human experiment testing the association between subjective certainty about a proposition and the participants’ way of verbalising it.peer-reviewe

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach

    Get PDF
    In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach
    corecore