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ABSTRACT

This paper considers automatic clinical workflow description
of full-length routine fetal anomaly ultrasound scans using
deep learning approaches for spatio-temporal video analysis.
Multiple architectures consisting of 2D and 2D + t CNN,
LSTM, and convolutional LSTM are investigated and com-
pared. The contributions of short-term and long-term tempo-
ral changes are studied, and a multi-stream framework analy-
sis is found to achieve the best top-1 accuracy=0.77 and top-3
accuracy=0.94. Automated partitioning and characterisation
on unlabelled full-length video scans show high correlation
(ρ=0.95, p=0.0004) with workflow statistics of manually la-
belled videos, suggesting practicality of proposed methods.

Index Terms— Fetal anomaly scan, spatio-temporal
analysis, video classification, ultrasound, clinical workflow.

1. INTRODUCTION

Ultrasound imaging is widely used for monitoring pregnancy
due to its non-invasiveness, absence of radiation, high acces-
sibility, high reliability and low costs. In most countries, a
routine ultrasound (US) scan is offered in the second trimester
of pregnancy (18-22 weeks) to check for anomalies and assess
fetal growth [1]. In the UK, scan guidelines are provided by
the Fetal Anomaly Screening Programme (FASP) [2]. During
a full scanning session, a sonologist or sonographer views re-
quired fetal anatomical structures including heart, abdomen,
brain, head, spine and limbs, maternal structures such as the
uterine arteries, and additional anatomy or activity such as fe-
tal hands and feet, placenta, blood flows and umbilical cord
insertion. These may be visualised in different viewing planes
(transverse, coronal, sagittal) and imaging modes (2D + t,
colour Doppler, 3D or 3D + t). Hence, it is interesting to
comprehensively analyse and quantify operator clinical work-
flow in a spatio-temporal context, i.e., the type, duration and
sequence of scanned anatomical structures and activities, in
order to explore intra- and inter-operator correlation or vari-
ability, which may, for instance, offer insight into skill differ-
ences between experts and trainees. Such analysis requires
temporal partitioning and anatomical labelling on full-length
scans which, if performed manually, would be impractical due
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to the enormous amount of acquired video data. Hence, in the
paper we address the problem of automating this task using
spatio-temporal analysis methods.

In computer vision, video classification and activity
recognition have proved to be challenging, and in ultrasound
imaging, are further complicated by class imbalance, imaging
artefacts and the relative complex interpretation of US video
data. Previously, 2D standard plane detection and classifica-
tion has been extensively studied for fetal US images [3], [4].
In contrast, this study involves natural partitioning and de-
scription of 2D+ t US videos utilizing richer spatio-temporal
information than 2D standard planes. Also, unlike previ-
ous US video-based studies [5], [6] that focussed on specific
anatomical structures such as the heart, abdomen or skull in
shorter-length US sweeps (clips), this work explores a natural
partitioning for automated clinical workflow analysis in full-
length scans, containing a comprehensive list of anatomical
structures and activities.

The contributions of this paper are as follows. We per-
form extensive experiments to compare several deep learning
architectures and propose methods for comprehensive 2D+ t
spatio-temporal description in fetal anomaly US video scans.
Also, using a multi-stream framework, we investigate the ef-
fect of fine and coarse temporal changes in videos. The de-
signed models are trained without pre-trained weights, as to
our knowledge, no existing method represents this problem
sufficiently. Finally, the trained models are applied to un-
labelled full-length video scans to determine similarity with
manually computed workflows of labelled video scans.

2. METHODS

2.1. Data Acquisition and Pre-processing
Clinical routine fetal anomaly US scans were acquired at 30
frames per second as part of a large-scale study PULSE.1

Freeze frames (FF) were automatically detected using optical
character recognition, and full-length videos were temporally
partitioned to obtain clips of 5 seconds for ease of manual
labelling, with two-thirds of the frames before FF and one-
third afterwards. This partitioning was selected based on the
observation that during scanning, the operator searches for a
standard view in local proximity of an anatomical structure,
and then freezes for inspection and biometric measurements.

1Ethics approval was obtained for data acquisition.
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Fig. 1: Example of clinical workflow visualisation (timeline)
of a fetal anomaly US scan showing the top-6 event classes

Extracted video clips from 25 full-length scans of differ-
ent subjects were manually annotated. The average video du-
ration was 45.7±11.6 minutes (82,219 ± 20,929 frames). 20
anatomical or activity categories (we call these “events”) were
identified by a clinical expert as [label] (% distribution): heart
including Doppler[HeD] (20%), 3D or 3D + t mode[3Dm]
(17.3%), background search or transition[Bk] (14.8%), brain
with skull and neck[Br] (9.2%), maternal anatomy includ-
ing Doppler[MaD] (9.2%), spine[Sp] (6%), abdomen[Ab]
(3.6%), nose and lips[NL] (3.6%), kidneys[Ki] (2.6%), face
side profile[Fa] (2.6%), femur[Fm] (1.8%) and other cate-
gories with low total (<10%) representation (umbilical cord
insertion[Um], full body side profile[Fb], bladder including
Doppler[BlD], feet[Fe], top head with eyes/nose[Th], girl or
boy, hands[Ha], arms[Ar] and legs[Le]). Due to the high class
imbalance, we select the 11 most dominant categories which
include key FASP standard planes. An example of clinical
workflow visualisation of a manually labelled scan with the
top-6 classes (for illustration) is given in Figure 1.

To limit the GPU memory required for deep learning, each
labelled video clip was approximated by 12 frames using uni-
form sampling, with a longer clip yielding ten unique smaller
clips. 2D and 2D + t instances from full-length videos were
subject-wise divided into training, validation and test, respec-
tively (Table 1). Test data was held-out and not used for train-
ing, and validation data was used to monitor loss during train-
ing. Frames were pre-processed by cropping the relevant im-
age area and resizing to 224×224 pixels. During training, a
data augmentation method was randomly selected and applied
to every frame of a clip, including rotation [−30◦, 30◦], hor-
izontal flip, vertical flip, Gaussian noise, and shear (≤ 0.2).

2.2. Learning Spatio-temporal Descriptions
Current deep learning methods for video classification and ac-
tivity recognition can be broadly divided into three groups [7]:
image (frame)-based methods, end-to-end convolutional neu-
ral networks (CNN), and modelling temporal dependency via
recurrent neural networks (RNN). We explore these groups of
methods as follows.

For spatial (2D) representation of individual frames, three

Table 1: Dataset distribution for deep learning experiments
Dataset Full-length videos Number (%) images Number (%) clips

Train 19 (76%) 27,496 (77.2%) 11,004 (77.2%)
Validate 3(12%) 4,133 (11.6%) 1,657 (11.6%)

Test 3 (12%) 3,986 (11.2%) 1,593 (11.2%)
Total 25 (100%) 35,615 (100%) 14,254 (100%)

deep CNN architectures, namely, VGG16, VGG19 [8] and
SonoNet-64 [3] (a variant of VGG16), were considered due
to their reported good classification performance on natural
images and fetal anomaly US images, respectively. Deeper ar-
chitectures were not considered to avoid intractable complexi-
ties of the spatio-temporal versions. Empirically, SonoNet-64
CNN consistently outperformed the other two on spatial sub-
sets (column 3, Table 1), therefore, it was selected as the base
2D CNN on which to build the spatio-temporal models.

To analyse 2D + t data with end-to-end convolutional
neural networks, 3D (or 2D + t) CNNs were employed [9].
These utilize 3D convolutional kernels to learn motion (dis-
placement) patterns between adjacent video frames. Another
form of end-to-end model consists of two or more streams
(for instance, an additional optical flow input), but this type of
model was not considered due to the overhead of computing
optical flow images for thousands of frames of an US scan.

To model temporal dependency, recurrent neural networks
were investigated. Long-short term memory (LSTM) units
have demonstrated their effectiveness in natural video clas-
sification via recurrent convolutional networks (RCN) [10].
Recently, the Convolutional LSTM (CLSTM) memory unit
was introduced that extended the concept to the spatial do-
main [11]. We have implemented an LSTM-based RCN and
a CLSTM-based RCN to study the comparative performance
of both the memory units.

Several deep learning architectures were designed from
the three groups (Figure 2). The architectures in Figure 2
(Block A) were trained in two ways. In the first case, spatial
training was performed using 2D feature extraction and adap-
tation layers, and weights of these layers were fixed to extract
1D or 2D features of consecutive frames. The features were
directly used to train spatio-temporal dependency models:
LSTM-RNN with 1D features (Feat1D-LSTM-RNN), 2D+ t
CNN with 2D features (Feat2D-2DtCNN) and CLSTM-RNN
with 2D features (Feat2D-CLSTM-RNN), followed by dense
layers and softmax for final prediction. In the second case,
three end-to-end models were built using spatio-temporal
dependency units after the 2D base layers: hybrid 2D + t
CNN (Temp-Sono-2DtCNN), RCN using LSTM (Temp-Sono-
LSTM-RCN), and RCN using CLSTM (Temp-Sono-CLSTM-
RCN). In Figure 2 (Block B), the pure 2D + t CNN (Sono-
2DtCNN) was designed by temporally inflating subset of
layers of SonoNet-64 2D CNN, and only end-to-end trained.

Computational hardware used are NVIDIA GTX Titan X
(12 GB) and NVIDIA GTX 1070 (8 GB) GPU. Deep learn-
ing models were implemented using Keras framework with
TensorFlow backend. Stochastic gradient descent (SGD) with
Nesterov momentum (µ=0.9) was used for optimisation dur-
ing the training phase, with a learning rate of 0.01 and ≥ 100
epochs. Batch size was varied between 8, 16 or 32 depend-
ing on GPU memory availability. For model regularisation,
dropout (pd ∈ {0.2, 0.3, 0.5}), batch normalisation and data
augmentation (Section 2.1) were employed.
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Fig. 2: Spatio-temporal deep learning architectures. In Block A, uncoloured convolutional and adaptation layer units are
common but coloured adaptation layer units are only linked to the corresponding same coloured spatio-temporal layer units.
CN (feature depth, kernel size): convolutions with ReLU activation, BN: batch normalisation, MP (kernel size): max-pooling,
GAP: global average pooling, Nc: number of classes. Subscripts 2 and 3 represent operations in 2D and 2D+ t. Classification
layers include 512, 256 or 128 and Nc elements, respectively.

2.3. Multi-stream Framework
The deep learning models, as described in Section 2.2, were
built using video clips at one-fourth of the original frame
rate (FR/4) representing short-term spatio-temporal motion.
We selected the best performing model (Sono-2DtCNN) to
learn and inspect spatio-temporal dynamics using near con-
secutive frames with fine temporal changes (FR/2) and long-
term motion with coarse temporal changes (FR/8). A multi-
stream framework with late fusion on learned model softmax
probabilities was investigated, to observe whether individ-
ual streams with varying temporal dimensions can enhance
learned knowledge due to the distinct characteristics of under-
represented classes in the unbalanced datasets.

3. RESULTS AND DISCUSSION

3.1. Comparison of Trained Models
Precision (P ), Recall (R), F1-score (F1), Top-1 accuracy
(A1) and Top-3 accuracy (A3) were used as evaluation met-
rics. Image (frame)-based classification included baseline
methods: 1) pre-trained weights of SonoNet-64 (PT) [3] with
only overlapping categories; 2) SonoNet-64 trained using
2D image subsets of our dataset. VGGNets are reported for
completeness, however, not considered for spatio-temporal
analysis. Table 2 summarizes the number of parameters and
resulting metrics for the investigated models.

Firstly, we observe that image-based training of SonoNet-
64 CNN provides a good baseline and outperforms the pre-
trained 2D model and the vanilla VGGNets. Among spatio-
temporal models using LSTM and CLSTM memory units,
feature-based RNN approaches perform better than corre-

Table 2: Comparative analysis of trained models

Model architecture Params P R F1 A1 A3

Baseline image(frame)-based methods
VGGNet-16 134.3 M 0.45 0.32 0.33 0.47 0.76
VGGNet-19 139.6 M 0.36 0.29 0.30 0.45 0.77
SonoNet-64 (PT) NA 0.52 0.48 0.46 0.55 0.55
SonoNet-64 14.8 M 0.71 0.52 0.56 0.69 0.91

Spatio-temporal methods
Feat2D-2DtCNN 2.6M 0.64 0.57 0.59 0.68 0.86
Feat1D-LSTM-RNN 2.6M 0.67 0.52 0.54 0.68 0.87
Feat2D-CLSTM-RNN 5.7M 0.68 0.57 0.60 0.71 0.85
Temp-Sono-2DtCNN 15.5M 0.48 0.44 0.43 0.62 0.84
Temp-Sono-LSTM-RCN 15.7M 0.58 0.41 0.39 0.58 0.82
Temp-Sono-CLSTM-RCN 16.2M 0.55 0.39 0.41 0.58 0.82
Sono-2DtCNN 23.0M 0.73 0.66 0.66 0.75 0.93

sponding end-to-end RCN methods. This can be explained
as, in the first case, we fix the 2D feature extraction and adap-
tation layers, hence, these require fewer trainable parameters
which scale to our datasets better than end-to-end RCNs with
more parameters causing lower generalisation due to unbal-
anced classes. Furthermore, 2D CLSTM units show superior
performance to 1D LSTM units consistently for feature-based
models, and in accuracies for end-to-end models, demonstrat-
ing more powerful spatio-temporal representations for 2D+ t
data. However, due to the higher computational requirements,
configurations involving CLSTM units are slower to converge
than LSTM units. The best performing end-to-end model (for
all evaluation metrics) is the 2D + t CNN Sono-2DtCNN
that describes the spatio-temporal properties of video clips by
directly using 2D + t convolutional and pooling operations.
It outperforms the RCNs and hybrid Temp-Sono-2DtCNN
which model temporal dynamics on 1D or 2D representa-
tions of consecutive frames. Also, the average evaluation
metrics of 2D baseline model appear comparable to spatio-



Fig. 3: Confusion matrix predicted vs. true label for image-
based CNN (left) and spatio-temporal Sono-2DtCNN(right)

temporal models and lower than Sono-2DtCNN; the relative
2D and 2D+ t performance is further investigated by careful
inspection of the respective confusion matrices as follows.

Figure 3 shows confusion matrices for the image-based
SonoNet-64 and for the spatio-temporal model Sono-2DtCNN.
We observe that the spatial model shows greater bias towards
the more commonly occurring classes ‘Bk’ and ‘HeD’. All
the remaining event classes (except ‘Bk’), even when under-
represented in the dataset, are more accurately described
using 2D + t spatio-temporal information than only 2D
spatial information, suggesting the contribution of temporal
changes for classification in fetal US video scans. Specifi-
cally for the 2D + t method, ‘Ki’ and ‘Ab’ are misclassified
as ‘HeD’ due to high visual similarity between these views,
and the heart can sometimes appear in the other two views.
Higher confusion is seen between ‘Bk’ and other classes,
which is associated with non-compactness of ‘Bk’ as it may
consist of multiple events. Also, ‘NL’ can be confused with
‘3Dm’, which is explainable as a sonographer generally uses
this mode to obtain a 3D reconstruction of the fetal head that
includes the nose and lips, appearing similar to the nose and
lips view in the 2D + t mode.

3.2. Multi-stream Classification
The results of the multi-stream framework are shown in Ta-
ble 3. We observe that classification performance improves
from near-consecutive frames and short-term dynamics to
long-term changes with a higher temporal context. Further-
more, multi-stream classification combines effects of short-
term and long-term temporal dynamics giving improvement
in P and A3. Detailed inspection of each confusion matrix
confirmed that individual streams describe distinct categories
more effectively, and the combined framework achieves a su-
perior representation of the unbalanced dataset. For example,
‘Sp’ has higher discrimination at FR/2 with fine temporal
changes, whereas ‘Br’ has increased detection accuracy at
FR/8, indicating long-term temporal dependency.

Table 3: Multi-stream framework analysis
Model architecture P R F1 A1 A3

2D stream 0.71 0.52 0.56 0.69 0.91
2D + t stream @ FR/2 0.63 0.59 0.58 0.70 0.89
2D + t stream @ FR/4 0.73 0.66 0.66 0.75 0.93
2D + t stream @ FR/8 0.77 0.66 0.67 0.77 0.92
Multi-stream late fusion 0.77 0.65 0.66 0.76 0.94

3.3. Comparison of Workflow Statistics
Automated classification using the best performing learnt
prediction model was applied to ten unlabelled full-length
videos of US fetal anomaly scans. Clinical workflow statis-
tics were computed as mean ± standard deviation (duration
in minutes) and mean percentage (95% confidence interval)
per scan for the categories. Histograms of durations of cat-
egories were compared between manually and automatically
labelled videos, and a high correlation with Pearson’s correla-
tion coefficient ρ=0.95 (p-value=0.0004) was observed. This
suggests the suitability of proposed spatio-temporal methods
to describe clinical workflow and composition of full-length
US fetal anomaly scans.

4. CONCLUSION

Deep learning models were proposed, implemented and com-
pared for automatic US video description. End-to-end spatio-
temporal model Sono-2DtCNN was found to perform better
than image-based and RNN-based analysis methods. A multi-
stream framework was studied to explore the effects of tem-
poral changes. Favourable correlation of workflow statistics
was observed between manually labelled and automatically
classified videos. We conclude that the proposed automatic
spatio-temporal partitioning and description approach can be
employed to generate video descriptions and workflow pat-
terns in full-length fetal anomaly ultrasound scans.
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