718 research outputs found

    A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat.

    Get PDF
    Confirmation of pregnancy viability (presence of fetal cardiac activity) and diagnosis of fetal presentation (head or buttock in the maternal pelvis) are the first essential components of ultrasound assessment in obstetrics. The former is useful in assessing the presence of an on-going pregnancy and the latter is essential for labour management. We propose an automated framework for detection of fetal presentation and heartbeat from a predefined free-hand ultrasound sweep of the maternal abdomen. Our method exploits the presence of key anatomical sonographic image patterns in carefully designed scanning protocols to develop, for the first time, an automated framework allowing novice sonographers to detect fetal breech presentation and heartbeat from an ultrasound sweep. The framework consists of a classification regime for a frame by frame categorization of each 2D slice of the video. The classification scores are then regularized through a conditional random field model, taking into account the temporal relationship between the video frames. Subsequently, if consecutive frames of the fetal heart are detected, a kernelized linear dynamical model is used to identify whether a heartbeat can be detected in the sequence. In a dataset of 323 predefined free-hand videos, covering the mother's abdomen in a straight sweep, the fetal skull, abdomen, and heart were detected with a mean classification accuracy of 83.4%. Furthermore, for the detection of the heartbeat an overall classification accuracy of 93.1% was achieved

    Temporal HeartNet: Towards Human-Level Automatic Analysis of Fetal Cardiac Screening Video

    Full text link
    We present an automatic method to describe clinically useful information about scanning, and to guide image interpretation in ultrasound (US) videos of the fetal heart. Our method is able to jointly predict the visibility, viewing plane, location and orientation of the fetal heart at the frame level. The contributions of the paper are three-fold: (i) a convolutional neural network architecture is developed for a multi-task prediction, which is computed by sliding a 3x3 window spatially through convolutional maps. (ii) an anchor mechanism and Intersection over Union (IoU) loss are applied for improving localization accuracy. (iii) a recurrent architecture is designed to recursively compute regional convolutional features temporally over sequential frames, allowing each prediction to be conditioned on the whole video. This results in a spatial-temporal model that precisely describes detailed heart parameters in challenging US videos. We report results on a real-world clinical dataset, where our method achieves performance on par with expert annotations.Comment: To appear in MICCAI, 201

    Machine Learning in Fetal Cardiology: What to Expect

    Get PDF
    In fetal cardiology, imaging (especially echocardiography) has demonstrated to help in the diagnosis and monitoring of fetuses with a compromised cardiovascular system potentially associated with several fetal conditions. Different ultrasound approaches are currently used to evaluate fetal cardiac structure and function, including conventional 2-D imaging and M-mode and tissue Doppler imaging among others. However, assessment of the fetal heart is still challenging mainly due to involuntary movements of the fetus, the small size of the heart, and the lack of expertise in fetal echocardiography of some sonographers. Therefore, the use of new technologies to improve the primary acquired images, to help extract measurements, or to aid in the diagnosis of cardiac abnormalities is of great importance for optimal assessment of the fetal heart. Machine leaning (ML) is a computer science discipline focused on teaching a computer to perform tasks with specific goals without explicitly programming the rules on how to perform this task. In this review we provide a brief overview on the potential of ML techniques to improve the evaluation of fetal cardiac function by optimizing image acquisition and quantification/segmentation, as well as aid in improving the prenatal diagnoses of fetal cardiac remodeling and abnormalities

    Spatio-Temporal Partitioning And Description Of Full-Length Routine Fetal Anomaly Ultrasound Scans

    Get PDF
    This paper considers automatic clinical workflow description of full-length routine fetal anomaly ultrasound scans using deep learning approaches for spatio-temporal video analysis. Multiple architectures consisting of 2D and 2D + t CNN, LSTM, and convolutional LSTM are investigated and compared. The contributions of short-term and long-term temporal changes are studied, and a multi-stream framework analysis is found to achieve the best top-l accuracy =0.77 and top-3 accuracy =0.94. Automated partitioning and characterisation on unlabelled full-length video scans show high correlation (ρ=0.95, p=0.0004) with workflow statistics of manually labelled videos, suggesting practicality of proposed methods

    Big Data Classification of Ultrasound Doppler Scan Images Using a Decision Tree Classifier Based on Maximally Stable Region Feature Points

    Get PDF
    The classification of ultrasound scan images is important in monitoring the development of prenatal and maternal structures. This paper proposes a big data classification system for ultrasound Doppler scan images that combines the residual of maximally stable extreme regions and speeded up robust features (SURF) with a decision tree classifier. The algorithm first preprocesses the ultrasound scan images before detecting the maximally stable extremal regions (MSER). A few essential regions are chosen from the MSER regions, along with the residual region that provides the best Region of Interest (ROI). SURF features points that best represent the region are detected using the gradient of the estimated cumulative region of interest. To extract the feature from the pixels that surround the SURF feature points, the Triangular Vertex Transform (TVT) transform is used. A decision tree classifier is used to train the extracted TVT features. The proposed ultrasound scan image classification system is validated using performance parameters such as accuracy, specificity, precision, sensitivity, and F1 score. For validation, a large dataset of 12,400 scan images collected from 1792 patients is used. The proposed method has an F1score of 94.12%, sensitivity, specificity, precision, and accuracy of 93.57%, 93.57%, and 97.96%, respectively. The evaluation results show that the proposed algorithm for classifying Doppler scan images is better than other algorithms that have been used in the past.&nbsp

    Automatic Probe Movement Guidance for Freehand Obstetric Ultrasound

    Full text link
    We present the first system that provides real-time probe movement guidance for acquiring standard planes in routine freehand obstetric ultrasound scanning. Such a system can contribute to the worldwide deployment of obstetric ultrasound scanning by lowering the required level of operator expertise. The system employs an artificial neural network that receives the ultrasound video signal and the motion signal of an inertial measurement unit (IMU) that is attached to the probe, and predicts a guidance signal. The network termed US-GuideNet predicts either the movement towards the standard plane position (goal prediction), or the next movement that an expert sonographer would perform (action prediction). While existing models for other ultrasound applications are trained with simulations or phantoms, we train our model with real-world ultrasound video and probe motion data from 464 routine clinical scans by 17 accredited sonographers. Evaluations for 3 standard plane types show that the model provides a useful guidance signal with an accuracy of 88.8% for goal prediction and 90.9% for action prediction.Comment: Accepted at the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020

    Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes

    Get PDF
    The goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available) was collected from two different hospitals by several operators and ultrasound machines. All images were manually labeled by an expert maternal fetal clinician. Images were divided into 6 classes: four of the most widely used fetal anatomical planes (Abdomen, Brain, Femur and Thorax), the mother's cervix (widely used for prematurity screening) and a general category to include any other less common image plane. Fetal brain images were further categorized into the 3 most common fetal brain planes (Trans-thalamic, Trans-cerebellum, Trans-ventricular) to judge fine grain categorization performance. The final dataset is comprised of over 12,400 images from 1,792 patients, making it the largest ultrasound dataset to date. We then evaluated a wide variety of state-of-the-art deep Convolutional Neural Networks on this dataset and analyzed results in depth, comparing the computational models to research technicians, which are the ones currently performing the task daily. Results indicate for the first time that computational models have similar performance compared to humans when classifying common planes in human fetal examination. However, the dataset leaves the door open on future research to further improve results, especially on fine-grained plane categorization

    Generalisability of deep learning models in low-resource imaging settings: A fetal ultrasound study in 5 African countries

    Get PDF
    Most artificial intelligence (AI) research and innovations have concentrated in high-income countries, where imaging data, IT infrastructures and clinical expertise are plentiful. However, slower progress has been made in limited-resource environments where medical imaging is needed. For example, in Sub-Saharan Africa the rate of perinatal mortality is very high due to limited access to antenatal screening. In these countries, AI models could be implemented to help clinicians acquire fetal ultrasound planes for diagnosis of fetal abnormalities. So far, deep learning models have been proposed to identify standard fetal planes, but there is no evidence of their ability to generalise in centres with low resources, i.e. with limited access to high-end ultrasound equipment and ultrasound data. This work investigates for the first time different strategies to reduce the domain-shift effect arisen from a fetal plane classification model trained on one clinical centre with high-resource settings and transferred to a new centre with low-resource settings. To that end, a classifier trained with 1,792 patients from Spain is first evaluated on a new centre in Denmark in optimal conditions with 1,008 patients and is later optimised to reach the same performance in five African centres (Egypt, Algeria, Uganda, Ghana and Malawi) with 25 patients each. The results show that a transfer learning approach for domain adaptation can be a solution to integrate small-size African samples with existing large-scale databases in developed countries. In particular, the model can be re-aligned and optimised to boost the performance on African populations by increasing the recall to 0.92±0.04 and at the same time maintaining a high precision across centres. This framework shows promise for building new AI models generalisable across clinical centres with limited data acquired in challenging and heterogeneous conditions and calls for further research to develop new solutions for usability of AI in countries with less resources and, consequently, in higher need of clinical support

    Generalisability of deep learning models in low-resource imaging settings: A fetal ultrasound study in 5 African countries

    Full text link
    Most artificial intelligence (AI) research have concentrated in high-income countries, where imaging data, IT infrastructures and clinical expertise are plentiful. However, slower progress has been made in limited-resource environments where medical imaging is needed. For example, in Sub-Saharan Africa the rate of perinatal mortality is very high due to limited access to antenatal screening. In these countries, AI models could be implemented to help clinicians acquire fetal ultrasound planes for diagnosis of fetal abnormalities. So far, deep learning models have been proposed to identify standard fetal planes, but there is no evidence of their ability to generalise in centres with limited access to high-end ultrasound equipment and data. This work investigates different strategies to reduce the domain-shift effect for a fetal plane classification model trained on a high-resource clinical centre and transferred to a new low-resource centre. To that end, a classifier trained with 1,792 patients from Spain is first evaluated on a new centre in Denmark in optimal conditions with 1,008 patients and is later optimised to reach the same performance in five African centres (Egypt, Algeria, Uganda, Ghana and Malawi) with 25 patients each. The results show that a transfer learning approach can be a solution to integrate small-size African samples with existing large-scale databases in developed countries. In particular, the model can be re-aligned and optimised to boost the performance on African populations by increasing the recall to 0.92±0.040.92 \pm 0.04 and at the same time maintaining a high precision across centres. This framework shows promise for building new AI models generalisable across clinical centres with limited data acquired in challenging and heterogeneous conditions and calls for further research to develop new solutions for usability of AI in countries with less resources
    corecore