10,702 research outputs found

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Managed information gathering and fusion for transient transport problems

    Get PDF
    This paper deals with vehicular traffic management by communication technologies from Traffic Control Center point of view in road networks. The global goal is to manage the urban traffic by road traffic operations, controlling and interventional possibilities in order to minimize the traffic delays and stops and to improve traffic safety on the roads. This paper focuses on transient transport, when the controlling management is crucial. The aim was to detect the beginning time of the transient traffic on the roads, to gather the most appropriate data and to get reliable information for interventional suggestions. More reliable information can be created by information fusion, several fusion techniques are expounded in this paper. A half-automatic solution with Decision Support System has been developed to help with engineers in suggestions of interventions based on real time traffic data. The information fusion has benefits for Decision Support System: the complementary sensors may fill the gaps of one another, the system is able to detect the changing of the percentage of different vehicle types in traffic. An example of detection and interventional suggestion about transient traffic on transport networks of a little town is presented at the end of the paper. The novelty of this paper is the gathering of information - triggered by the state changing from stationer to transient - from ad hoc channels and combining them with information from developed regular channels. --information gathering,information fusion,Kalman filter,transient traffic,Decision Support System

    Congestion Control By Using Adaptive Data Rate Technique with High Bandwidth in Wireless Sensor Networks

    Get PDF
    Wireless sensor network one of the most favourite topic for researcher to explore. Wireless sensor networks is very useful so more number of sensor nodes are deploying and large number of data being sensed and collected. To meet the expectations of demands networks should be in safe and good state. Problems in wireless sensor networks are congestion and wastage of energy. So it's necessary to control the congestion and minimize the energy consumption. Congestion causes heavy data loss and unnecessary retransmission of data. Congestion causes by many reasons. There are some techniques and algorithms which can control the congestion at some degree. Here we have suggested technique which can do a Congestion Control with High bandwidth in networks. Amount of congestion in network can be decided by maximum and minimum threshold values that can assign in initial phase of algorithm

    Making Transport Safer: V2V-Based Automated Emergency Braking System

    Get PDF
    An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • …
    corecore