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ABSTRACT
This PhD project aims to automatically learn transition systems
capturing the behaviour of a whole family of software-based sys-
tems. Reasoning at the family level yields important economies of
scale and quality improvements for a broad range of systems such
as software product lines, adaptive and configurable systems. Yet,
to fully benefit from the above advantages, a model of the system
family’s behaviour is necessary. Such a model is often prohibitively
expensive to create manually due to the number of variants. For
large long-lived systems with outdated specifications or for sys-
tems that continuously adapt, the modelling cost is even higher.
Therefore, this PhD proposes to automate the learning of such mod-
els from existing artefacts. To advance research at a fundamental
level, our learning target are Featured Transition Systems (FTS), an
abstract formalism that can be used to provide a pivot semantics
to a range of variability-aware state-based modelling languages.
The main research questions addressed by this PhD project are:
(1) Can we learn variability-aware models efficiently? (2) Can we
learn FTS in a black-box fashion? (i.e., with access to execution logs
but not to source code); (3) Can we learn FTS in a white/grey-box
testing fashion? (i.e., with access to source code); and (4) How do
the proposed techniques scale in practice?

CCS CONCEPTS
• Software and its engineering→ Software reverse engineer-
ing; Software product lines.

KEYWORDS
Featured Transition Systems, Software Product Lines, Variability
Mining, Active Automata Learning, Model Learning
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1 INTRODUCTION AND MOTIVATION
Variability-Intensive Systems (VIS) form a vast and heterogeneous
class of systems that encompasses software product lines (SPL) [49],
configurable systems, adaptive systems, etc. All these systems have
the ability to be customised to specific needs, through the (de)activation
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of different options or features, a phenomenon known as variabil-
ity. Addressing variability proactively during software engineering
(SE) activities means shifting from reasoning on a single system
to reasoning on a family of systems (i.e., a set of variants) to yield
important economies of scale and quality improvements [49]. Con-
versely, variability can also be a curse, especially for Quality Assur-
ance (QA), i.e., verification and testing of such systems, due to the
combinatorial explosion of the number of system/software variants.
Verifying or testing each variant is therefore impossible in the vast
majority of practical cases.

About a decade ago, Featured Transition Systems (FTS) were in-
troduced as a formalism to represent, and reason on, the behaviour
of VIS [17]. Instead of representing each variant by a (classical)
transition systems (TS), an FTS bears annotations that relate tran-
sitions to features through feature expressions (FE). By their large
expressiveness to encode variability [7, 66], FE allow FTS to reason
at the family level by modelling all the variants of a system in a
single behavioural model. FTS have been shown to significantly
improve the possibilities and execution time of automated QA activ-
ities such as model-checking and model-based testing [14–16, 24].
They can also be useful to guide design exploration activities [43].

Yet, as most model-based approaches, FTS modelling requires
both strong human expertise and significant effort that would be
unaffordable in many cases, in particular for large legacy systems
with outdated specifications and/or systems that evolve continu-
ously. The overall objective of this research is to automatically
learn FTS to ease the burden of modelling them and support
continuous QA activities. LIFTS addresses current automation
and scalability issues. For this purpose, we will leverage Ma-
chine Learning (ML) techniques to develop efficient and general
behavioural inference of FTS.

2 RESEARCH QUESTIONS
LIFTS investigates four main research questions:
RQ1 How can we learn variability-aware models efficiently?

Primarily, we explore theoretically how variability can af-
fect learning. The challenge here is to find tractable alterna-
tives to the naive approach (i.e., merging each individual TS)
whose worst-case complexity is O((2𝑛) ∗𝑐𝑜𝑠𝑡𝐿 +𝑘2

𝑛 ) where
𝑘 is the number of TS states, 𝑛 the number of VIS features
and 𝑐𝑜𝑠𝑡𝐿 is the complexity of a specific algorithm to learn
a single variant. The general strategy to address RQ1 will
be to take advantage of shared behaviour amongst variants
during the learning phase.

RQ2 Canwe learn FTS in a black-box fashion? In this scenario,
we assume that we do not have access to the source code of
the system but that we can interact with it at runtime and/or
have access to execution traces. This happens frequently
e.g., when source code is closed, unavailable or some parts
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of the system’s functionality are realised by non-software
components as it is the case in cyber-physical systems.

RQ3 Can we learn FTS in a white/grey-box testing fashion?
In this second scenario, we assume the learner has access
to source code, which will improve its precision since all
possible behaviour can (theoretically) be analysed. We will
also consider the grey-box scenario where we learn from
both observed behaviour and source code.

RQ4 What is the scalability of the proposed techniques in
practice? LIFTS’ techniques will eventually have to deal
with large industrial VIS, where they are the most needed.
This question therefore addresses the scalability of the the-
oretical results obtained from RQ1-RQ3 from an empirical
perspective.

Hypothesis. The LIFTS project concentrates on the behavioural
aspects and assumes that the Feature Model (see Section 3) already
exists or has been learned in some way. Indeed, several techniques
to learn a FM exist (e.g., they can be learned from variant cata-
logues (product tables) using data mining [1, 2] or evolutionary
algorithms [46]). Other approaches include learning the FM via
static analysis of variant configurators [56] or via natural language
analysis [45].

3 METHODOLOGY AND APPROACH
3.1 State of the art
Feature Modelling. Feature Models [41, 42] are tree-like diagrams
representing common and variable aspects of a variability-aware
system, where features (nodes) are decomposed hierarchically us-
ing Boolean operators and cross-tree constraints (edges). Over time,
more sophisticated FM dialects were proposed [27], equipped with
formal semantics [13, 18, 47, 53], automated analyses [6] and com-
prehensive tool support [50]. A FM declares the features of a VIS
at a very abstract level and constrains how they can be combined.
As such, it does not aim to model the behaviour of a VIS, only its
structural variability.
Featured Transition Systems.Complementary to FM, FTSmodel
the behaviour of a VIS. An FTS uses FE that are logical formulae
referring to its structural variability. FE describe which variants
can execute the behaviour encoded by the transitions of the FTS.
Learning Behaviour. Reconstructing a behavioural model from
an existing software system is an active line of research which can
be divided into two categories: black-box and white-box approaches,
both of which are addressed in this PhD project.

Black-box approaches were particularly influenced by the semi-
nal L* algorithm from Dana Angluin [4]. This approach is based
on a learning component that actively learns a model by testing: it
generates candidate input sequences of action to a teaching com-
ponent, which checks whether they are part of the behaviour of
the system. Based on that, the learning component incrementally
learns a behavioural model of the system that can then be assessed
for equivalence.

Angluin’s algorithm is a powerful theoretical framework that
has given birth to numerous optimised versions and extensions (e.g.,
with probabilities [3]), some of which were integrated in learning
libraries [51]. There are also passive approaches where the learning

component uses existing observations (execution traces) [26, 37, 44,
48, 58, 59, 63, 67]. In this case, the model is incomplete and can only
contain the observed behaviour of the system [62]. Process discovery
algorithms studied by the process mining community [65] also fall
into this category.

White-box approaches rely on program analysis (e.g., Shoham et
al. to mine Internet API specifications [57], or Fraser et al. to infer
object usage and thereby generate more meaningful tests [31]).

Black-box andwhite-box approaches are complementary and can
be orchestrated in a grey-box fashion. For example, Howar et al. use
a mix of static, dynamic and concolic analysis (a mix of symbolic and
concrete execution) to learn safe interfaces for critical embedded
systems [39]. Recently, they suggested a grey-box scenario where
predicates or guards are exploited to guide black-box learning [40].

In contrast to FM learning, learning behavioural models of VIS
(i.e., at the family level) is still in its infancy. Buijs et al. [9] use ge-
netic algorithms to combine process models mined from event logs
of (a few) different variants, while Greenyer et al. [32, 33] check and
synthesise controllers for VIS from scenarios (message sequence
charts). The contexts and assumptions of these contributions are
quite remote from ours.

We found very few contributions matching our goal. First, based
on their approach to keep VIS models up-to-date [20], Damasceno et
al. recently proposed to learn featured finite state-machine models
from individual models [19]. Other approaches such as [25, 52] aim
to learn other kind of family behavioural model by merging models
of single system. However, at this stage, these works are limited to
few variants, due to the high cost of generating and merging indi-
vidual models. Devroey et al. [23] learned usage models (Markov
Chains) from logs in order to perform statistical prioritisation of
FTS-based tests. While the FTS was partly based on the learned
behaviour, significant human effort and expertise was necessary to
complete the FTS with FE. Additionally, none of the aforemen-
tioned research sought to automatically construct FTS as we
aim in this PhD project. FTS being a fundamental formalism that
can serve as a semantics for other VIS modelling languages such
as UML State Diagrams (e.g., via flattening [22]), our results are
intended to be more generic and therefore have a more profound
impact on behavioural inference and automation.

3.2 Work Packages
The LIFTS project will contain four main work packages (WP)
described below.

WP1 Formalise the Variability-aware Learning Problem. In WP1,
we conduct a state-of-the-art exploration and a systematic
comparison of applicable learning approaches from different
communities including SE, ML and process mining. Then,
we want to formulate the learning problem for VIS to define
abstractions that will guide variability-aware learning algo-
rithms. In contrast to current approaches which reuse exist-
ing single-system learning algorithms as-is (e.g., by naively
merging TS), we aim to make variability a first-class concept
which is leveraged to gain efficiency. Our vision is to come up
with a variability-aware foundational algorithm (analogue to
Angluin’s 𝐿∗ for single systems) that can later be extended
and tailored in multiple ways for various purposes.
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WP2 Develop Black-box Model Learning Techniques. In WP2, we
will build a black-box FTS learner. We will consider passive
black-box approaches, which only rely on existing logs, but
also active ones, like Angluin-style learning [4, 8], which
assume direct interactions with the system to learn.
Some passive approaches to consider are the process discov-
ery techniques [65], designed to deal with large amounts of
data, but providing less guarantees since they cannot deal
with negative examples. In other words, we can ensure that
a behaviour is allowed by the system, but we cannot en-
sure that a behaviour is not allowed. The process discovery
algorithms will have to be adapted to deal with FE on the
transitions. We will also transpose other methods to VIS,
including those based on ML [60] e.g., Long-Short Term
Memory (LSTM) [38] and Gated Recurrent Unit (GRU) [11]
that can deal with temporal sequences like execution traces.

WP3 Develop White/Grey-box Model Learning Techniques. Source
code analysis allows to retrieve information that is difficult
to obtain via black-box queries [40] (e.g., learning properties
to purvey to Angluin’s oracle), and is of interest to learn
extended FTS (e.g., FTS extended with hierarchy, concurrency
or quantitative properties). Concolic execution seems relevant
to infer FE that are part of FTS. We will also consider a mix
of scenarios, leading to a grey-box learner.

WP4 Perform Empirical Validation. To evaluate the applicability
of our learning techniques, the prototypes will be applied to
learn FTS from a range of existing codebases and datasets,
both from open-source communities (e.g., [35]) and industrial
partners1 such as IBA, Haulogy and SkalUP. This diversi-
fication of cases allows for a better generalisation of our
empirical results. However, because white-box learning de-
pends on the programming language, we will probably only
consider Java, as it is the most used language in our datasets
and for which several robust static analysis frameworks ex-
ist [36, 64].

Methodology and risk management. For better risk management
(notably on scalability), we adopt an iterative methodology where
theoretical investigations are systematically confronted with em-
pirical evaluations. Risks related to case collection are mitigated
by a two-pronged strategy. First, we employ generated examples
and open-source cases to ensure that learning strategies are worth-
while. Second, we will rely on industrial code to conduct realistic
assessments of our contributions.

4 PRELIMINARY RESULTS
So far, we focused onWP1 andWP2, by investigating state of the
art through a mapping study, experimenting with Recurrent Neural
Networks (RNN) [30], and considering a first adaptation of An-
gluin’s 𝐿∗ algorithm.

4.1 Variability-Aware Behavioural Modelling:
A Cross-Domain Mapping Study (WP1)

This study focuses on models describing the behaviour of an entire
family of systems, i.e., taking variability into account. SPL are a

1https://iba-worldwide.com, http://www.haulogy.net, https://skalup.com/

well fitted example since they naturally imply variability (e.g., FTS,
Featured Finite State Machines [34], etc). Process lines also seem
relevant for the same reason, but the usual techniques do not al-
ways imply straightforward variability. There are three common
ways of representing process/product families: with a collection
of models; with a reference model (i.e., a model representing the
most common behaviour and which should be adapted, depend-
ing of the needs); and finally a configurable process/product line.
We focus on the last category, since it is the only one explicitly
supporting variability by means of graph annotations for example.
This cross-domain mapping study aims to build bridges between
the different communities, in order to have a better overview of
the existing techniques to model variability-aware behaviour. So
far, about 5,000 papers were evaluated and 475 were accepted for a
second round of selection. We will submit this work to a journal
later this year.

4.2 VaryMinions: Leveraging RNNs to Identify
Variants in Event Logs (WP2)

Motivation. Business processes capture the activities of any profit
or non-profit, public or private organisation, coordinating humans
and software to collectively deliver value. As organisations evolve,
new needs appear, requiring a variability mechanism and leading to
the emergence of process variants. We consider process executions
stored in event logs, where an event trace (or trace) is an ordered
sequence of events. To debug an anomalous process execution or to
explore process refactoring opportunities, it is necessary to identify
which variant(s) may have produced a given trace. Existing variant
analysis [61] techniques do not answer this question but rather
cover the inverse operation i.e., focusing on the differences between
identified variants. In this paper, we train RNNs [54] with different
hyperparameters (loss and activation functions among others) to
predict the candidate variant(s) that could produce a given event
trace. Figure 1 describes the workflow of the approach. Our results
have been accepted to the MaLTeSQuE21 Workshop [30].

Figure 1: VaryMinions workflow

Results. we made the following contributions in this topic:
• a first experiment of the usage of Long Short Term Memory
(LSTMs) [38] and Gated Recurrent Units (GRUs) [11], two
RNN architectures, on two datasets (municipality manage-
ment and travel expenses) showing that we can identify the
variant(s) that could produce an event trace with a high ac-
curacy (> 87%) and that there is no clear dominance of one
network architecture;

• a characterisation of the learning difficulty based on be-
haviour sharing amongst event traces;

https://iba-worldwide.com
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• an implementation of our approach exploiting the Tensor-
flow [21] and Keras [12] frameworks, our replication package
and full results are available online [29].

Our evaluation addresses the following research questions:
• How accurately can we identify process variants based on their
traces?

Answer: Wewere able to train RNNs providing an accuracy above 87%
for both datasets. The following pairs of loss and activation
functions stand out: MSE with tanh, MSE with sigmoid and
binary cross-entropy combined with the sigmoid.

• What is the performance of LSTMs versus that of GRUs for
process traces classification?

Answer: In the top combinations of both DS1 and DS2, performance
of the LSTM and GRU varies significantly (e.g., from 79%
to 88% for GRU) and are mixed, with no absolute winner.
Therefore, we cannot conclude on the prevalence of GRUs
over LSTMs for our datasets.

Discussion. Our evaluation is limited to the identification of five
variants andwe need to determine if these promising results hold for
a larger number of variants (i.e., hundred or thousands in usual VIS).
Our future plans includes: i) considering identifying features rather
than complete variants, ii) the design of dedicated loss functions,
and iii) the exploration of different neural architectures.

4.3 FTSLearnLib: Variability-aware
Angluin-style Learning of FTS (WP1 &
WP2)

In this study, we want to tackle the problems discussed in previous
sections by offering a variability-aware model inference approach
for FTS based on the seminal 𝐿∗ algorithm and its extensions [5, 10].
In particular, we encode fragments of variability-aware behaviour as
symbolic execution trees and take advantage of feature valuations
to guide Angluin-style learning. This encoding does not require a
merging step after some variant models have been learnt and maps
FE directly in the resulting model.

Since we do not have a specification of the system, we cannot
use equivalence queries to choose the right learned model among
all the candidates. However, the teacher (Angluin’s concept of ora-
cle) can be provided with properties of the system to learn. These
properties could take the form of negative examples as in the RPNI
algorithm [26, 48]. These properties can be either given by the user,
statically found by exploring feature interactions, or deduced from
unit test executions or by learning metamorphic relations [55].

In short, we aim to provide:
(1) An Angluin-style algorithm definition treating variability as

first-class citizen via specific encodings of FE;
(2) An implementation of this algorithm as an extension of the

RALib automata learning library [10];
(3) Experimental results on several FTS demonstrating the fea-

sibility of the proposed approach.

5 WORK PLAN
The first months of this PhD were partly dedicated to concluding
the master thesis on concolic testing. We published "An SMT-Based
Concolic Testing Tool for Logic Programs" [28] to the FLOPS 2020

conference. This work was a good introduction to source code
analysis (used in WP3).

In addition to the work on WP1 and WP2 (Section 4), we par-
ticipated to some scientific events, even if the COVID19 outbreak
prevented physical attendance in 2020 and 2021: the Grascomp Doc-
toral Day, the 18th & 19th Belgium-Netherlands Software Evolution
Workshop, the kick-off meeting of the “Software Velocity" (GDR-
GPL, France) working group and both annual workshops of the
EOS project (Belgium) on Verifying Learning Artificial Intelligence
Systems. These events fostered new collaborations with experts,
especially with Prof J.-F. Raskin (ULB, Belgium) with whom we are
collaborating on the project FTSLearnLib.

In January 2020, the BigDat20 winter school was the opportunity
to discover new interesting sub-fields of ML and data science in
general. In particular, the introduction to process mining given
by Prof W.M.P. Van der Aalst gave new perspectives to explore in
our research project (notably on process mining) and incited the
mapping study described previously.

There are also ongoing collaborations with other PhD students in
our research group. For example, we aim to generate a behavioural
interaction model in a variability-aware environment from multi-
ples sources (code, component descriptors, etc.). A part of this work
is focused on static code analysis techniques to infer relationships
between different components (i.e., features) of the system (WP3).
The results were submitted to the 4th Context-aware, Autonomous
and Smart Architecture Workshop2.

2021-2023. The third yearwill focus on the evaluation of these strate-
gies and the development of white-box ones. A detailed schedule is
presented hereafter:

Sep. : Confirmation Exam and Open-Source Case Collection
Oct. - Nov. : FTSLearnLib (evaluation & publication writing)
Dec. - Jan. : Mapping Study (analysis & publication writing)
Feb. - Mar. : VaryMinions (Feature-based representation)
Apr. - July : White/Grey-box scenario (preliminary study, pro-

totype development, evaluation& publicationwriting) (WP3)
Aug. : Industrial Case Collection

The first part of the last year will be dedicated to an industrial
validation of the prototypes (WP 4). The second part will be fully
devoted to writing and defending the thesis.
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