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Abstract—This work develops power control algorithms for
energy efficiency (EE) maximization (measured in bit/Joule) in
wireless networks. Unlike previous related works, minimum-rate
constraints are imposed and the signal-to-interference-plus-noise
ratio takes a more general expression, which allows one to en-
compass some of the most promising 5G candidate technologies.
Both network-centric and user-centric EE maximizations are
considered. In the network-centric scenario, the maximization
of the global EE and the minimum EE of the network are
performed. Unlike previous contributions, we develop centralized
algorithms that are guaranteed to converge, with affordable
computational complexity, to a Karush-Kuhn-Tucker point of
the considered non-convex optimization problems. Moreover,
closed-form feasibility conditions are derived. In the user-centric
scenario, game theory is used to study the equilibria of the
network and to derive convergent power control algorithms,
which can be implemented in a fully decentralized fashion. Both
scenarios above are studied under the assumption that single
or multiple resource blocks are employed for data transmission.
Numerical results assess the performance of the proposed so-
lutions, analyzing the impact of minimum-rate constraints, and
comparing the network-centric and user-centric approaches.
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I. INTRODUCTION

Currently, the percentage of the global world CO2 emissions
due to the information and communications technology (ICT)
is estimated to be 5% [1]. While this may seem a small
percentage, it is rapidly increasing, and the situation will
escalate in the near future with the advent of 5G networks. It
is anticipated that the number of connected devices will reach
50 billions by 2020 [2], and that a 1000x data rate increase is
required to serve so many connected devices [3]. However, it is
also clear that obtaining the required 1000x by simply scaling
up the transmit powers is not possible, as it would result in an
unmanageable energy demand, and in greenhouse gas emis-
sions and electromagnetic pollution above safety thresholds.
Instead, the data rate must be increased by a factor 1000,
at a similar power consumption as in present networks. This
requires a 1000× increase of the energy efficiency (EE), i.e.,
the efficiency with which ICT systems use energy to transmit
data [4]. This is of paramount importance for operators (e.g.,
to save on electricity bills) and end-users (e.g., to prolong the
lifetime of batteries) and thus has motivated a great interest
in studying and designing power control strategies taking into
account the cost of energy.

Power control for energy efficiency can be performed in a
centralized or decentralized manner. Both approaches are of
interest in the context of 5G networks, for which network-
centric techniques like Cloud-RAN and cooperative multi-
point (CoMP) [5], as well as user-centric techniques like
device-to-device (D2D) [6] and the use of femto-cells [7],
have been proposed. In a network-centric approach, resource
allocation is performed centrally and all network-nodes co-
operate to maximize a common system-wide performance
function. Instead, a user-centric approach is implemented in
a distributed way, with the different nodes behaving in a self-
organizing, and often competitive, fashion. Network-centric
approaches typically grant better performance, with respect
to self-organizing algorithms, but on the other hand they are
more complex and require a larger feedback overhead to be
implemented. An overview of recent results in these two
directions is provided below.

A. State-of-the-art

A non-exhaustive list of recent works dealing with EE
optimization in centralized networks includes [8]–[15] and
references therein. Given the non-convex, fractional nature of
EE, the main mathematical tool for centralized optimization
of EE-related metrics is fractional programming – a branch of
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optimization theory that provides algorithms with polynomial
complexity to globally maximize fractional functions with a
concave numerator and a convex denominator [16]. However,
even this powerful tool fails when interference-limited net-
works must be optimized. This is due to the fact that the
presence of multi-user interference makes the numerator of
EE non-concave. A common way out to this problem is to
rely on orthogonal or semi-orthogonal transmission schemes
as well as on interference cancellation techniques (to fall back
to the noise-limited case). Contributions in this direction are
given in [9], [14], [15]. In [9], [15] multi-carrier networks
are considered, and the global energy efficiency (GEE) of the
system (defined as the ratio between the sum achievable rate
and the total consumed power) is optimized using orthogonal
or semi-orthogonal subcarrier allocation schemes. In [14],
the authors consider a multiple-antenna system and aim to
maximize the GEE when non-linear interference cancellation
techniques are used. However, orthogonal interference sup-
pression schemes inevitably result in a poor resource reuse
factor and are not practical in large networks. An alternative
approach consists in handling the interference by means of
heuristic solutions, typically based on the use of alternating
optimization techniques. Examples in this context are given
by [10] in which the minimum of the individual EEs is
maximized and also by [11], [12] where both the maximization
of GEE and of the sum of the individual EEs are considered.
While these approaches can operate in interference-limited
networks, they do not guarantee convergence and/or are not
supported by strong optimality claims. Moreover, they are
typically tailored to the maximization of specific EE metrics.
A first attempt to provide a unified framework to tackle EE
optimization problems in a centralized way is given in [13],
where polynomial-time algorithms to optimize the GEE as
well as the sum and product of the individual EEs are provided.

As for EE maximization through decentralized solutions,
in [17] the authors study the Nash equilibrium problem for a
group of players aiming at maximizing their own EE while sat-
isfying power constraints in single and multi-carrier systems,
similarly to what was done in [18] for rate maximization. A
quasi-variational inequality approach is taken in [19], where
power control algorithms for networks with heterogenous users
are developed. In [20], [21] a similar problem is considered,
with regard to relay-assisted systems, whereas single-user
multiple-input multiple-output (MIMO) systems are consid-
ered in [22]. However, all of these previous works do not
account for rate requirements, and so the resulting users’ rates
at the equilibrium could be fairly low. Incorporating target
rates changes the setting drastically since any user’s admissible
power allocation policy depends crucially on the policies of
all other users. First results in this context are provided in [23]
wherein Nash equilibria are found to be the fixed points of a
water-filling best-response operator whose water level depends
on the rate constraint and circuit power.

B. Motivation

The aim of this paper is to develop a unified framework for
the analysis and design of both centralized (network-centric)

and decentralized (user-centric) EE power allocation policies
in a wireless network in which K transmitters (possibly) share
N mutually orthogonal resource blocks for data transmission.
Unlike most previous related works, we aim at maximizing
different EE metrics while satisfying minimum rate constraints
(or quality-of-service (QoS) requirements). Moreover, we as-
sume that the signal-to-interference-plus-noise-ratio (SINR)
experienced by transmitter k at its intended receiver on re-
source block n takes the following general form:

γk,n =
αk,npk,n

σ2
k,n + φk,npk,n +

∑
j 6=k ωkj,npj,n

(1)

where pk,n is the k-th user’s transmit power over resource
block n, whereas αk,n, φk,n, ωkj,n are positive quantities
that do not depend on the users’ transmit powers, but only
on system parameters and propagation channels. In particular,
αk,n and φk,n are assumed to depend only on user k’s
channels on resource block n, while the coefficients ωkj,n
depend on the other users’ channels on resource block n. The
main motivation behind the adoption of (1) is that there exist
several communication systems and technologies in which
the SINR takes this form.1 Interestingly, this is the case of
some candidate technologies for 5G networks, e.g., practical
massive MIMO networks in which the massive amount of
deployed circuitry prevents the use of high-quality hardware
and thus gives rise to hardware impairments [24]. The form
in (1) arises also when imperfect channel state information
(CSI) is available due to channel estimation errors. This is
again a typical situation in practical massive MIMO sys-
tems [25]. Other relevant examples are heterogeneous, relay-
assisted interference networks (e.g. multi-cell and/or small-cell
relay-assisted MIMO networks [26], multi-cell and/or small-
cell orthogonal frequency division multiple access (OFDMA)
networks [20]), and relay-assisted D2D networks [27]. Fi-
nally, other well-established communication technologies are
also included, such as ultra wide-band systems [28], or,
generally, transmissions affected by inter-symbol interference
and frequency-selective fading [29]. In Section II-C we will
describe in detail some examples of communication systems
using candidate 5G wireless technologies, in which the SINRs
take the form in (1).

C. Contributions and paper outline

The major contributions of this work are as follows:
• A unified framework for EE optimization is developed

for both centralized and decentralized networks with rate
and power constraints in which the users’ SINRs take the
more general expression in (1). This allows encompassing
some of the emerging technologies for 5G.

• The maximization of the GEE as well as of the mini-
mum EE is considered in the network-centric case. Both
problems are non-convex and thus hard to solve. We
first derive closed-form feasibility conditions, and then
exploit the tools of fractional programming and sequential

1Observe that (1) includes as a special case the SINR expression typically
encountered in wireless communication systems, which can be obtained by
simply letting φk,n = 0 for all k, n.
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convex optimization to develop centralized power control
algorithms that are guaranteed to converge to a Karush-
Kuhn-Tucker (KKT) point of the non-convex problems
with affordable computational complexity.

• In the decentralized setting, the users in the network are
modeled as rational, self-organizing agents that engage
in a non-cooperative game wherein each one aims at
maximizing its individual EE while targeting its own
power and rate constraint. The existence and uniqueness
of Nash equilibrium points are studied and a fully dis-
tributed algorithm based on best-response dynamics is
proposed to reach equilibrium.

• The above scenarios are studied under the assumption
that one or more resource blocks are employed for data
transmission.

The remainder of this paper is organized as follows. Sec-
tion II introduces the signal model and formulates the EE
maximization problems from both network- and user-centric
perspectives. Moreover, Section II-C provides a detailed de-
scription of some 5G candidate technologies for which the
SINRs are expressed as in (1). The centralized and decentral-
ized approaches for EE maximization in single-resource block
transmissions are analyzed in Sections III and IV, respectively.
The counterpart cases of multiple-resource blocks are studied
in Sections V and VI. In Section VII the performance of the
proposed algorithms is numerically analyzed with reference to
case-studies inspired to 5G technologies. Concluding remarks
are given in Section VIII.

II. ENERGY-EFFICIENCY PROBLEM FORMULATIONS

Consider a wireless interference network with K transmit-
ters, S receivers, and N available resource blocks (that might
represent time or frequency bins) of bandwidth B in which
the SINR of user k at its intended receiver takes the general
form in (1). The EE ηk (measured in bit/Joule) of user k is
defined as the ratio of the achievable rate over the N resource
blocks and the total consumed power [16]

ηk ,

∑N
n=1B log2(1 + γk,n)

pc,k + 1Tpk
(2)

with pc,k being the circuit power dissipated to operate
the k-th transmitter and its intended receiver, and pk =
[pk,1, pk,2, . . . , pk,N ]T ∈ RN+ being the power allocation
vector of user k over the N resource blocks. We assume that
pk must satisfy the following (local) power constraint:

1Tpk − pk ≤ 0 (3)

where pk denotes user k’s maximum power. Unlike most
previous related works, we assume that minimum achievable
rates need to be satisfied. This amounts to setting:

N∑
n=1

log2(1 + γk,n)− θk ≥ 0 (4)

where θk is the target rate of user k (in bit/s/Hz/user). The
feasible set of pk is thus given by:

Pk,

{
pk ∈ RN+ : 1Tpk ≤ pk,

N∑
n=1

log2(1 + γk,n) ≥ θk

}
. (5)

Accordingly, we call P ,
∏K
k=1 Pk the feasible set of p =

[pT1 ,p
T
2 , . . . ,p

T
K ]T ∈ RKN+ .

A. Network-centric formulation

Based on the user-centric EE metric (2), two relevant
network-centric performance metrics are investigated in this
work. The network GEE ψ is given by the system achievable
sum-rate over the total power consumed in the system:

ψ ,

∑K
k=1

∑N
n=1B log2 (1 + γk,n)

pc +
∑K
k=1 1Tpk

(6)

with pc =
∑K
k=1 pc,k being the total circuit power dissipated

in the network.2 Another important energy-efficient metric is
the minimum of the weighted EEs, defined as

η , min
k=1,...,K

wkηk. (7)

Within the above setting, the GEE maximization problem can
be mathematically formulated as:

ψ? = max
p∈P

ψ = max
p∈P

∑K
k=1

∑N
n=1B log2 (1 + γk,n)

pc +
∑K
k=1 1Tpk

(8)

whereas the weighted minimum-EE maximization problem
can be written as:

η? = max
p∈P

η = max
p∈P

min
k=1,...,K

wkηk , (9)

with {wk}k non-negative weights. As discussed later, both
(8) and (9) are non-convex fractional problems, which will
be tackled by means of fractional programming theory3 and
sequential convex optimization.

Remark 1. Observe that ψ and η represent the two extreme
points in the trade-off between global performance and fair-
ness. In particular, ψ can be seen as the benefit-cost ratio
of the system, being defined as the ratio between the sum
achievable rate and the total consumed power. However, it
does not directly depend on the users’ EEs, and therefore it
does not allow one to tune the individual EEs according to
users’ needs, as it might be useful in heterogeneous networks.
On the other hand, maximizing the (weighted) minimum of the
EEs allows us to achieve a fairer resource allocation policy.
In particular, it is known that maximizing (7) yields a Pareto-
efficient point where each quantity wkηk is the same for all k.
The whole Pareto-boundary can be simply achieved by varying
the weights {wk}. However, this usually comes at the price of
a performance loss in terms of benefit-cost ratio of the system.

2A slightly more general definition of the GEE considers the weighted sum-
rate at the numerator. This might be useful to control the users’ individual
rates. All the following results can be straightforwardly applied to this
definition of GEE.

3For completeness, a brief background on fractional programming is
provided in Appendix A.
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Table I
LIST OF FUNCTIONS AND VARIABLES

ηk EE of user k γk,n SINR in absence of interference and noise
ψ GEE θk Target rate of user k
η Minimum-EE γ

k
Minimum SINR requirement for user k

γk,n SINR of user k over block n pk Maximum power of user k
µk,n Equivalent channel gain of user k over block n pc, pc,k System and per-user hardware-dissipated power

B. User-centric formulation

A game-theoretic approach will be taken to solve the user-
centric power allocation problem formulated as:

max
pk∈Pk

ηk = max
pk∈Pk

∑N
n=1B log2(1 + γk,n)

pc,k + 1Tpk
∀k. (10)

For later convenience, we denote by

µk,n ,
αk,n

σ2
k,n +

∑
j 6=k

ωkj,npj,n
(11)

the equivalent channel gain when φk,n = 0, and call

γk,n ,
αk,n
φk,n

(12)

the SINR in the absence of interference and thermal noise (i.e.,
the maximum achievable SINR). Using the above definitions,
(1) can be rewritten as4

γk,n =
γk,nµk,npk,n

γk,n + µk,npk,n
(13)

or, equivalently,

pk,n =
γk,n
µk,n

(
1− γk,n

γk,n

)−1
. (14)

Note that γk,n is a strictly increasing function of pk,n as it
easily follows observing that

∂γk,n
∂pk,n

=
γ2k,nµk,n(

γk,n + µk,npk,n
)2 ≥ 0. (15)

C. Applications to 5G technologies

As mentioned in the introduction, there exist several exam-
ples of communication technologies in which the SINR may
take the form in (1). Two case-studies are briefly detailed in
the sequel.

1) Massive MIMO: Consider the uplink (similar results can
be obtained for the downlink) of a massive MIMO system
composed of S cells wherein the base station (BS) of each
cell uses M antennas to communicate with K single-antenna
user equipments (UEs). Each UE is associated to a specific
serving BS while interfering with all other UEs. As such, a
double index notation is used to refer to each UE as e.g., “user
k in cell j”. Under this convention, let us define hilj ∈ CM as
the channel from UE j in cell l to BS i. Denoting by cik ∈ CM
the receive combining vector of UE k at its intended BS i, a
lower bound (obtained using a standard bound based on the

4Note that (as expected) when there is no self-interference (SI) (i.e., φk,n =
0 ∀k, n) γk,n → µk,npk,n.

worst-case uncorrelated noise) of the uplink SINR of UE k in
cell i takes the form [30]

γk=
pik

∣∣∣E{cHikhiik}∣∣∣2
pikvar{cHikhiik}+ iik

(16)

with

iik = σ2E{||cik||2}+
∑

(l,j) 6=(i,k)

pljE{|cHikhilj |2}. (17)

Assume that a maximum ratio combining (MRC) receiver is
employed for data recovery. This amounts to setting cik = ĥiik
where ĥiik denotes the estimate of hiik given by

hiik = ĥiik + h̃iik (18)

with h̃iik being the estimation error statistically independent
of ĥiik. Assume that hilj ∼ CN (0, diljIM ) where dilj
accounts for the corresponding large-scale channel fading and
pathloss from UE j in cell l to BS i. If a minimum mean
square error (MMSE)-based channel estimation scheme is used
at the BS (with full pilot reuse) [30], then we have that
ĥiik ∼ CN (0, ρiikIM ) and h̃iik ∼ CN (0, (diik − ρiik)IM )
where

ρiik =
diik

τ +
∑
l dilk

(19)

with τ being a given parameter that depends on the pilot
transmit power and the pilot sequence length. Under the above
assumptions, we have that

γk=
pikαk

σ2
k + pikφk +

∑
(l,j)6=(i,k)

pljωkj
(20)

with

αk = ρ2iik , ωkj = diljρiik (21)

φk = diikρiik +
∑

l 6=i
ρ2ilk (22)

and σ2
k = σ2ρiik. Except for the cell index (which is only

needed to ease understanding), the above SINR turns out to
be in the same form of (1), with non-zero coefficients φk.

Similar results can be obtained when the system is affected
by hardware impairments [24], [25]; for example, unavoidable
clock drifts in local oscillators, finite-precision digital-to-
analog converters, amplifier non-linearities, finite-order analog
filters, and so forth. For the sake of simplicity, let us assume
that the hardware impairments are only at the UEs. Following
[25], the hardware impairments result in a reduction of the
uplink signals by a factor 1− ε2 with ε being the error vector
magnitude, and in an additive Gaussian distortion noise which
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carries the removed useful power. In these circumstances, a
lower bound of the achievable SINR can be computed as

γk=
pik(1− ε2)

∣∣∣E{cHikhiik}∣∣∣2
pik(1− ε2)var{cHikhiik}+ pikε2E{|cHikhiik|2}+ iik

(23)

with iik given in (17). Plugging cik = ĥiik into the above
equation and taking into account that in the presence of
hardware impairments ĥiik ∼ CN (0,

√
1− ε2ρiikIM ) and

h̃iik ∼ CN (0, (diik −
√

1− ε2ρiik)IM ), the SINR is found
to be in the same form of (20). The above analysis can also
be extended (as shown in the numerical results) to the case in
which hardware imperfections are experienced at the BS.

Remark 2. An alternative approach for evaluating the SINR
in massive MIMO systems relies on exploiting the large
dimensions of the network. Basically, results from random
matrix theory are used to compute an asymptotic expression
(known as deterministic equivalent) for (16) in the limit of
M,K →∞ with K

M ∈ (0, 1). Such a deterministic equivalent
turns out to be in the same form of (1) and close to the effective
SINR even for a finite system [24], [30].

2) Relay-assisted CoMP interference network: Consider
the uplink of a two-hop multi-point to multi-point network
with S BSs each equipped with M antennas and using
N subcarriers to communicate with K single-antenna UEs
exploiting a single-antenna amplify-and-forward (AF) relay.
Denoting by h

(r)
k,n the channel from user k to the relay on

subcarrier n, the received signal at the relay can be written as

x
(r)
k,n =

√
pk,nh

(r)
k,nbk,n +

∑
j 6=k

√
pj,nh

(r)
j,nbj,n + ζ(r)n (24)

where bk,n is the information symbol transmitted by UE k on
subcarrier n and ζ(r)n ∼ CN (0, σ2

n) is the relay thermal noise.
The total power received at the relay on subcarrier n is thus
given by

P̄ (r)
n =

K∑
j=1

pj,n
∣∣h(r)j,n∣∣2 + σ2

n. (25)

In order to avoid amplifier saturation, the received signal needs
to be normalized by P̄

(r)
n before being amplified by a factor√

pr,n and forwarded to the receivers. The signal received at
BS ik associated to transmitter k, over subcarrier n, is

yk,n =

√
pk,npr,n

P̄
(r)
n

hik,nh
(r)
k,nbk,n + ik,n + wik,n (26)

where hik,n ∈ CM is the channel vector from the relay to BS
ik on subcarrier n and ik,n ∈ CM is defined as

ik,n =
∑
j 6=k

√
pj,npr,n

P̄
(r)
n

hik,nh
(r)
j,nbj,n +

√
pr,n

P̄
(r)
n

hik,nζ
(r)
n (27)

whereas wik,n ∼ CN (0, σ2
ik,n

IM ) is the thermal noise at
receiver ik on subcarrier n. After linear reception by the filter
ck,n and upon plugging (25) into (26) the SINR takes the form

in (1) with

αk,n = pr,n|hk,n|2|cHk,nhik,n|2 , φk,n = σ2
ik,n
|hk,n|2‖ck,n‖2

ωkj,n =
(
pr,n|cHk,nhik,n|2 + σ2

ik,n
‖ck,n‖2

)
|hj,n|2

and σ2
k,n = σ2

n(pr,n|cHk,nhik,n|2 + σ2
ik,n
‖ck,n‖2). We should

stress that the above results apply to any interference network
in which the transmitters reach the receivers via an AF relay.
For example, the above scenario applies to relay-assisted
multi-cell and small-cell networks [26], as well as to relay-
assisted D2D networks [27].

Remark 3. Observe that in both scenarios described above,
the expression of the receive filters cik and ck,n impacts the
SINR expressions through the coefficients αk, φk, ωkj and
the equivalent noise power σ2

k. Therefore, any choice of the
receive filters that does not depend on the transmit powers,
results in a SINR expression as in (1). This means that the
developed framework can be applied to both MRC and zero-
forcing receivers whereas it does not readily apply to MMSE-
based receivers as they depend on the transmit powers of UEs
through the covariance matrix of the interference.

III. CENTRALIZED POWER CONTROL IN NETWORKS WITH
A SINGLE RESOURCE BLOCK

We start our analysis considering the case of a single
resource block, which, for example, models single-carrier
systems. When N = 1, deeper analytical insights can be
gained compared to the case with N > 1. In particular, the
single-resource block scenario is analytically more tractable
and allows one to obtain necessary and sufficient feasibility
conditions for the centralized energy-efficient optimization
problems. On the other hand, only sufficient feasibility con-
ditions can be obtained in the multi-resource block setting
(Section V). This also applies to the distributed scenario in
terms of more compact existence and uniqueness conditions
of the equilibria (Section IV). Instead, the corresponding
condition for the multi-resource block setting will be very
cumbersome, and thus more difficult to handle. Moreover,
the techniques to be presented in this section carry over to
scenarios with N > 1, and are preparative for the more
involved multiple resource block scenario.

Setting N = 1 into (1) and (2) and neglecting the block
index, (8) and (9) reduce to:

ψ? = max
p∈P

ψ = max
p∈P

∑K
k=1B log2 (1 + γk)

pc +
∑K
k=1 pk

(28)

and

η? = max
p∈P

η = max
p∈P

min
k=1,...,K

wk
B log2(1 + γk)

pc,k + pk
(29)

wherein p = [p1, p2, . . . , pK ]T ∈ RK+ ,

γk =
αkpk

σ2
k + φkpk +

∑
j 6=k ωkjpj

(30)

and P ,
∏K
k=1 Pk with

Pk = {pk ∈ R+ : pk ≤ pk, log2(1 + γk) ≥ θk}. (31)
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For later convenience, we define

γ
k
, 2θk − 1 (32)

the minimum SINR requirement for user k. Observe that γ
k

must be such that

0 ≤ γ
k
≤ γk ∀k. (33)

The above condition follows observing that when the noise is
negligible (i.e., σ2

k → 0) and only transmitter k is active then
(30) reduces to γk = αk/φk = γk and thus the rate constraint
log2(1 + γk) ≥ θk can be met only if (33) holds true.

A. Feasibility

The feasibility of (28) and (29) simply amounts to verifying
that for given values of {αk}k, {φk}k, and {wk,j}k 6=j , the
feasible set P is not empty. Closed-form necessary and
sufficient conditions for P to be non-empty are provided in
the following result.

Lemma 1. Let F ∈ CK×K be a matrix whose (k, j)-th
element is defined as

[F]k,j ,

{
0 j = k
ωkjγk

αk−φkγ
k

j 6= k
(34)

and denote by ρF its spectral radius. The solutions to (28)
and (29) exist if and only if

ρF < 1 and (I− F)
−1

s ≤ p (35)

where p = [p1, p2, . . . , pK ]T ∈ RK×1+ and s ∈ RK+ has
elements given by [s]k , σ2

kγk(αk − φkγk)−1.

Proof: Following the same steps of the proof of Lemma 2
in [31] allows us to prove the sufficiency of (35). For the
necessity, assume that there is a vector p′ satisfying the target
rates but such that p′j ≥ pj for some j. Since γk is a stricly
increasing function of pk, we have that

αkpk
σ2
k + φkpk +

∑
j 6=k ωkjp

′
j

< γk (36)

for any pk ≤ pk. Otherwise stated, there exists no power pk ≤
pk such that γk = γk . Now, suppose that ρF ≥ 1. Since F
is non-negative, from [32, Theorem 2.1] it follows that there
does not exist a power vector p ≥ 0 such that γk = γk. This
proves that (35) is also necessary.

B. GEE maximization

As described in Appendix A, fractional programming pro-
vides efficient tools to maximize ratios in which the numerator
is a concave function, the denominator is a convex function,
and the constraint set is convex, whereas no low-complexity
optimization method is available if any of these properties is
not met. Unfortunately, the objective function in (28) does not
have a concave numerator, and therefore finding the global so-
lution of (28) with affordable complexity appears difficult. To
overcome this difficulty, we integrate fractional programming
theory with the framework of sequential convex programming
[33]. This allows us to develop a computationally-efficient

algorithm which is guaranteed to converge to a first-order
optimal solution of (28). The general idea of sequential convex
programming is to find local optima of a difficult problem
with objective f to maximize, by solving a sequence of easier
problems with objectives {fi}i. In the generic i-th step of the
sequence, we require the following three properties:

1) fi(x) ≤ f(x), for all x;
2) fi(x(i−1)) = f(x(i−1));
3) ∇fi(x(i−1)) = ∇f(x(i−1)).

wherein x(i−1) denotes the maximizer of fi−1. This approach
has been used for resource allocation in wireless networks in
[34], [35] for rate maximization, and, more recently, in [13],
[26], [36] for EE maximization in different settings.

The critical issue of this approach is to find suitable approxi-
mations {fi}i which fulfill the listed requirements, while at the
same time resulting in simpler optimization problems. As far
as GEE maximization is concerned, this can be accomplished
by leveraging the following lower-bound of the logarithmic
function [37]. Specifically, ∀γ, γ̃ ≥ 0 we have that

log2(1 + γ) ≥ a log2 γ + b (37)

with

a =
γ̃

1 + γ̃
b = log2(1 + γ̃)− γ̃

1 + γ̃
log2 γ̃. (38)

The right-hand side (RHS) and left-hand side (LHS) of (37)
are equal at γ = γ̃, and the same holds for their derivatives
with respect to γ evaluated at γ = γ̃. Therefore, we may
lower-bound ψ as follows:

ψ ≥

K∑
k=1

B [ak log2 (γk) + bk]

pc +

K∑
k=1

pk

=

K∑
k=1

B [bk + ak log2 (αkpk)]

pc +

K∑
k=1

pk

−

K∑
k=1

B

ak log2

σ2
k+φkpk+

∑
j 6=k

ωkjpj


pc +

K∑
k=1

pk

= ψ̃ (39)

from which, letting pk = 2qk , one gets

ψ̃ =

∑K
k=1B [bk + ak log2 (αk) + akqk]

pc +
∑K
k=1 2qk

−

∑K
k=1B

[
ak log2

(
σ2
k+φk2qk +

∑
j 6=k ωkj2

qj
)]

pc +
∑K
k=1 2qk

. (40)

Using the above results, the solution to (28) can be lower
bounded as

ψ? ≥ ψ̃? = max
q∈Q

ψ̃ (41)

with q = [q1, q2, . . . , qK ]T , Q =
∏K
k=1Qk and

Qk = {qk ∈ R : 2qk ≤ pk, log2(1 + γk) ≥ θk}. (42)

Observe now that for any given {ak}k and {bk}k, the nu-
merator and denominator of (40) are both differentiable, and



7

Algorithm 1 Network-centric EE maximization for N = 1

1: Test feasibility by Lemma 1.
2: if Feasible then
3: Set i = 0 and choose any p(0) ∈ P ;
4: Set γ̃(0)

k = γ
(0)
k (p(0)) and compute a(0)k , b(0)k as in (38);

5: repeat
6: i = i+ 1;
7: if GEE then
8: Solve (41) with parameters a(i−1)

k and b
(i−1)
k and set

{q(i)k }k = argmax ψ̃i, p
(i)
k = 2q

(i)
k ;

9: end if
10: if Minimum EE then
11: Solve (45) with parameters a

(i)
k and b

(i)
k and set

{q(i)k }k = argmax η̃
i
, p(i)k = 2q

(i)
k ;

12: end if
13: Set γ̃(i)

k = γk(p
(i)) and compute a(i)k , b(i)k as in (38);

14: until convergence
15: end if

respectively concave5 and convex in {qk}k. Finally, the set
Qk can be shown to be convex for all k. Indeed, the k-th rate
constraint can be equivalently rewritten as

2qk(αk − γkφk) ≥ γ
k

σ2
k +

∑
j 6=k

ωkj2
qj

 . (43)

Since (33) must hold true, one gets (applying the logarithm
function to both sides)

qk − log2

σ2
k +

∑
j 6=k

ωkj2
qj

+log2

(
αk − γkφk

γ
k

)
≥0 (44)

which turns out to be a convex constraint. As a consequence,
(41) is a fractional problem which can be globally and
efficiently solved by means of fractional programming tools
[16], such as the Dinkelbach’s algorithm [39]. This leads to the
general iterative procedure formulated in Algorithm 1 whose
convergence is proved in Appendix B.

Proposition 1. Algorithm 1 monotonically increases the GEE
value and converges to a point fulfilling the KKT conditions
of the original problem (28).

C. Weighted Minimum EE Maximization

The key difference between (28) and (29) is that the
objective function η in (29) involves K fractional functions
{ηk} rather than a single one. This makes (29) fall within
the framework of generalized fractional programming, which
studies the maximization of functions of multiple ratios. In
this more general scenario, Dinkelbach’s algorithm fails, even
assuming that each ratio {ηk} has a concave numerator and a
convex denominator. Instead, the problem can be tackled using
an extension of Dinkelbach’s algorithm known as Generalized
Dinkelbach’s algorithm (see Appendix A), which is guaranteed
to converge to the global solution of a max-min fractional
problem with limited complexity, provided each ratio has a
concave numerator and a convex denominator [40]. Next, we

5Recall that the log-sum-exp function is convex [38].

show how the generalized Dinkelbach’s procedure together
with sequential convex optimization can be successfully ap-
plied to solve (29).

To begin with, observe that the min(·) function is increasing
so that the inequality in (37) can be used to lower-bound the
solution to (29) as

η? ≥ η̃? = max
q∈Q

min
k=1,...,K

wkη̃k (45)

where

η̃k = B
[bk + ak log2 (αk) + akqk]

pc,k + 2qk
−

−B

[
ak log2

(
σ2
k + φk2qk +

∑
j 6=k ωkj2

qj
)]

pc,k + 2qk
(46)

and qk is still given by qk = log2 pk. Since each ratio in
(46) has a concave numerator and a convex denominator, η̃?

can be computed by means of the Generalized Dinkelbach’s
algorithm, and the maximization of η can be tackled as in
Algorithm 1, whose convergence is stated in the following
proposition and proved in Appendix C.

Proposition 2. Algorithm 1 monotonically increases the value
of η and converges to a point fulfilling the KKT conditions of
the epigraph-form representation of the original problem (29).

Remark 4. Algorithm 1 can be straightforwardly specialized
to maximize the system sum rate and the minimum of the users’
rates, since these two metrics coincide with the numerator of
the GEE and with the minimum of the numerators of the users’
EEs, respectively.

IV. DISTRIBUTED POWER CONTROL IN NETWORKS WITH
A SINGLE RESOURCE BLOCK

A decentralized power control algorithm looks for the
solution of the following coupled problems [17], [20], [23]:

arg max
pk∈Pk(p−k)

ηk(pk,p−k) ∀k (47)

where p−k = [p1, . . . , pk−1, pk+1, . . . , pK ]
T is the inter-

ference vector containing all powers except user k’s, and
Pk(p−k) is defined as in (31). This problem can be formulated
as the non-cooperative game in normal form:

G , {K, {Pk(p−k)}k , {ηk(pk,p−k)}k} (48)

where (in game theory parlance) K = [1, 2, . . . ,K] is the
set of players, Pk(p−k) is player k’s strategy set, uk(p) =
ηk(pk,p−k) is player k’s utility function. The K coupled
problems in (47) define the best-response dynamics (BRD)
of the game, while the solution of the k-th problem in (47) is
the k-th player’s best-response to the other players’ choices.
More formally, let us define the best response Bk (p−k) of
player k to an interference vector p−k (or, equivalently, µk as
easily follows from (11)) as

Bk (p−k) , arg max
pk∈Pk(p−k)

ηk (pk,p−k) . (49)

Any fixed point of the BRD is a Nash equilibrium of the game.
In general a non-cooperative game might admit zero, one, or
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more equilibria, and even if one or more equilibria exist, the
convergence of the BRD is not guaranteed. As a consequence,
crucial issues in the analysis of a non-cooperative game are
to establish the existence and uniqueness of an equilibrium,
and whether implementing the BRD eventually yields an
equilibrium. In our scenario, answering these questions is
more challenging due to the fact that, unlike regular non-
cooperative games, not only the utility functions, but also
the players’ strategy sets are mutually coupled, depending
on the other players’ actions p−k. A similar non-cooperative
game is termed a generalized non-cooperative game, and
more restrictive conditions have to be fulfilled for a (unique)
generalized Nash equilibrium (GNE) to exist and for the BRD
to converge. To begin with, the following result is given:

Lemma 2. If

pk ≥ γk
σ2
k +

∑
j 6=k ωkjpj

αk − φkγk
∀k (50)

then Bk(p−k) takes the form

Bk(p−k) = min
{
pk,max

{
p?k, pk

}}
(51)

wherein

p
k
(p−k) ,

γ
k

µk

(
1−

γ
k

γk

)−1
= γ

k

σ2
k +

∑
j 6=k ωkjpj

αk − φkγk
(52)

and

p?k , arg max
pk∈R+

ηk (pk,p−k) . (53)

Proof: The first part of the thesis easily follows from
rewriting the rate constraints γk ≥ γk (using (30)) as

pk ≥ γk
σ2
k +

∑
j 6=k ωkjpj

αk − φkγk
. (54)

Since pk ≤ pk for all k ∈ K, then

γ
k

σ2
k +

∑
j 6=k ωkjpj

αk − φkγk
≥ γ

k

σ2
k +

∑
j 6=k ωkjpj

αk − φkγk
. (55)

Hence, if ∀k ∈ K (50) holds, then there always exists a power
pk ∈ [0, pk] such that γk ≥ γk is fulfilled. The last part of the
proof follows by leveraging [20], where it is shown that for any
given p−k, ηk is unimodal and thus admits a unique maximizer
pk ∈ R+. Accounting for the power and rate constraints and
imposing (50) eventually yields (51).

A. Analysis of the Equilibria

The existence and uniqueness of the GNE points of G are
now studied under the assumption that (50) holds.

Proposition 3. The game G admits a nonempty set of GNE
points.

Proof: Observe that the existence of a GNE is guaranteed
under the following assumptions [41]:

1) The players’ feasible action sets Pk(p−k) are nonempty,
closed, convex, and contained in some compact set Ck
for all p−k ∈ P−k ≡

∏
` 6=k P`.

2) The sets Pk(p−k) vary continuously with p−k (in the
sense that the graph of the set-valued correspondence
p−k 7→ Pk(p−k) is closed).

3) Each user’s payoff function ηk(pk,p−k) is quasi-concave
in pk for all p−k ∈ P−k.

In our setting, if the sufficient condition (50) is satisfied, then
the sets Pk(p−k) are nonempty, convex,6 closed and bounded
for every p−k. Moreover, each of them varies continuously
with p−k since the rate constraint log2(1 + γk) ≥ θk in
Pk(p−k) is itself continuous in p−k. Finally, following [20]
ηk(pk,p−k) is proved to be strictly pseudo-concave since it
is given by the ratio between a strictly concave and an affine
function. Since any strictly pseudo-concave function is also
quasi-concave [16], the third condition is fulfilled.

The following result shows that a unique GNE exists, and
that the BRD always converges to such point.

Proposition 4. The game G admits a unique GNE point,
which can be obtained by starting from any feasible power
vector {pk}Kk=1 and iteratively updating the transmit powers
according to (51).

Proof: The proof builds upon the standard function frame-
work [42], which states that a non-cooperative game admits
a unique equilibrium (reachable by iteratively computing the
players’ best-responses) provided the game admits at least
one equilibrium and the best-response function is a standard
function.7 Since we have already shown that the game admits
a GNE (see Proposition 3), we are left with proving that (51)
is a standard function for all k. Towards this end, p?k(p−k) is
proved to be standard in [20, Appendix A]. As for the function
p
k
(p−k) in (52), it is non-negative because γ

k
≤ γk, and it

also fulfills the monotonicity property because it is increasing
in all {pj}j 6=k. As for the scalability property, take any β > 1,
then it holds

p
k
(βp−k) = βγ

k

σ2
k

β +
∑
j 6=k ωkjpj

αk − φkγk
(56)

< βγ
k

σ2
k +

∑
j 6=k ωkjpj

αk − φkγk
= βp

k
(p−k) . (57)

Finally, since both p?k(p−k) and p
k
(p−k) are standard func-

tions, and since pk does not depend on p−k, we may conclude
that (51) is also a standard function because both max(·) and
min(·) are increasing functions.

B. Distributed implementation

The best response of a generic player k is characterized in
the sequel to come up with an iterative algorithm that allows
each player to reach the GNE in a distributed manner. Toward
this end, let us first define

νk (x) , γk

[
1 +

x

2Bµk
(γk − gk (x))

]+
(58)

6Note that the constraint function log2(1 + γk) is concave in pk .
7Recall that a vector function g(p) is standard if it fulfills the properties

of i) non-negativity: g(p) ≥ 0 for all p; ii) monotonicity: g(p1) ≥ g(p2)
for all p1 � p2; iii) scalability: g(βp) < βg(p), for all p and β > 1.



9

Algorithm 2 Iterative algorithm to solve (47).
1: initialize i = 0 and ∀k pk[0] ∈ R+ in the feasible set
2: repeat
3: for k = 1 to K do
4: receive γk[i] from the serving access point
5: compute µk[i] using (64)
6: use µk[i] to update p

k
[i] in (63)

7: use µk[i] in (61) to run the Dinkelbach’s algorithm
8: set λ?

k[i] equal to the Dinkelbach’s output and update the
power as:

pk[i+ 1] = min
{
pk,max

{
πk (λ

?
k[i]) , pk[i]

}}
9: end for

10: update i = i+ 1
11: until convergence

and

gk (x) ,

√
γ2k +

4Bµk
x

(1 + γk) (59)

with µk and γk given by (11) and (12), respectively.

Lemma 3. For any given p−k (or, equivalently, µk), the
solution to (53) is found to be

p?k = πk (λ?k) ,
νk (λ?k)

µk

(
1− νk (λ?k)

γk

)−1
(60)

where λ?k is obtained through the Dinkelbach’s algorithm as
the solution of the following equation:

Blog2 (1 + νk (λ?k))− λ?k (pc,k + πk (λ?k)) = 0. (61)

Proof: The proof is given in Appendix D.
Denote by pk[i] the transmit power of the k-th player at the

i-th iteration step. By virtue of Proposition 4 and Lemma 3,
it follows that an iterative algorithm operating according to

pk[i+ 1] = min
{
pk,max

{
πk (λ?k[i]) , p

k
[i]
}}

(62)

where p
k
[i] is computed as (using (52))

p
k
[i] =

γ
k

µk[i]

(
1−

γ
k

γk

)−1
(63)

converges to the unique GNE of G, with µk[i] being the
equivalent channel gain in (11) at the i-th iteration step. The
pseudo-code is reported in Algorithm 2.

A close inspection of (58) – (61) and (63) reveals that the
computation of pk[i+1] through (62) only requires knowledge
of µk[i]. Although not available at the k-th terminal, this
information can be easily acquired taking into account that:

µk[i] =
γk[i]

pk[i]

(
1− γk[i]

γk

)−1
(64)

where γk[i] denotes the SINR of transmitter k measured at
its intended receiver at iteration i. Since pk[i] and γk are
locally available at the transmitter, the computation of µk[i]
only requires knowledge of γk[i]. The latter can be easily
estimated at the receiver and sent back to the corresponding
transmitter via a return downlink channel. Therefore, besides
being guaranteed to converge to the unique GNE, Algorithm 2
can also be implemented in a fully decentralized fashion.

V. CENTRALIZED POWER CONTROL IN NETWORKS WITH
MULTIPLE RESOURCE BLOCKS

In this section, we turn our attention to the case in which
each transmitter can use multiple resource blocks, i.e., N > 1.
Differently from the case in which N = 1, the rate constraints
in (8) and (9) are not in a convex form. Nevertheless, the
methodology used in Section III can be successfully extended
to find sufficient feasibility conditions and to derive low
complexity algorithms that converge to KKT points.

A. GEE maximization
Following the same steps of Section III-B, we leverage the

lower bound in (37) to obtain

ψ ≥ ψ̃ =

K∑
k=1

N∑
n=1

B [bk,n + ak,n log2 (αk,n) + ak,nqk,n]

pc +

K∑
k=1

N∑
n=1

2qk,n

−

K∑
k=1

N∑
n=1

B

ak,n log2

σ2
k,n+φk,n2qk,n +

∑
j 6=k

ωkj,n2qj,n


pc +

K∑
k=1

N∑
n=1

2qk,n

(65)

with qk,n = log2 pk,n. Although the numerator and denom-
inator of ψ̃ in (65) are again jointly concave and convex in
{qk,n}k,n (as in the case of a single resource block), the rate
constraints in (8) are not in a convex form yet, due to the sum
over the multiple resource blocks. To overcome this issue, we
resort to the same trick and lower-bound the LHS of the rate
constraint by the concave function,
N∑
n=1

log2(1 + γk,n) ≥
N∑
n=1

[bk,n + ak,n log2 (αk,n) + ak,nqk,n]

−
N∑
n=1

ak,n log2

σ2
k,n+φk,n2qk,n +

∑
j 6=k

ωkj,n2qj,n

=R̃k.

(66)

Finally, we may write

ψ? ≥ ψ̃? = max
q∈Q

ψ̃ (67)

with Q =
∏K
k=1Qk and Qk being now given by

Qk =

{
qk ∈ RN :

N∑
n=1

2qk,n ≤ pk, R̃k ≥ θk

}
. (68)

The solution to the above problem can be computed by means
of Dinkelbach’s algorithm, which leads to the power allocation
procedure illustrated in Algorithm 3. Using similar arguments
as in Proposition 1, the following result can be proved:8

Proposition 5. Algorithm 3 monotonically increases the GEE
value and converges to a point fulfilling the KKT conditions
of the original non-convex problem (8).

8As observed in the proof of Proposition 2, the sequential convex optimiza-
tion tool allows us to find a KKT point of the original problem also when the
constraint functions are lower-bounded together with the objective.
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Algorithm 3 Network-centric EE maximization for N > 1

1: Set i = 0 and choose a starting point p(0);
2: For any k and n, set γ̃(0)

k,n = γ
(0)
k,n(p

(0)) and compute a(0)k,n and
b
(0)
k,n as in (38);

3: if (67) or (71) is unfeasible then
4: break
5: end if
6: repeat
7: i = i+ 1;
8: if GEE then
9: Solve (67) with parameters a(i−1)

k,n and b
(i−1)
k,n and set

{q(i)k,n} = argmax ψ̃i, p
(i)
k,n = 2

q
(i)
k,n ;

10: end if
11: if Minimum EE then
12: Solve (71) with parameters a

(i)
k,n and b

(i)
k,n and set

{q(i)k,n} = argmax η̃
i
, p(i)k,n = 2

q
(i)
k,n ;

13: end if
14: γ̃

(i)
k,n = γk,n(p

(i)) and compute a(i)k,n and b(i)k,n as in (38);
15: until convergence

B. Weighted minimum EE maximization

A similar approach as in Section V-A can be used to solve
(9). In particular, exploiting the fact that the min(·) function
is increasing, using (37), and setting pk,n = 2qk,n allows us
to lower-bound η as

η ≥ min
k=1,...,K

wkη̃k = η̃ (69)

where

η̃k =

∑N
n=1B [bk,n + ak,n log2 (αk,n) + ak,nqk,n]

pc,k +
∑N
n=1 2qk,n

−

∑N
n=1B

[
ak,n log2

(
σ2
k,n + φk,n2qk,n +

∑
j 6=k ωkj,n2qj,n

)]
pc,k +

∑N
n=1 2qk,n

.

(70)

Then, we have that

η? ≥ η̃? = max
q∈Q

min
k=1,...,K

wkη̃k. (71)

Observe that η̃k in (70) has a concave numerator and a
convex denominator, meaning that (71) can be globally solved
by means of the Generalized Dinkelbach’s algorithm. The
resulting power allocation procedure is given in Algorithm 3.
By a similar reasoning as in Proposition 2, the following result
can be proved.

Proposition 6. Algorithm 3 monotonically increases the η
value and converges to a point fulfilling the KKT conditions
of the epigraph-form representation of the original non-convex
problem (9).

Remark 5 (Feasibility of (8) and (9)). Observe that Line 3
in Algorithm 3 is also a sufficient feasibility test for (8) and
(9) since both are guaranteed to be feasible provided (67)
and (71) are feasible, which can be checked by means of a
convex feasibility test. Moreover, this implies that (67) and
(71) will remain feasible for all iterations of Algorithm 3.
Observe also that similar necessary and sufficient feasibility

conditions as in Section III can in principle be derived if per-
resource-block QoS constraints are considered. This amounts
to enforcing log2(1 + γk,n) ≥ θk,n with θk,n being such that∑N
n=1 θk,n = θk, for all k, with {θk}k given target rates.

VI. DISTRIBUTED POWER CONTROL IN NETWORKS WITH
MULTIPLE RESOURCE BLOCKS

As done for the single resource block case, we define

νk,n (x) ,
γk,n
2µk,n

[
2µk,n +

x

B

(
γk,n − gk,n (x)

)]+
(72)

and

gk,n (x) ,

√
γ2k,n +

4Bµk,n
x

(
1 + γk,n

)
. (73)

Let us also define p
k

as the power vector minimizing the
transmit power while satisfying the rate constraints. Mathe-
matically, we have that:

p
k
, arg max

pk∈RN
+

1Tpk (74)

subject to
N∑
n=1

log2(1 + γk,n)− θk ≥ 0

from which (using the same arguments of Appendix D) one
gets:

p
k,n

= πk,n (λk) ∀n (75)

with λk being such that:
N∑
n=1

log2 (1 + νk,n (λk))− θk = 0 (76)

and

πk,n (x) ,
νk,n (x)

µk,n

(
1− νk,n (x)

γk,n

)−1
. (77)

Lemma 4. For any given p−k, the entries of Bk(p−k) ∈ RN+
are found to be

[Bk(p−k)]n = min
{
pk,n,max

{
πk,n (λ?k) , p

k,n

}}
(78)

where λ?k is obtained through the Dinkelbach method as the
solution of the following equation:
N∑
n=1

Blog2 (1 + νk,n (λ?k))−λ?k

(
pc,k +

N∑
n=1

πk,n (λ?k)

)
=0.

(79)

Proof: The proof relies on similar arguments (omitted for
space limitations) of those in Appendix D for N = 1.

Observe that (78) can be equivalently rewritten as (since
πk,n (·) in (77) is a strictly decreasing function):

[Bk(p−k)]n = πk,n (λ′k) (80)

with

λ′k , max
{
λk,min {λ?k, λk}

}
(81)

and λk such that ∀n πk,n
(
λk
)

= pk,n. A sufficient condition
for (80) (or, equivalently, for (78)) to be a contraction mapping
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Algorithm 4 Algorithm to reach the GNE of G for N > 1.
1: initialize i = 0 and ∀k, n pk,n[0] ∈ R+ in the feasible set
2: repeat
3: for k = 1 to K do
4: receive {γk,n[i]}n from the intended receiver
5: compute {µk,n[i]}n using (84)
6: use {µk,n[i]}n to compute λk in (76) by means of the

Dinkelbach algorithm
7: use λk to update {p

k,n
[i]}n in (75)

8: use {µk,n[i]}n in (79) to run the Dinkelbach algorithm
9: set λ?

k[i] equal to the Dinkelbach output and update the
power as:

pk,n[i+ 1] = min
{
pk,n,max

{
πk,n (λ?

k[i]) , pk,n[i]
}}

10: end for
11: update i = i+ 1
12: until ∀k, n pk,n[i] = pk,n[i− 1]

is provided in the following proposition (see Appendix E for
the proof), thus ensuring the existence and uniqueness of a
GNE for G when N > 1, and the convergence of the BRD.

Proposition 7. The EE game G admits a unique GNE and the
BRD converges to such equilibrium whenever, for all k

K∑
j=1
j 6=k

N∑
n=1

ω2
kj,n sup

µk∈Ωk

 ∑
`,n∈S?

k

[
sk,n1n=` +

γk,n
gk,n

ξk,`

]2<1 (82)

where Ωk ,
∏N
n=1 (0, αk,n] and ξk,` ,

µ2
k,`

αk,`

∂(1/λ′k)
∂µk,`

whereas
S?k , {n = 1, . . . , N : µk,n > λ′k} and sk,n is defined as

sk,n , γk,n
gk,n (λ′k)− (2 + γk,n)

2αk,n
(
1 + γk,n

) −
γk,nµk,n

λ′kαk,ngk,n (λ′k)
. (83)

Similarly to the single resource block case, denote by pk,n[i]
the transmit power of the k-th player over block n at the i-th
iteration step and, accordingly, compute µk,n[i] as follows:

µk,n[i] =
γk,n[i]

pk,n[i]

(
1− γk,n[i]

γk

)−1
(84)

with γk,n[i] being the SINR of transmitter k over block n
measured at its intended receiver at iteration i. From the
results of Proposition 7, it follows that the iterative procedure
illustrated in Algorithm 4 converges to the unique GNE of G,
and can be implemented in a fully decentralized fashion.

VII. NUMERICAL RESULTS

Numerical results are now given to assess the performance
of the proposed solutions. To this end, two case-studies
are considered, namely, a hardware-impaired massive MIMO
system and a multi-carrier relay-assisted interference network.

A. Hardware-Impaired Massive MIMO System

Consider the uplink of a massive MIMO system as described
in Section II-C1, with K = 5, S = 1, and M = 50. The
communication bandwidth is B = 1 MHz, and MRC is used
for data recovery under the assumption of perfect channel
estimation. We also set ε = 1, thereby considering that no
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Figure 1. K = 5;M = 50; τ = 10−2. Probability of feasibility Pf versus
P with minimum per user-rate constraints: (a) R = 15%; (b) R = 20%;
(c) R = 25%; (d) R = 30%.

hardware impairments are present at the UEs. However, we
assume that hardware impairments are present at the BS, and
we denote by εBS the resulting error magnitude. As observed
in Section II-C1, this scenario results again in an SINR as in
(1). Indeed, following [43] and by similar steps as in Section
II-C1, the k-th UE’s SINR is written as in (1) with

αk =
∣∣hHk hk

∣∣2 , φk = ε2BShHk Dkhk (85)

ωkj = |hHk hj |2 + ε2BShHk Djhk (86)

with Dj = diag({|hj(m)|2}Mm=1) and σ2
k = σ2hHk hk.

All channels are generated according to the Rayleigh fading
model with path-loss model as in [44]. All UEs have the
same maximum feasible power pk = P ∀k and hardware-
dissipated power pc,k = 10 dBm ∀k. The receive noise power
is σ2 = FBN0, with F = 3 dB and N0 = −174 dBm/Hz.
The minimum rate constraint θk is set as a percentage Rk%
of the maximum rate that user k can achieve when pk →∞,
while the other users’ powers are finite, namely:

θk =
Rk
100

log2(1 + γk) =
Rk
100

log2

(
1 +

αk
φk

)
(87)

For simplicity, we assume Rk% = R% for all users k.
We begin by analyzing the feasibility probability Pf of the

EE maximization problems as a function of P for different
values of R. The results are obtained by averaging over 5 ·104

independent scenarios of users’ drops and channel coefficients.
As seen, Pf approaches 1 for realistic values of P up to
25% of the maximum rate, whereas for R = 30% the typical
transmit power levels which are used in the uplink of present
cellular systems, are not enough to ensure a high Pf .

Next, we analyze the system performance in terms of
EE and data rate. Fig. 2 shows the average GEE for the
following resource allocation policies: (a) Algorithm 1 with
R = 20%; (b) Algorithm 1 without QoS constraints, i.e.
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Table II
K = 5;M = 50; τ = 10−2 . AVERAGE NUMBER OF REQUIRED ITERATIONS TO REACH CONVERGENCE VERSUS Pmax FOR: (A) ALGORITHM 1 FOR GEE

MAXIMIZATION WITH R = 20%; (B) ALGORITHM 1 FOR GEE MAXIMIZATION WITH R = 0%; (C) ALGORITHM 2 FOR DISTRIBUTED RESOURCE
ALLOCATION WITH R = 20%; (D) ALGORITHM 2 FOR DISTRIBUTED RESOURCE ALLOCATION WITH R = 0%.

Maximum power P [dBW]
P = −38 P = −34 P = −30 P = −26 P = −22 P = −18 P = −14 P = −10

Algorithm 1. R = 0% 2.63 3.69 4.68 6.30 6.53 6.49 6.50 6.51
Algorithm 1. R = 20% 2.63 3.67 4.87 6.68 6.70 6.76 6.76 6.77
Algorithm 2. R = 0% 1 1.01 1.07 1.42 2.54 3.66 4.12 4.50

Algorithm 2. R = 20% 1 1.01 1.07 1.42 2.54 3.67 4.19 6.71
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(a) Algorithm 1. R = 20%
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(c) Algorithm 1 for sum-rate maximization
(d) Maximum power allocation

Figure 2. K = 5;M = 50; τ = 10−2. Average achieved GEE versus P
for: (a) Algorithm 1 for GEE maximization with R = 20%; (b) Algorithm 1
for GEE maximization with R = 0%; (c) sum-rate maximization by adapted
Algorithm 1; (d) Maximum transmit power allocation.

R = 0%; (c) Algorithm 1 specialized to maximize the sum-
rate; (d) Maximum power allocation, i.e. pk = P for all k,
considered as a baseline scheme. In scheme (a), if the problem
turns out to be unfeasible, the QoS constraint is relaxed and
the solution from scheme (b) is taken. For low values of P ,
this circumstance is very frequent, and indeed schemes (a) and
(b) perform similarly. At the same time, schemes (b) and (c)
also perform similarly for low P , thus suggesting that in this
range of P , GEE and sum-rate maximization are equivalent.
Instead, different performance are achieved for larger values
of P . Indeed, increasing P eventually allows attaining the
peak of the GEE. At this point, the GEE achieved by scheme
(b) remains constant, as using the excess transmit power
would only decrease the GEE. Indeed, the GEE achieved
by scheme (c) decreases, because this scheme makes use of
the excess transmit power to maximize the sum-rate. Instead,
scheme (a) strikes a balance between these two extremes.
Some of the excess power is used to fulfill the QoS constraints,
which results in a slightly lower GEE. However, once the
constraints are met, the transmit power is not further increased
and the achieved GEE keeps constant. We remark that this
slight reduction of the GEE grants a higher minimum rate.
In particular, in the saturation region of the GEE, the average
minimum rate granted by scheme (b) is 1.6 [bit/s/Hz/user],
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Figure 3. K = 5;M = 50; τ = 10−2. Average achieved minimum users’
energy efficiency versus P for: (a) Algorithm 1 for Min-EE maximization
with R = 20%; (b) Algorithm 1 for Min-EE maximization with R = 0%;
(c) Min-rate maximization by adapted Algorithm 1.

whereas it increases to 2.35 [bit/s/Hz/user] when scheme (a)
is used.

Similar considerations can also be made when Algorithm 1
is used to maximize the minimum of the users’ EEs. Fig.
3 compares the minimum EE (with wk = 1 for all k)
versus P , achieved by: (a) Algorithm 1 with R = 20%; (b)
Algorithm 1 with R = 0%; (c) min-rate maximization by
adapted Algorithm 1. The results show a similar behavior as
for Fig. 2.

Fig. 4 compares the GEE performance of the centralized
Algorithm 1 and of its distributed counterpart Algorithm 2 for
R = 0% and 20%. We observe that, while the centralized
scheme suffers a little performance gap in terms of GEE
when QoS constraints are introduced, having minimum rate re-
quirements causes a larger GEE degradation in the distributed
scenario, especially for increasing P . This is expected because
unlike the centralized scheme, in the distributed setting the
interference among the users is not jointly managed, which
results in high multi-user interference, especially for large P .

Table II shows the average number of iterations required by
Algorithms 1 and 2 to converge when R = 0% and R = 20%.
Convergence is declared when ‖q(i) − q(i−1)‖2/‖q(i)‖2 ≤
10−4. It is seen that both algorithms converge after a small
number of iterations, which slightly increases for larger values
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Figure 4. K = 5;M = 50; τ = 10−2. Average achieved GEE versus P
for: (a) Algorithm 1 for GEE maximization with R = 20%; (b) Algorithm 1
for GEE maximization with R = 0%; (c) Algorithm 2 for distributed resource
allocation with R = 20%; (d) Algorithm 2 for distributed resource allocation
with R = 0%.

of P . This is because increasing P results in a larger feasible
set. Observe that the distributed algorithm exhibits faster con-
vergence than the centralized one. This makes it particularly
suitable for self-organizing networks.

B. Relay-assisted OFDMA interference network

Consider a relay-assisted multi-cell network as described in
Section II-C2. Assume S = 3, N = 16, K = 3, M = 3, and
B = 180 kHz. The UEs are placed at a distance from the relay
randomly generated in the interval [100; 300] m and the same
path-loss model and noise parameters as for previous figures
are used.

Fig. 5 reports the GEE versus P achieved by the following
resource allocation algorithms: a) Algorithm 3 with R = 20%;
b) Algorithm 3 with R = 0%; c) Algorithm 4 with R = 20%;
d) Algorithm 4 with R = 0%; e) Algorithm 3 specialized to
maximize the sum-rate. If the problems with QoS constraints
happen to be infeasible, the solution of the corresponding
scheme with R = 0% is taken. Similar remarks can be made
as for the massive MIMO system. In particular, by introducing
QoS constraints we trade-off a slight reduction in GEE with
a significant increase of the users’ minimum rate, which,
for the simulated scenario, increases from 3.8 [bit/s/Hz/user]
when R = 0%, to 7.16 [bit/s/Hz/user] when R = 20%. As
for the comparison between the centralized and decentralized
approaches, we observe that the gap is rather limited in this
scenario. This might be due to both the channel diversity
granted by the use of multiple sub-carriers and to the rather
limited number of non-cooperating transmitters. Indeed, it is
known that that a limited number of players tend to result in
a lower price-of-anarchy in game-theoretic settings [45].
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Figure 5. K = 3;N = 16,M = 3. Average achieved GEE versus P for:
(a) Algorithm 3 for GEE maximization with R = 20%; (b) Algorithm 3 for
GEE maximization with R = 0%; (c) Algorithm 4 for distributed resource
allocation with R = 20%; (d) Algorithm 4 for distributed resource allocation
with R = 0%; (e) sum-rate maximization by adapted Algorithm 3.

C. Computational complexity discussion

The computational complexity of the proposed algorithms
depends on the number of iterations required to reach con-
vergence as well as on the complexity of each iteration.
A theoretical analysis for the number of iterations to reach
convergence is very challenging. In fact, no theoretical results
are available also for simpler scenarios than energy efficiency
maximization. To overcome this problem, we have resorted to
a numerical analysis. From Table II, it follows that the number
of outer iterations for the single-resource-block case is very
limited for both centralized and distributed algorithms (the
latter require a slightly lower number of iterations). Similar
results are obtained also in the multi-resource-block setting.
The complexity of each iteration is analyzed in the following.
The centralized algorithms are considered first.

1) Centralized Algorithms: We begin by observing that
the complexity of the centralized algorithms depends on the
complexity of each fractional problem to solve. To fix ideas,
let us consider the maximization of the GEE – similar consid-
erations apply to the maximization of the Min-EE. Although
there exist several different methods to solve fractional pro-
gramming problems, the most widely used is the Dinkelbach’s
algorithm. As shown in Algorithm 5, Dinkelbach’s algorithm
works by finding the solution of an auxiliary problem in each
iteration, say x∗n, and then updating the parameter λ as λn =
f(x∗n)/g(x∗n). One well-known result of the Dinkelbach’s
algorithm is that the sequence {λn}n converges with a super-
linear rate. Moreover, this convergence rate does not depend on
the complexity required to compute x∗n. In this respect, observe
also that the auxiliary problems to obtain {x∗n} are convex and
therefore can be solved with polynomial complexity in the
number of variables and constraints (which are KN and 2K,
respectively). Putting all these facts together, we can conclude
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that the centralized algorithms have a polynomial complexity
in each stage. This makes them of affordable complexity.

2) Decentralized Algorithms: As for the distributed case,
a similar analysis can be performed since the proposed al-
gorithms consist of an outer loop, which requires to solve
at each stage K fractional problems with N variables and 2
constraints. Following the above arguments, we can state that
the algorithms have a polynomial complexity in each stage.
Observe that the complexity of each stage does not depend
on K (as in the centralized case) but only on the number of
resource blocks N and on the number of constraints (which
is two). The parameter K only scales the complexity of each
iteration in a multiplicative way.

VIII. CONCLUSION

In this paper, we have proposed a framework to develop
centralized and decentralized power control algorithms for
EE optimization in wireless networks. Unlike most previous
related works, we have considered rate constraints and a more
general SINR expression so as to encompass emerging 5G
technologies. The resulting optimization problems have been
tackled by an interplay of fractional programming, sequential
convex optimization, and game theory. This has allowed us
to derive centralized algorithms achieving first-order optimal
points of the GEE and of the minimum of the users’ EEs,
and to develop decentralized algorithms that have been shown
to converge to the GNE of the associated game. The analysis
above has been performed in the case in which a single or
multiple resource blocks are used for transmission. Numerical
results have been used to corroborate the theoretical results.
For this purpose, two case-studies have been considered: a
hardware-impaired massive MIMO network and a multi-cell
multi-carrier relay-assisted network.

The numerical analysis indicates that the centralized algo-
rithms are quite robust to the enforcement of demanding rate
constraints. Instead, the distributed algorithms are more sen-
sitive to rate constraints, especially for increasing maximum
feasible powers, due to the lack of centralized interference
management. Also, the centralized algorithms perform better
than their distributed counterparts, both with and without
rate constraints, at the expense of a higher computational
complexity and feedback requirements.

An important follow-up of this work is to analyze the
gap between the proposed centralized framework and the
global optimum of the GEE and minimum EE. To this end,
an optimization framework is required, which allows one to
effectively determine the global solution of energy-efficient
optimization problems in interference-limited networks. This
is a challenging problem, which is still much open. An attempt
in this direction is taken in [46], wherein tools borrowed from
monotonic optimization theory, fractional programming, and
sequential optimization are combined together to characterize
the global maximum of the energy efficiency in interference-
limited wireless networks.

APPENDIX A
Major concepts from fractional programming are reviewed

here. For a more comprehensive overview, we refer to [16].

Definition 1 (Fractional program). Let C ⊆ Rn be a convex
set, and consider the functions f : C → R and g : C → R+.
A fractional program is the optimization problem

max
x∈C

f(x)

g(x)
. (88)

Proposition 8 ([39]). An x∗ ∈ C solves (88) if and only if
x∗ = arg maxx∈C {f(x)−λ∗g(x)}, with λ∗ being the unique
zero of F (λ) = maxx∈C {f(x)− λg(x)}.

This result allows us to solve (88) by finding the zero of
F (λ). An efficient algorithm to do so is the Dinkelbach’s
algorithm [39], reported in Algorithm 5 for the reader’s conve-
nience. If f(x) and g(x) are concave and convex, respectively,
then the Dinkelbach’s algorithm requires to solve one convex
problem in each iteration.9 Moreover, the convergence rate of
Dinkelbach’s algorithm is known to be super-linear [39].

Algorithm 5 Dinkelbach’s algorithm
Set ε > 0; λ = 0;
repeat

x∗ = argmaxx∈C {f(x)− λg(x)}
F = f(x∗)− λg(x∗);
λ = f(x∗)/ g(x∗);

until F ≤ ε

A considerable extension of (88) is to consider the maxi-
mization of the minimum of a set of ratios {fi(x)/gi(x)}Ii=1.
This problem is usually referred to as generalized fractional
programming, and has been first studied in [40], wherein an
optimization procedure is provided, based on a modification
of Dinkelbach’s algorithm. Specifically, the auxiliary function
to be considered is F (λ) = min1≤i≤I {fi(x)− λgi(x)}, and
the algorithm works as shown in Algorithm 6.

Algorithm 6 Generalized Dinkelbach’s algorithm
Set ε > 0; λ = 0;
repeat

x∗ = argmaxx∈C {min1≤i≤I [fi(x)− λgi(x)]};
F = min1≤i≤I {fi(x∗)− λgi(x∗)};
λ = min1≤i≤I fi(x

∗)/ gi(x
∗);

until F < ε

Then, if each ratio has a concave numerator and a convex
denominator, we can solve the generalized fractional problem
by solving a sequence of convex problems,10 with a linear
convergence rate [40].

APPENDIX B

In the i-th iteration of Algorithm 1, we solve (41) and
compute the corresponding vector p(i) of transmit powers,
which maximizes the lower-bound ψ̃i at the i-th iteration, as
given by (39), subject to the same constraints of the original
problem (28). Then, the following chain of inequalities holds

ψ(p(i)) ≥ ψ̃i(p(i)) ≥ ψ̃i(p(i−1)) = ψ(p(i−1)) (89)

9It is also required that λ ≥ 0 in each iteration. This can be shown to always
hold if the algorithm starts with λ = 0, and provided maxx f(x) ≥ 0.

10Observe that the minimum of concave functions is also concave [38].
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wherein the first inequality follows because ψ̃i is a lower-
bound of ψ, the second inequality follows because p(i) is the
maximizer of ψ̃i, while the final equality holds because the
parameters a(i)k and b(i)k in ψ̃i are such that the bound is tight
in p(i−1). As a consequence of (89), the value of ψ increases
after each iteration, and the algorithm must converge because
ψ is upper-bounded.

Next, let us denote by ψ̃ and p̃ the lower-bound of ψ and the
power vector at convergence. By construction, p̃ maximizes
ψ̃ subject to the same constraints of the original problem
(28), and therefore fulfills the associated KKT conditions.
Such KKT conditions are the same as the KKT conditions
of the original problem (28), except for the different objective
function. However, upon convergence of Algorithm 1, we have
ψ̃(p̃) = ψ(p̃) and ∇ψ̃(p̃) = ∇ψ(p̃), and the thesis follows.

APPENDIX C
The first part of the proof follows along the same lines of

Proposition 1. As for the KKT conditions, we remark that in
this case we can not directly consider the KKT conditions of
(29), because the objective of (29) is not differentiable. We
can remove the non-differentiability by expressing (29) in its
equivalent epigraph form:

max
{t∈R+,p∈P}

t subject to ηk ≥ t ∀k. (90)

Now, let us consider a modified version of Algorithm 1, which
operates on (90) rather than on (29). In each iteration of this
modified Algorithm 1, (37) is again used to lower-bound ηk
with η̃k. This amounts to solving an approximation of (90),
with η̃k in place of ηk, and updating the parameters a

(i)
k

and b
(i)
k as in Algorithm 1. Following similar arguments as

in the proof of Proposition 1, it follows that this modified
version of Algorithm 1 converges to a point fulfilling the
KKT conditions of (90), the only difference being that now the
lower-bound is computed for the constraint function ηk rather
than for the objective function. However, since ηk ≥ η̃k, the
solution of the approximate problem is always in the feasible
set of (90). Moreover, upon convergence, ηk and η̃k are equal,
and so are their gradients. Therefore, the modified version
of Algorithm 1 yields a power vector fulfilling the KKT
conditions of (90). Observe now that replacing ηk with η̃k in
(90) yields the epigraph form of (45), i.e., the problem which
is solved in each iteration of Algorithm 1 by the Generalized
Dinkelbach’s method. Hence, Algorithm 1 and its modified
version (considered in this proof) converge to the same power
allocation vector p̃, and hence the thesis.

APPENDIX D
Using [8, Sect. II.A], it follows that solving the EE problem

(47) is equivalent to finding the root of the nonlinear function

Φ(λk) = max
pk∈R+

{Blog (1 + γk)− λk (pc,k + pk)} (91)

where λ?k ∈ R+ is such that Φ(λ?k) = 0 and can be
obtained through the Dinkelbach’s algorithm. Setting to zero
the derivative of (91) with respect to pk yields:

B

1 + γk

∂γk
∂pk
− λk = 0. (92)

From (15), using (14) one gets ∂γk/∂pk = µk(1− γk
γk

)2, from
which (92) reduces to:

Bµk
1 + γk

(
1− γk

γk

)2

− λk = 0. (93)

In the attempt of solving (91), let us study the properties
of (93) as a function of γk. This amounts to studying
fk(γk) = 0 with fk(γk) = Bµkγ

2
k −

(
2Bµkγk + λkγ

2
k

)
γk +

γ2k (Bµk − λk). The first derivative of fk(γk) with respect to
γk is

∂fk(γk)

∂γk
= 2Bµk (γk − γk)− λkγ2k < 0 (94)

where the last inequality follows since 0 ≤ γk ≤ γk, and
µk ≥ 0, λk > 0, and γk > 0. As a consequence, fk(γk) is
a strictly decreasing function, which admits a solution if and
only if fk(0) ≥ 0 and fk(γk) ≤ 0 (with the equalities not
simultaneously active). Since fk(γk) = −λkγ2k (1 + γk) < 0,
we need to ensure fk(0) = γ2k (Bµk − λk) ≥ 0. This trans-
lates into Bµk ≥ λk. By solving the second-order equation
fk(γk) = 0, one gets γk = νk (λk) where νk (x) is defined in
(58). Plugging γk = νk (λk) into (14) yields (60).

APPENDIX E

Rewrite µk,n in (11) as µk,n = αk,n/(σ
2
k,n + Ik,n) where

Ik,n =
∑
j 6=k ωkj,npj,n. Using [17, Theorem 4], the GNE is

unique if ‖∂Ik/∂p−k‖ supIk∈RN
+
‖Bk(p−k)/∂Ik‖ < 1, for all

k. with Ik = [Ik,1, . . . , Ik,N ]T . From [17, Eq. (19)], we have

‖∂Ik/∂p−k‖ =

√√√√ K∑
j=1,j 6=k

N∑
n=1

ω2
kj,n (95)

‖∂Bk(p−k)/ ∂Ik‖ =

√
N∑̀
=1

N∑
n=1
|∂πk,n(λ′k) /∂Ik,` |2. (96)

Observe now that πk,n(λ′k) > 0 when µk,n > λ′k (see
Appendix D). After lengthy computations (not shown for space
limitations), one gets

∂p?k,n
∂Ik,`

=
[
sk,n1n=` +

γk,n
gk,n (λ′k)

ξk,`

]
1µk,n>λ′k

(97)

where we have defined (for notational compactness) sk,n as
in (83), whereas ξk,` is defined in the text of Proposition 7.
Plugging (97) into the RHS of (96) yields√√√√∑

`∈S?
k

∑
n∈S?

k

[
sk,n1n=` +

γk,n
gk,n (λ′k)

ξk,`

]2
(98)

where S?k , {n = 1, . . . , N : µk,n > λ′k}. Putting all the
above results together, Proposition 7 follows.
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