11,625 research outputs found

    Globally Optimal Energy-Efficient Power Control and Receiver Design in Wireless Networks

    Full text link
    The characterization of the global maximum of energy efficiency (EE) problems in wireless networks is a challenging problem due to the non-convex nature of investigated problems in interference channels. The aim of this work is to develop a new and general framework to achieve globally optimal solutions. First, the hidden monotonic structure of the most common EE maximization problems is exploited jointly with fractional programming theory to obtain globally optimal solutions with exponential complexity in the number of network links. To overcome this issue, we also propose a framework to compute suboptimal power control strategies characterized by affordable complexity. This is achieved by merging fractional programming and sequential optimization. The proposed monotonic framework is used to shed light on the ultimate performance of wireless networks in terms of EE and also to benchmark the performance of the lower-complexity framework based on sequential programming. Numerical evidence is provided to show that the sequential fractional programming framework achieves global optimality in several practical communication scenarios.Comment: Accepted for publication in the IEEE Transactions on Signal Processin

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    Resource Allocation for Energy-Efficient 3-Way Relay Channels

    Full text link
    Throughput and energy efficiency in 3-way relay channels are studied in this paper. Unlike previous contributions, we consider a circular message exchange. First, an outer bound and achievable sum rate expressions for different relaying protocols are derived for 3-way relay channels. The sum capacity is characterized for certain SNR regimes. Next, leveraging the derived achievable sum rate expressions, cooperative and competitive maximization of the energy efficiency are considered. For the cooperative case, both low-complexity and globally optimal algorithms for joint power allocation at the users and at the relay are designed so as to maximize the system global energy efficiency. For the competitive case, a game theoretic approach is taken, and it is shown that the best response dynamics is guaranteed to converge to a Nash equilibrium. A power consumption model for mmWave board-to-board communications is developed, and numerical results are provided to corroborate and provide insight on the theoretical findings.Comment: Submitted to IEEE Transactions on Wireless Communication

    Energy-Efficient Scheduling and Power Allocation in Downlink OFDMA Networks with Base Station Coordination

    Full text link
    This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular OFDMA system. Three definitions of the energy efficiency are considered for system design, accounting for both the radiated and the circuit power. User scheduling and power allocation are optimized across a cluster of coordinated base stations with a constraint on the maximum transmit power (either per subcarrier or per base station). The asymptotic noise-limited regime is discussed as a special case. %The performance of both an isolated and a non-isolated cluster of coordinated base stations is examined in the numerical experiments. Results show that the maximization of the energy efficiency is approximately equivalent to the maximization of the spectral efficiency for small values of the maximum transmit power, while there is a wide range of values of the maximum transmit power for which a moderate reduction of the data rate provides a large saving in terms of dissipated energy. Also, the performance gap among the considered resource allocation strategies reduces as the out-of-cluster interference increases.Comment: to appear on IEEE Transactions on Wireless Communication

    Energy-Efficient Power Control: A Look at 5G Wireless Technologies

    Get PDF
    This work develops power control algorithms for energy efficiency (EE) maximization (measured in bit/Joule) in wireless networks. Unlike previous related works, minimum-rate constraints are imposed and the signal-to-interference-plus-noise ratio takes a more general expression, which allows one to encompass some of the most promising 5G candidate technologies. Both network-centric and user-centric EE maximizations are considered. In the network-centric scenario, the maximization of the global EE and the minimum EE of the network are performed. Unlike previous contributions, we develop centralized algorithms that are guaranteed to converge, with affordable computational complexity, to a Karush-Kuhn-Tucker point of the considered non-convex optimization problems. Moreover, closed-form feasibility conditions are derived. In the user-centric scenario, game theory is used to study the equilibria of the network and to derive convergent power control algorithms, which can be implemented in a fully decentralized fashion. Both scenarios above are studied under the assumption that single or multiple resource blocks are employed for data transmission. Numerical results assess the performance of the proposed solutions, analyzing the impact of minimum-rate constraints, and comparing the network-centric and user-centric approaches.Comment: Accepted for Publication in the IEEE Transactions on Signal Processin
    corecore