9 research outputs found

    A Formal Semantics for Feature Cardinalities in Feature Diagrams

    Get PDF
    Feature cardinalities in feature diagrams determine the num-ber of times a feature and its subtree can be duplicated dur-ing configuration by an operation named “cloning”. Other authors already investigated the problem and pub-lished different proposals of semantics for this construct. However, this previous work is not easily amenable to the formal study of the various properties of feature diagrams and their derived configurations. Also, cross-tree constraint languages still need to be properly extended to account for feature cardinalities. This paper presents an extension of an earlier formal se-mantics of feature diagrams by adding support for feature cardinalities. 1

    LIFTS: Learning Featured Transition Systems

    Get PDF

    Automated Search for Configurations of Deep Neural Network Architectures

    Get PDF
    Deep Neural Networks (DNNs) are intensively used to solve a wide variety of complex problems. Although powerful, such systems require manual configuration and tuning. To this end, we view DNNs as configurable systems and propose an end-to-end framework that allows the configuration, evaluation and automated search for DNN architectures. Therefore, our contribution is threefold. First, we model the variability of DNN architectures with a Feature Model (FM) that generalizes over existing architectures. Each valid configuration of the FM corresponds to a valid DNN model that can be built and trained. Second, we implement, on top of Tensorflow, an automated procedure to deploy, train and evaluate the performance of a configured model. Third, we propose a method to search for configurations and demonstrate that it leads to good DNN models. We evaluate our method by applying it on image classification tasks (MNIST, CIFAR-10) and show that, with limited amount of computation and training, our method can identify high-performing architectures (with high accuracy). We also demonstrate that we outperform existing state-of-the-art architectures handcrafted by ML researchers. Our FM and framework have been released to support replication and future research

    Beyond Boolean product-line model checking: Dealing with feature attributes and multi-features

    Get PDF
    International audienceModel checking techniques for software product lines (SPL) are actively researched. A major limitation they currently have is the inability to deal efficiently with non-Boolean features and multi-features. An example of a non-Boolean feature is a numeric attribute such as maximum number of users which can take different numeric values across the range of SPL products. Multi-features are features that can appear several times in the same product, such as processing units which number is variable from one product to another and which can be configured independently. Both constructs are extensively used in practice but currently not supported by existing SPL model checking techniques. To overcome this limitation, we formally define a language that integrates these constructs with SPL behavioral specifications. We generalize SPL model checking algorithms correspondingly and evaluate their applicability. Our results show that the algorithms remain efficient despite the generalization

    Modeling and Analysis of Software Product Line Variability in Clafer

    Get PDF
    Both feature and class modeling are used in Software Product Line (SPL) engineering to model variability. Feature models are used primarily to represent user-visible characteristics (i.e., features) of products; whereas class models are often used to model types of components and connectors in a product-line architecture. Previous works have explored the approach of using a single language to express both configurations of features and components. Their goal was to simplify the definition and analysis of feature-to-component mappings and to allow modeling component options as features. A prominent example of this approach is cardinality-based feature modeling, which extends feature models with multiple instantiation and references to express component-like, replicated features. Another example is to support feature modeling in a class modeling language, such as UML or MOF, using their profiling mechanisms and a stylized use of composition. Both examples have notable drawbacks: cardinality-based feature modeling lacks a constraint language and a well-defined semantics; encoding feature models as class models and their evolution bring extra complexity. This dissertation presents Clafer (class, feature, reference), a class modeling language with first-class support for feature modeling. Clafer can express rich structural models augmented with complex constraints, i.e., domain, variability, component models, and meta-models. Clafer supports: (i) class-based meta-models, (ii) object models (with uncertainty, if needed), (iii) feature models with attributes and multiple instantiation, (iv) configurations of feature models, (v) mixtures of meta- and feature models and model templates, and (vi) first-order logic constraints. Clafer also makes it possible to arrange models into multiple specialization and extension layers via constraints and inheritance. On the other hand, in designing Clafer we wanted to create a language that builds upon as few concepts as possible, and is easy to learn. The language is supported by tools for SPL verification and optimization. We propose to unify basic modeling constructs into a single concept, called clafer. In other words, Clafer is not a hybrid language. We identify several key mechanisms allowing a class modeling language to express feature models concisely. We provide Clafer with a formal semantics built in a novel, structurally explicit way. As Clafer subsumes cardinality-based feature modeling with attributes, references, and constraints, we are the first to precisely define semantics of such models. We also explore the notion of partial instantiation that allows for modeling with uncertainty and variability. We show that Object-Oriented Modeling (OOM) languages with no direct support for partial instances can support them via class modeling, using subclassing and strengthening multiplicity constraints. We make the encoding of partial instances via subclassing precise and general. Clafer uses this encoding and pushes the idea even further: it provides a syntactic unification of types and (partial) instances via subclassing and redefinition. We evaluate Clafer analytically and experimentally. The analytical evaluation shows that Clafer can concisely express feature and meta-models via a uniform syntax and unified semantics. The experimental evaluation shows that: 1) Clafer can express a variety of realistic rich structural models with complex constraints, such as variability models, meta-models, model templates, and domain models; and 2) that useful analyses can be performed within seconds
    corecore