1,841 research outputs found

    Front-end receiver for miniaturised ultrasound imaging

    Get PDF
    Point of care ultrasonography has been the focus of extensive research over the past few decades. Miniaturised, wireless systems have been envisaged for new application areas, such as capsule endoscopy, implantable ultrasound and wearable ultrasound. The hardware constraints of such small-scale systems are severe, and tradeoffs between power consumption, size, data bandwidth and cost must be carefully balanced. To address these challenges, two synthetic aperture receiver architectures are proposed and compared. The architectures target highly miniaturised, low cost, B-mode ultrasound imaging systems. The first architecture utilises quadrature (I/Q) sampling to minimise the signal bandwidth and computational load. Synthetic aperture beamforming is carried out using a single-channel, pipelined protocol in order to minimise system complexity and power consumption. A digital beamformer dynamically apodises and focuses the data by interpolating and applying complex phase rotations to the I/Q samples. The beamformer is implemented on a Spartan-6 FPGA and consumes 296mW for a frame rate of 7Hz. The second architecture employs compressive sensing within the finite rate of innovation (FRI) framework to further reduce the data bandwidth. Signals are sampled below the Nyquist frequency, and then transmitted to a digital back-end processor, which reconstructs I/Q components non-linearly, and then carries out synthetic aperture beamforming. Both architectures were tested in hardware using a single-channel analogue front-end (AFE) that was designed and fabricated in AMS 0.35μm CMOS. The AFE demodulates RF ultrasound signals sequentially into I/Q components, and comprises a low-noise preamplifier, mixer, programmable gain amplifier (PGA) and lowpass filter. A variable gain low noise preamplifier topology is used to enable quasi-exponential time-gain control (TGC). The PGA enables digital selection of three gain values (15dB, 22dB and 25.5dB). The bandwidth of the lowpass filter is also selectable between 1.85MHz, 510kHz and 195kHz to allow for testing of both architectural frameworks. The entire AFE consumes 7.8 mW and occupies an area of 1.5×1.5 mm. In addition to the AFE, this thesis also presents the design of a pseudodifferential, log-domain multiplier-filter or “multer” which demodulates low-RF signals in the current-domain. This circuit targets high impedance transducers such as capacitive micromachined ultrasound transducers (CMUTs) and offers a 20dB improvement in dynamic range over the voltage-mode AFE. The bandwidth is also electronically tunable. The circuit was implemented in 0.35μm BiCMOS and was simulated in Cadence; however, no fabrication results were obtained for this circuit. B-mode images were obtained for both architectures. The quadrature SAB method yields a higher image SNR and 9% lower root mean squared error with respect to the RF-beamformed reference image than the compressive SAB method. Thus, while both architectures achieve a significant reduction in sampling rate, system complexity and area, the quadrature SAB method achieves better image quality. Future work may involve the addition of multiple receiver channels and the development of an integrated system-on-chip.Open Acces

    Design and Implementation of a Re-Configurable Arbitrary Signal Generator and Radio Frequency Spectrum Analyser

    Get PDF
    This research is focused on the design, simulation and implementation of a reconfigurable arbitrary signal generator and the design, simulation and implementation of a radio frequency spectrum analyser based on digital signal processing. Until recently, Application Specific Integrated Circuits (ASICs) were used to produce high performance re-configurable function and arbitrary waveform generators with comprehensive modulation capabilities. However, that situation is now changing with the availability of advanced but low cost Field Programmable Gate Arrays (FPGAs), which could be used as an alternative to ASICs in these applications. The availability of high performance FPGA families opens up the opportunity to compete with ASIC solutions at a fraction of the development cost of an ASIC solution. A fast digital signal processing algorithm for digital waveform generation, using primarily but not limited to Direct Digital Synthesis (DDS) technologies, developed and implemented in a field-configurable logic, with control provided by an embedded microprocessor replacing a high cost ASIC design appeared to be a very attractive concept. This research demonstrates that such a concept is feasible in its entirety. A fully functional, low-complexity, low cost, pulse, Gaussian white noise and DDS based function and arbitrary waveform generator, capable of being amplitude, frequency and phase modulated by an internally generated or external modulating signal was implemented in a low-cost FPGA. The FPGA also included the capabilities to perform pulse width modulation and pulse delay modulation on pulse waveforms. Algorithms to up-convert the sampling rate of the external modulating signal using Cascaded Integrator Comb (CIC) filters and using interpolation method were analysed. Both solutions were implemented to compare their hardware complexities. Analysis of generating noise with user-defined distribution is presented. The ability of triggering the generator by an internally generated or an external event to generate a burst of waveforms where the time between the trigger signal and waveform output is fixed was also implemented in the FPGA. Finally, design of interface to a microprocessor to provide control of the versatile waveform generator was also included in the FPGA. This thesis summarises the literature, design considerations, simulation and implementation of the generator design. The second part of the research is focused on radio frequency spectrum analysis based on digital signal processing. Most existing spectrum analysers are analogue in nature and their complexity increases with frequency. Therefore, the possibility of using digital techniques for spectrum analysis was considered. The aim was to come up with digital system architecture for spectrum analysis and to develop and implement the new approach on a suitable digital platform. This thesis analyses the current literature on shifting algorithms to remove spurious responses and highlights its drawbacks. This thesis also analyses existing literature on quadrature receivers and presents novel adaptation of the existing architectures for application in spectrum analysis. A wide band spectrum analyser receiver with compensation for gain and phase imbalances in the Radio Frequency (RF) input range, as well as compensation for gain and phase imbalances within the Intermediate Frequency (IF) pass band complete with Resolution Band Width (RBW) filtering, Video Band Width (VBW) filtering and amplitude detection was implemented in a low cost FPGA. The ability to extract the modulating signal from a frequency or amplitude modulated RF signal was also implemented. The same family of FPGA used in the generator design was chosen to be the digital platform for this design. This research makes arguments for the new architecture and then summarises the literature, design considerations, simulation and implementation of the new digital algorithm for the radio frequency spectrum analyser

    Design of surface acoustic wave filters and applications in future communication systems

    Get PDF

    The Borexino detector at the Laboratori Nazionali del Gran Sasso

    Full text link
    Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI

    Experimental study of the fluctuating temperature in inert and reacting turbulent jets

    Get PDF
    Imperial Users onl

    FEEDFORWARD ARTIFICIAL NEURAL NETWORK DESIGN UTILISING SUBTHRESHOLD MODE CMOS DEVICES

    Get PDF
    This thesis reviews various previously reported techniques for simulating artificial neural networks and investigates the design of fully-connected feedforward networks based on MOS transistors operating in the subthreshold mode of conduction as they are suitable for performing compact, low power, implantable pattern recognition systems. The principal objective is to demonstrate that the transfer characteristic of the devices can be fully exploited to design basic processing modules which overcome the linearity range, weight resolution, processing speed, noise and mismatch of components problems associated with weak inversion conduction, and so be used to implement networks which can be trained to perform practical tasks. A new four-quadrant analogue multiplier, one of the most important cells in the design of artificial neural networks, is developed. Analytical as well as simulation results suggest that the new scheme can efficiently be used to emulate both the synaptic and thresholding functions. To complement this thresholding-synapse, a novel current-to-voltage converter is also introduced. The characteristics of the well known sample-and-hold circuit as a weight memory scheme are analytically derived and simulation results suggest that a dummy compensated technique is required to obtain the required minimum of 8 bits weight resolution. Performance of the combined load and thresholding-synapse arrangement as well as an on-chip update/refresh mechanism are analytically evaluated and simulation studies on the Exclusive OR network as a benchmark problem are provided and indicate a useful level of functionality. Experimental results on the Exclusive OR network and a 'QRS' complex detector based on a 10:6:3 multilayer perceptron are also presented and demonstrate the potential of the proposed design techniques in emulating feedforward neural networks

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi
    corecore