
Modeling and Analysis of Software
Product Line Variability in Clafer

by

Kacper Bąk

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Kacper Bąk 2013



I hereby declare that I am the sole author of this thesis, except where noted. This is a true
copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Both feature and class modeling are used in Software Product Line (SPL) engineering
to model variability. Feature models are used primarily to represent user-visible charac-
teristics (i.e., features) of products; whereas class models are often used to model types of
components and connectors in a product-line architecture.

Previous works have explored the approach of using a single language to express both
configurations of features and components. Their goal was to simplify the definition and
analysis of feature-to-component mappings and to allow modeling component options
as features. A prominent example of this approach is cardinality-based feature model-
ing, which extends feature models with multiple instantiation and references to express
component-like, replicated features. Another example is to support feature modeling in
a class modeling language, such as UML or MOF, using their profiling mechanisms and
a stylized use of composition. Both examples have notable drawbacks: cardinality-based
feature modeling lacks a constraint language and a well-defined semantics; encoding feature
models as class models and their evolution bring extra complexity.

This dissertation presents Clafer (class, feature, reference), a class modeling language
with first-class support for feature modeling. Clafer can express rich structural models aug-
mented with complex constraints, i.e., domain, variability, component models, and meta-
models. Clafer supports: (i) class-based meta-models, (ii) object models (with uncertainty,
if needed), (iii) feature models with attributes and multiple instantiation, (iv) configura-
tions of feature models, (v) mixtures of meta- and feature models and model templates,
and (vi) first-order logic constraints. Clafer also makes it possible to arrange models into
multiple specialization and extension layers via constraints and inheritance. On the other
hand, in designing Clafer we wanted to create a language that builds upon as few concepts
as possible, and is easy to learn. The language is supported by tools for SPL verification
and optimization.

We propose to unify basic modeling constructs into a single concept, called clafer.
In other words, Clafer is not a hybrid language. We identify several key mechanisms
allowing a class modeling language to express feature models concisely. We provide Clafer
with a formal semantics built in a novel, structurally explicit way. As Clafer subsumes
cardinality-based feature modeling with attributes, references, and constraints, we are the
first to precisely define semantics of such models.

We also explore the notion of partial instantiation that allows for modeling with uncer-
tainty and variability. We show that Object-Oriented Modeling languages with no direct
support for partial instances can support them via class modeling, using subclassing and

iii



strengthening multiplicity constraints. We make the encoding of partial instances via sub-
classing precise and general. Clafer uses this encoding and pushes the idea even further:
it provides a syntactic unification of types and (partial) instances via subclassing and
redefinition.

We evaluate Clafer analytically and experimentally. The analytical evaluation shows
that Clafer can concisely express feature and meta-models via a uniform syntax and unified
semantics. The experimental evaluation shows that: 1) Clafer can express a variety of
realistic rich structural models with complex constraints, such as variability models, meta-
models, model templates, and domain models; and 2) that useful analyses can be performed
within seconds.

iv



Acknowledgements

I would like to thank my supervisor, Krzysztof Czarnecki, for giving me the opportunity
to learn how to do research and to design a language. I was fortunate to work both
on theoretical and practical aspects of language design. I am grateful for providing the
guidance and direction that has led to the completion of this dissertation. I am also
thankful for all the assistance that made my life in Canada a great experience.

Thank you to my colleagues in the Generative Software Development Lab and co-
authors. A special thanks to Michał Antkiewicz and Zinovy Diskin. Michał always found
the time to discuss my research and was full of non-conventional ideas. I admire Zinovy’s
dedication, patience, and structured thinking. His commitment to detail and work ethics
influenced the way I think and present ideas. I am also grateful for all the refreshing
discussions with GSD lab folks.

I would like to thank my external examiner, Prof. Bernhard Rumpe, for finding time to
visit Waterloo and for his comments on this dissertation. I am very grateful to my internal
thesis committee, Prof. Derek Rayside, Prof. Joanne Atlee, and Prof. Nancy Day, for
helping me shape this research.

Thank you to proof-readers of this dissertation: Ed Zulkoski, Paul Sulzycki, Tom
Rozdeba, and Agata Stepkowa. Your help is much appreciated.

Finally, a big thanks to my family, friends, Gzowski Club, and travel buddies. My
parents, Jurek and Wiesia, were always very supportive and respectful. A special thanks
to Mirosław Słowakiewicz who deepened my interests in science and inspired to pursue a
PhD degree abroad. I am very happy that I met so many free-spirited, cool, and valuable
people. It would be difficult to finish PhD without having a balanced life. Thanks for all
the parties, adventures, road-trips, and random events. Much international love to you all.

v



Acknowledgments of Contributions

Person Contributions
Kacper Bąk Language design, formal semantics, implementation, testing,

evaluation, and documentation. Development of Clafer com-
piler. Translation of variability and meta-models to Clafer. SPL
exercise for students. Development of FSMLs in Prolog.

Krzysztof Czarnecki Input on all aspects of design and language evaluation.
Andrzej Wąsowski Input on all aspects of design and language evaluation.
Michał Antkiewicz Input on all aspects of design and language evaluation. Devel-

opment of FSMLs, ClaferWiki, ClaferMOO visualizer, and tool
testing.

Zinovy Diskin Formal semantics.
Jimmy Liang Development of ClaferIG, and Clafer compiler. Translation to

Choco.
Rafael Olaechea Development of ClaferMOO.
Alexandr Murashkin Development of ClaferMOO visualizer.
Leonardo Passos Translation of CDL models to Clafer. Research on defaults.
Steven She Development of FSMLs in Prolog. Translation of KConfig

model to Clafer.
Marko Novakovic Translation of CDL models to Clafer.
Wenbin Ji Translation of meta-models to Clafer.
Dina Zayan Usability study on Clafer and UML.
Bo Wang Encoding of the Android SPL model in Clafer.
Christopher Walker Development of ClaferWiki.
Luke Michael Brown Development of Clafer compiler and instance generator.

vi



Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Clafer Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Challenges of Modeling Variability in Software Product Lines 8

2.1 Modeling Variability in SPLs: An Example . . . . . . . . . . . . . . . . . . 8

2.2 Three Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Problem 1: Merging Feature and Class Models . . . . . . . . . . . . 11

2.2.2 Problem 2: Representation of Partial Instances . . . . . . . . . . . 14

2.2.3 Problem 3: Mapping Features to Component Configurations . . . . 15

2.2.4 Toward a Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



3 Clafer: Unifying Class and Feature Modeling 17

3.1 Clafer vs. the Three Problems . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Clafer in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Solving Problem 1: Merging Feature and Class Models . . . . . . . 19

3.1.3 Solving Problem 2: Representation of Partial Instances . . . . . . . 22

3.1.4 Solving Problem 3: Mapping Feature to Component Configurations 23

3.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Concept Unification and Arbitrary Property Nesting 26

4.1 Anatomy of a Clafer Model and Its Instantiation . . . . . . . . . . . . . . . 26

4.1.1 Clafers as Views to Class Diagrams . . . . . . . . . . . . . . . . . . 26

4.1.2 Clafer Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.3 Kinds of Clafers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.4 Clafer Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.5 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.6 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Formal Class Diagrams and Their Instantiation . . . . . . . . . . . 37

4.2.2 Formalizing Clafer Syntax . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3 Formalizing Instantiation . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Partial Instances via Subclassing 54

5.1 Partial Instances and Object-Oriented Modeling . . . . . . . . . . . . . . . 54

5.2 Requirements Elicitation with Partial Instances: An Example . . . . . . . 56

5.2.1 Completion under the Closed World Assumption . . . . . . . . . . . 57

5.2.2 Completion under the Open World Assumption . . . . . . . . . . . 59

5.3 Modeling Partial Examples with Subclassing . . . . . . . . . . . . . . . . . 61

viii



5.3.1 Extension under the Closed World Assumption (CWA) . . . . . . . 62

5.3.2 Extension under the Open World Assumption (OWA) . . . . . . . . 63

5.3.3 Encoding Partial Instances as Class Diagrams . . . . . . . . . . . . 64

5.4 Partial Instantiation as Subclassing . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Formal Class Diagrams and Their Extensions . . . . . . . . . . . . 65

5.4.2 Partial Instances and Their Completion . . . . . . . . . . . . . . . . 69

5.4.3 Partial Object Diagrams via Class Diagrams . . . . . . . . . . . . . 72

5.5 Partial Instances in Clafer . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Evaluation 78

6.1 Analytical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Related Work 91

7.1 Variability Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Object-Oriented Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3 Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Conclusion 101

8.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 102

References 104

ix



APPENDICES 114

A Formal Class Diagrams 115

A.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.1 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.2 Shapes and Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Semantics and syntax of DP-graphs (formal CDs) . . . . . . . . . . . . . . 116

A.2.1 Semantic universe: Mappings . . . . . . . . . . . . . . . . . . . . . 117

A.2.2 Semantic universe: Operations on mappings . . . . . . . . . . . . . 120

A.2.3 Semantic universe: Configurations of mappings and their properties 121

A.2.4 Syntax: DP-graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2.5 Syntax and semantics together . . . . . . . . . . . . . . . . . . . . . 124

B Details of Clafer 125

B.1 Clafer Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.2 Clafer Constraint Language . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2.2 Name Resolution Rules . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.2.3 Type Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.2.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.3 Labeled Multi-Clafer Shape (LMCS) Constraints . . . . . . . . . . . . . . . 132

C Modeling in Clafer 135

C.1 Full Telematics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

x



List of Tables

3.1 Corresponding concepts in Object-Oriented Modeling (OOM) and Clafer . 21

4.1 The meaning of a clafer declaration . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Results of consistency analysis for feature models expressed in Clafer. . . . 84

6.2 Constraints in OCL and Clafer. . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Results of strong consistency analysis for UML2 meta-model slices and Re-
MoDD meta-models in Clafer . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Analyses for Feature-Based Model Templates expressed in Clafer. Parenthe-
ses by the model names indicate the number of optional elements in each
template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Results of consistency analysis for domain models in Clafer . . . . . . . . . 88

A.1 Notational conventions for mappings . . . . . . . . . . . . . . . . . . . . . 116

A.2 A signature of diagram predicates (the labels [bag] are omitted) . . . . . . 122

B.1 Incidence constraints in the context of Clafer, which the LMCS meta-
model in Fig. 4.12 must satisfy . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2 Clafer kind constraints in the context of Clafer, which the LMCS meta-
model in Fig. 4.12 must satisfy . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.3 Clafer cojoining LMCS constraints in the context of Clafer, which the
LMCS meta-model in Fig. 4.12 must satisfy . . . . . . . . . . . . . . . . . . 134

B.4 Naming constraints in the context of Clafer, which the operation Compile
must satisfy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xi



List of Figures

1.1 Conceptual view of a Software Product Line . . . . . . . . . . . . . . . . . 1

2.1 Sample configurations of a telematics system . . . . . . . . . . . . . . . . . 9

2.2 Telematics product line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Cardinality-based feature model of components . . . . . . . . . . . . . . . 12

2.4 Meta-model of display options . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Evolved meta-model of display options . . . . . . . . . . . . . . . . . . . . 13

3.1 Clafer model and its meaning . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Feature model of component options in Clafer . . . . . . . . . . . . . . . . 19

3.3 Component meta-model in Clafer . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Architectural template in Clafer . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Feature model with mapping constraints . . . . . . . . . . . . . . . . . . . 23

3.6 Constraint specifying a single product . . . . . . . . . . . . . . . . . . . . . 24

3.7 Configuration in Clafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Architecture of Clafer’s syntax . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 A Clafer model (a), its compilation (b), view extraction (c), and the render-
ing using reified association (d) . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Sample Labeled Clafer Shape (LCS) and corresponding Class Diagram (CD) 29

4.4 Unlabeled Clafer Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Compilation of a Clafer model to LMCS, extraction of CD, and instantiation 34

xii



4.6 Inheritance among two UCSs . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 An example of clafer inheritance . . . . . . . . . . . . . . . . . . . . . . . . 35

4.8 Clafer model instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.9 Formal Class Diagrams: an instance in UML (a), formal CD rendering (b),
and the meta-model (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.10 Clafer syntax mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.11 Clafer Abstract Syntax Tree (AST) Meta-Model . . . . . . . . . . . . . . . 46

4.12 LMCS Meta-Model. It must satisfy the constraints from Tabs. B.1–B.4. . . 47

4.13 Architecture of Clafer instantiation . . . . . . . . . . . . . . . . . . . . . . 49

4.14 Clafer model instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.15 Clafer model instantiation: example . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Several cases of completion of partial object diagrams. Changes between
object diagrams are highlighted in yellow. . . . . . . . . . . . . . . . . . . 58

5.2 Abstraction and partial completion of examples. Changes between object
diagrams are highlighted in yellow. Note that Bob II refines the type of
room r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Several cases of extension of class diagrams (compare with Fig. 5.1) . . . . 63

5.4 Partial examples as subclassing (compare with Fig. 5.2) . . . . . . . . . . . 64

5.5 Example of partial instantiation via subclassing . . . . . . . . . . . . . . . 65

5.6 Meta-model of formal class diagrams . . . . . . . . . . . . . . . . . . . . . 66

5.7 Sample instance: class diagram Sample CD and Sample CD+ . . . . . . . 66

5.8 Meta-model of partial object diagrams . . . . . . . . . . . . . . . . . . . . 70

5.9 Rules of instance completion . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.10 Projection of preinstances . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.11 Instances of CD+ are instances of CD and completions of POD . . . . . . 72

5.12 Extension of class diagrams in Clafer . . . . . . . . . . . . . . . . . . . . . 75

6.1 Options feature model in TVL . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiii



6.2 Component meta-model in KM3 . . . . . . . . . . . . . . . . . . . . . . . . 80

B.1 Desugared Clafer model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2 BNF grammar of Clafer (no constraints). . . . . . . . . . . . . . . . . . . . 126

B.3 BNF grammar of core Clafer constraints . . . . . . . . . . . . . . . . . . . 128

xiv



Chapter 1

Introduction

Software Product Line (SPL) engineering is a systematic way of building customizable soft-
ware families from shared assets. SPLs bring important benefits to software development,
such as improved productivity, software quality, and reduced time to market [108, 126, 73].
While traditional software development deals with one software variant at a time, SPL en-
gineering considers many possible variants simultaneously. For a given input configuration,
a SPL delivers a single software variant. The number of variants grows exponentially with
the number of configuration options. The research on SPLs is concerned with methods,
languages, and tools for managing variability and delivering correct software variants.

Software Product Lines are often described in terms of problem space, solution space,
and a mapping between them (see Fig. 1.1). Both feature and meta-modeling have been
used in SPL engineering to model variability. Feature models are tree-like menus of mostly
Boolean — but sometimes also integer and string — configuration options, augmented
with cross-tree constraints [82]. These models are typically used to show the variation of
user-relevant characteristics of products within a product line. The models belong to the
problem space.

Problem
Space Mapping Solution

Space

Feature models Meta-models

Figure 1.1: Conceptual view of a Software Product Line

1



In contrast, meta-models, normally represented as class models as supported by
MetaObject Facility (MOF) [102], specify concepts representing more detailed aspects
of products; including behavioral and architectural aspects. They belong to the solution
space. For example, meta-models are often used to specify the component and connector
types of product line architectures and the valid ways to connect them. The nature of
variability expressed by each type of models is different: feature models capture selections
from predefined choices within a fixed tree structure; meta-models support making new
structures by creating multiple instances of classes and connecting them via links.

Over the last decade, the distinction between feature models and meta-models has
been blurred in the literature due to (i) feature modeling extensions, such as cardinality-
based feature modeling [42, 10], and (ii) attempts to express feature models as class models
in the Unified Modeling Language (UML) [35, 44]. In fact, a number of practitioners
use UML-based representations to model variability [19]. A key driver behind some of
these developments has been the desire to express both configuration options and variability
of component architecture instantiations in one notation [40, 69, 70]. Cardinality-based
feature modeling achieves this by extending feature models with multiple instantiation and
references. Class modeling, which natively supports multiple instantiation and references,
enables feature modeling by a stylized use of containment (UML’s composition) and the
profiling mechanisms of MOF or UML, e.g., as in [64].

Both developments have notable drawbacks, however. An important advantage of fea-
ture modeling as originally defined by Kang et al. [82] is its simplicity; several respondents
to a recent survey confirmed this view [81]. Extending feature modeling with multiple in-
stantiation and references diminishes this advantage by introducing additional complexity.
Models that contain significant amounts of multiply-instantiatable features and references
can hardly be called feature models in the original sense; they are closer to class mod-
els rather than easy-to-use menus guiding configuration decisions. On the other hand,
although class modeling handles the model parts requiring multiple instantiation and ref-
erences naturally, the feature modeling aspects can only be clumsily simulated using com-
position hierarchy and certain modeling patterns. Even worse, such a solution requires
inconvenient model refactorings, while according to a recent survey [19], evolvability of
variability models is one of the main challenges faced by practitioners.

We are not aware of any notation that naturally supports integrated modeling of both
problem and solution spaces of SPLs. Although specialized notations can be used, such as
feature and class models, they have incompatible semantics. Consequently, it is difficult
to mix such heterogeneous models, to specify and evaluate constraints over them, and it is
unclear how to handle consistency between such models.

2



1.1 Clafer Overview

This dissertation presents Clafer (class, feature, reference), a class modeling language with
first-class support for feature modeling. Clafer can express rich structural models, i.e.,
domain, variability, component models, and meta-models, augmented with complex con-
straints. Clafer supports: (i) class-based meta-models, (ii) object models (with uncertainty,
if needed), (iii) feature models with attributes and multiple instantiation, (iv) configura-
tions of feature models, and (v) mixtures of meta- and feature models and model tem-
plates [39], and (vi) first-order logic constraints. Clafer also allows arranging models into
multiple specialization and extension layers via constraints and inheritance. On the other
hand, in designing Clafer we wanted to create a language that builds upon as few concepts
as possible, and is easy to learn.

The novelty of Clafer design is founded on:

Unification of classes, associations, and properties, and arbitrary property nesting.
Clafer is based on a single concept, clafer (written in small letters), that unifies ba-
sic constructs of structural modeling, namely class, association, and property (which
includes attribute, reference, association end, and role) via reification of associations,
i.e., representing associations as association classes. Such a concept has the character-
istics of classes (ability to nest properties under it), associations (ability to navigate
over it), and attributes (ability to store values of primitive types in it). Thus, clafers
can be arbitrarily nested and can play the multiple roles of classes, attributes, and ref-
erences simultaneously. Clafer facilitates constructing hierarchical models, similarly
to other tree-based languages, e.g., XML and feature models. Additionally, Clafer
integrates subclassing into hierarchical modeling and encodes (partial) instances by
classes.

Hierarchical modeling with subclassing. Clafers at any nesting level in the contain-
ment hierarchy can subclass and redefine other clafers (think: simultaneous subclass-
ing of a unidirectional association and its target class in class diagrams). Prominent
hierarchical modeling languages, e.g., XML and feature models, offer no subclassing.
UML class diagrams, on the other hand, have two separate mechanisms: subclassing
among classes and subclassing among associations. Clafer unifies both into subclass-
ing among clafers.

Support for partial instances and (partial) completions. The cornerstone of Clafer’s
view of modeling is that (partial) instances and their (partial) completions can be
encoded, without losing any information, as class models using subclassing and

3



strengthening multiplicity constraints. Clafer uses the same syntax for specifying
class and object models. One can interpret such an encoding as a syntactic unifica-
tion of types and partial instances, and their completions.

Concise concrete syntax. Due to unification, Clafer offers concise concrete syntax for
feature and meta-modeling. A special naming discipline for elements that make up
a clafer and name resolution rules contribute to the conciseness of the constraint
language.

Throughout the dissertation, if the word Clafer begins with upper case, then it refers
to the language, otherwise it refers to the unifying concept of clafer.

1.2 Implementation and Evaluation

Designing a new language is always a major effort. It requires a good understanding of
the problem domain, definition of concrete and abstract syntax, precise specification of
semantics, tool development, and proper evaluation.

We provide Clafer with a formal semantics specified in terms of sets and mappings. We
provide a mathematical model of Clafer’s syntactical mechanism (meta-models and the
overall architecture) using formal class diagrams [53], which is a structural modeling for-
malism based on category theory and diagrammatic logic [54]. The formalism has allowed
us to define semantics concisely by specifying mappings between artifacts and specifying
operations over the artifacts and mappings. The structures of syntactical and semantic
constructs are aligned and made explicit rather than flattened and hidden in a multitude
of first-order logic formulas.

The traditional notion of instantiation in OOM requires objects to be complete, i.e., be
fully certain about their existence and attributes. We explore the notion of partial instan-
tiation, which allows the modeler to omit some details of instances. It enables modeling
with uncertainty and variability. We present a simple theory of partial instantiation and
completion. We show that OOM languages with no direct support for partial instances
can support them via class modeling, using subclassing and strengthening multiplicity
constraints. Clafer uses this encoding extensively.

The language is supported by tools for model analyses1. Reasoners based on SAT,
SMT, and CSP solvers provide rapid feedback on model correctness and enable non-trivial

1More information about tool support and documentation is available at http://clafer.org.

4

http://clafer.org


analyses. ClaferIG verifies, instantiates, and automatically completes partial models [7].
ClaferMOO computes optimal instances using multi-objective optimization [99]. Both
tools rely on a Clafer compiler that is part of this dissertation. The compiler translates
Clafer models to Alloy [76] and Choco [1]. The former is a class modeling language with a
concise constraint notation. The latter is a constraint programming library. The compiler
gives Clafer precise translational semantics and enables model analyses [23, 91].

We evaluate Clafer analytically and experimentally. The analytic evaluation argues that
Clafer meets its design objectives. It shows that Clafer can encode feature and meta-models
at least as concisely as state-of-the-art structural modeling languages. The experimental
evaluation shows that a wide range of realistic feature models, meta-models, model tem-
plates, and domain models can be expressed in Clafer and that useful analyses can be
run on them within seconds. Many analyses, such as consistency checks, element liveness,
configuration completion, and reasoning on model edits can be reduced to instance finding
by combinatorial solvers [18, 31, 46]; thus, we use instance finding and element liveness as
representatives of such analyses.

1.3 Research Contributions

This dissertation contributes to the design of modeling notations.

Hierarchical Modeling

• we propose a language that unifies the concepts of feature and class modeling, both
syntactically and semantically. In other words, it is not a hybrid language (Chap-
ter 3).

• in this language, the basic constructs of structural modeling: class, association, and
property, are unified into a single concept, called clafer (Sect. 4.1);

• this language has a compact syntax for encoding these rich semantic capabilities to
make class models concise (Sect. 4.1.1 and Sect. 6.1);

• we evaluate Clafer and show that, despite its expressivity, realistic models can be
analyzed within seconds (Sect. 6.2).

5



Partial Instances

• we demonstrate the usefulness of partial instances in OOM (Sect. 5.2);

• we present a theory of partial instantiation and completion, and precisely define an
encoding of partial object models as class models via subclassing and strengthening
multiplicity constraints (Sect. 5.4);

• we demonstrate that such an encoding provides syntactic unification of (partial)
instances and types in a single concept clafer (Sect. 5.5).

Formal Semantics

• we formally specify the semantics of Clafer in a novel, structure-explicit way, by
mapping to formal class diagrams, which we use as a notation for our semantic
domain (Sect. 4.2);

• we identify several key mechanisms allowing a meta-modeling language to express
feature models concisely, namely: concept unification, instance composition and type
nesting, default singleton multiplicity, group constraints, constraints with default
quantifiers, and navigation over optional clafers (Sect. 6.1);

• as Clafer subsumes cardinality-based feature modeling with references, attributes,
and constraints, we are the first to precisely define semantics of such models.

1.4 Outline of the Dissertation

The dissertation is organized as follows. We introduce our running example and (i) de-
fine the challenges of representing the example using either only class modeling or only
feature modeling, (ii) the challenges of representing partial instances, (iii) the challenges
of mapping feature configurations to component and option configurations, and (iv) a set
of design objectives for Clafer in Chapter 2. We then present Clafer in Chapter 3 and
show that it naturally supports unified feature and class modeling. Chapter 4 (i) explains
semantic foundations of Clafer, (ii) shows how it implements the unification of classes,
associations, and properties, and (iii) shows that a Clafer model is a hierarchical view on a
formal class diagram. Chapter 5 (i) shows the usefulness of partial instances in OOM, (ii)
specifies their encoding as class diagrams, and (iii) demonstrates its realization in Clafer.

6



We evaluate Clafer analytically and experimentally in Chapter 6 and demonstrate that it
satisfies the design objectives. We conclude in Chapter 8, after having compared Clafer
with related work in Chapter 7.

1.5 Publications

This dissertation contains material from the following publications:

• Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wąsowski. Feature and meta-models
in Clafer: mixed, specialized, and coupled. SLE, 2010

• Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Clafer: Unifying Class and Feature Modeling. In Submitted to SOSYM,
2013

• Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Partial Instances via Subclassing. In SLE, 2013

• Kacper Bąk, Dina Zayan, Krzysztof Czarnecki, Michał Antkiewicz, Zinovy Diskin,
Andrzej Wąsowski, and Derek Rayside. Example-Driven Modeling. Model = Ab-
stractions + Examples. In ICSE, 2013

• Michał Antkiewicz, Kacper Bąk, Krzysztof Czarnecki, Dina Zayan, Andrzej Wą-
sowski, and Zinovy Diskin. Example-Driven Modeling Using Clafer. In MDEBE,
2013

7



Chapter 2

Challenges of Modeling Variability in
Software Product Lines

In this chapter we introduce our running example of a telematics product line. We show
how feature models naturally express the problem space and how class-based meta-models
express the solution space. We discuss three issues of modeling variability in SPLs: 1) the
necessity to merge feature and class models in a single notation, 2) the necessity to represent
partial instances, and 3) the need to support relating (mapping) feature configurations to
component and option configurations. We demonstrate the challenges of representing the
solution space with feature models and the problem space with class models. Finally, we
postulate design goals for a language that could naturally express both the problem and
the solution space.

2.1 Modeling Variability in SPLs: An Example

Vehicle telematics systems integrate multiple telecommunication and information process-
ing functions in an automobile, such as navigation, driving assistance, emergency and
warning systems, hands-free phone, and entertainment functions, and present them to the
driver and passengers via multimedia displays. Configurations of a telematics system may
differ among car models (see Fig. 2.1). The bigger blue boxes indicate displays; the smaller
boxes in the middle indicate Electronic Control Units (ECUs) that control the displays.
The car in Fig. 2.1a has only one display for the driver. The car in Fig. 2.1b has two dis-
plays: one for the driver and one for the front-seat passenger; both displays are controlled

8



(a) (b) (c) (d)

Figure 2.1: Sample configurations of a telematics system

by the same ECU. The car in Fig. 2.1c has one display in the front and one in the back;
the displays are controlled by separate ECUs. The car in Fig. 2.1d has a separate display
for each person in the car.

Figure 2.2 shows a variability model of a telematics product line—our running example.
The features offered are summarized in the problem-space feature model (Fig. 2.2a). It is
a tree, whose root telematics refers to the product to be configured. The children are
the product’s features related by the sub-feature relationship, which expresses hierarchical
dependencies. A feature is either mandatory (indicated by a filled circle), e.g., channel,
or optional (indicated by an empty circle), e.g., extraDisplay. A feature is, basically, a
Boolean choice (sometimes with a numeric or string attribute) that can be either selected
or excluded. Mandatory features are always selected, provided that their parent is also
selected. Alternative choices are gathered under the xor-group channel, marked by the
arc between edges. By default, each channel has one associated display (as in Fig. 2.1c);
however, we can add one extra display per channel (as in Fig. 2.1d), as indicated by the
optional feature extraDisplay. Finally, we can choose large or small displays (size). Any
configuration allowed by the feature model in the problem space (the left half of Fig. 2.2)
must be somehow realized in the solution space, whose model is presented in the right half
of the figure. The solution space consists of three major parts.

The first one is a high-level abstract meta-model of components making up a telematics
system (Fig. 2.2b). There are two types of components: ECUs and displays. Each display
has exactly one ECU as its server. All components have a version.

Components themselves may have options, like the display size or cache, which consti-
tute the second part of the solution space (Fig. 2.2c). We can also specify the cache size and
decide whether it is fixed or can be updated dynamically. Thus, the solution space should
include a class model of component types and a feature model of component options.

9



Figure 2.2: Telematics product line

Moreover, the component meta-model in Fig. 2.2b is too generic and is not well aligned
with the actual products specified in the problem space. We want to add more information
to specialize and extend the component model to create a particular template for products
offered by the product line. A template fixes most of the architectural structure, but leaves
some points of variability to match the variability offered by the product line. Figure 2.2d
shows an extension of the abstract component model to serve as a template. The abstract
class plaECU (product line architecture ECU) specifies that each ECU will have either one
or two plaDisplays. We specialize the component meta-model by adding extra information
via constraints: none of the displays has cache, and we constrain the server reference in each
plaDisplay, so that it points to its associated ECU. A concrete product must have at least
one ECU. Hence, there are two singleton subclasses, ECU1 and ECU2 (with multiplicities
1..1), that serve as a specification of objects. We choose to specify objects by singleton
classes because for ECU2 we need to extend the base type with new property master that
was not specified in the high-level component class. Modeling ECU2 instance as a singleton
class solves this problem (a more detailed discussion of modeling objects by singleton classes
can be found in Chapter 5).

We need to endow the class model with a variability mechanism aligned with variability

10



provided by the feature model (from the solution space). One way of doing this is to
make the existence of some classes in the template optional by annotating them with
propositional formulas composed from features offered by the feature model (so called
presence conditions introduced in Feature-Based Model Templates (FBMTs) [39]). In
Fig. 2.2d, class ECU1 is mandatory and class ECU2 is optional, because its presence in
the model is regulated by the condition «dual», which refers to a feature from Fig. 2.2a.
The presence condition means that in a concrete configuration ECU2 will be included if
the feature dual is selected; it will be removed otherwise. The two configurations will
be ordinary class diagrams, i.e., instances of the UML meta-model of class diagrams.
The model template, however, represents multiple class diagrams and can be considered
a partial instance of the meta-model. Thus, FBMTs relate the problem-space feature
configurations to the solution-space component and option configurations. A block-arrow
in Fig. 2.2 represents this mapping. We will provide a precise specification of the complete
mapping later in this dissertation. Note that the mapping requires that the solution space
models should be partially specified (are partial instances) to represent a family of models.

The example demonstrates three issues of modeling variability in SPLs: 1) the necessity
to merge feature and class models in a single solution space, 2) the necessity to represent
partial instances, and 3) the need to support relating (mapping) feature configurations to
component and option configurations. In the next section, we will show that managing
the issues is not straightforward and challenging. Correspondingly, we will refer to them
as Problem 1 , Problem 2, and Problem 3 .

2.2 Three Problems

2.2.1 Problem 1: Merging Feature and Class Models

The solution space in Fig. 2.2 contains a class-based meta-model and a feature model. To
capture our intention, the models are connected via UML composition. As the precise
semantics of such notational mixture is not clear, this connection should be understood
only informally for now. Basically, we have two choices to model components and options
in a single notation: either enrich feature modeling to allow it to capture class modeling,
or encode feature models as class models. We will consider them in the two consecutive
subsections.

11



Figure 2.3: Cardinality-based feature model of components

Class Modeling via Feature Modeling

Figure 2.3 shows the component part of the model. The model introduces a synthetic root
feature; display and ECU can be multiply instantiated, but cannot be abstract ; and display
has a server subfeature representing a reference to instances of ECU. Versions are added
to display and ECU to match the meta-model in Fig. 2.2b, or we could extend the notation
with inheritance. The latter would bring the cardinality-based feature modeling notation
very close to class modeling, posing the question whether class modeling should not be
used for the entire solution space model instead. Furthermore, the semantics of such an
extended notation is unclear.

We may conclude that cardinality-based feature modeling blurs the distinction between
feature modeling and class modeling. It encompasses mechanisms characteristic of class
modeling, such as multiple instantiation and references, and could even be extended further
toward class modeling, e.g., with inheritance; however, the result can hardly be called
‘feature modeling’ in its classical sense, as it clearly goes beyond the original scope of
feature modeling [82].

Feature Modeling via Class Modeling

Figure 2.4 shows only the options model, as the component model remains unchanged (as in
Fig. 2.2b). A subfeature is either an attribute (if it has no other subfeatures) or a class (if it
has features) – we choose the simplest suitable language construct. Subfeature relationships
are represented either as property nesting or as UML composition. Feature multiplicities
correspond to property multiplicities. The xor-group is encoded by enumeration.

12



Figure 2.4: Meta-model of display options

(a) Iteration 1

(b) Iteration 2

Figure 2.5: Evolved meta-model of display options

Representing a feature model as a UML class model works reasonably well for our small
example; however, it does have several drawbacks:

• Limited property nesting and model refactoring. The feature model shows fixed as a
property of size by nesting. This intention is lost in the class model, in which fixed is
a property of cache rather than size; particularly, if the attribute size was optional,
the attribute fixed could exist even if size was eliminated. To fix this drawback, we
could add an OCL constraint expressing the dependency, but hiding an important
structural information within constraints is not generally advisable.

A better solution would be to reify attribute size as a class contained in cache as
shown in Fig. 2.5a, in which the structural dependency is explicit. Note also that
in some cases, attributes’ reification would naturally go through subclassing rather

13



than containment. Suppose, for example, that we need to add an optional property
hd (high definition) to large displays. A natural way to do this is shown in Fig. 2.5b,
which is again a substantial refactoring of the initial class model from Fig. 2.4. In
contrast, adding property hd to the feature model in Fig. 2.2a amounts to plain
nesting subfeature hd under feature large.

These examples show a general drawback of ordinary class modeling in the context of
gradual model development. Modeling properties by attributes is very compact, but
does not allow further nesting. On the other hand, modeling properties by classes
leads to bulky models; even worse, there are several ways of such modeling, which
may present a problem for an inexperienced modeler.

• Name clashes. By default, class diagrams offer a single namespace for class names.
Feature names, however, often repeat in different parts of the feature model, e.g., the
name size is used three times in Fig. 2.5a. Name repetitions may easily lead to name
clashes. For example, if we make the enumeration Size a class, the name of the new
class would clash with the class size representing the display size; thus, we would
have to rename one of them, or use nested classes (Fig. 2.5b), which would further
complicate the model.

• Limited support for groups. Converting an xor-group to an or-group in feature mod-
eling is simple: the empty arc is replaced by a filled one. For example, size (Fig. 2.2a)
may be converted to an or-group in a future version of the product line to allow sys-
tems with both large and small displays simultaneously. Such a change is tricky in
class models: we need to refactor size to a class with two subtypes: small and large
(Fig. 2.5b). Then we would either allow one to two objects of type size and write an
OCL constraint forbidding two objects of the same subtype (small or large), or use
overlapping inheritance.

Thus, existing class modeling notations, e.g., UML class diagrams, are inadequate for
feature modeling, especially in the context of gradual model development and evolution.
Similar arguments apply to other existing class-based modeling languages, such as MOF
and Alloy.

2.2.2 Problem 2: Representation of Partial Instances

Annotations, such as «dual» in Fig. 2.2d, are a mechanism of introducing variability into
models, which makes the models partially specified. Such models can be viewed as partial

14



instances of their meta-models (here, of the UML meta-model of class diagrams). In our
example, it is unclear whether the class ECU2 actually instantiates its meta-class Class
or not. The modeler can make the choice later as more knowledge becomes available. He
would then complete the model (reduce variability in it) to arrive at a single configura-
tion. Although class diagrams provide syntactic support for annotations, the semantics of
annotations expressing variability goes beyond the semantics of standard class diagrams.
Thus, the problem is that the partiality of models is expressed outside the notation of class
diagrams. Standard tools cannot correctly interpret such enriched models, and specialized
tools are required [46, 59].

2.2.3 Problem 3: Mapping Features to Component Configurations

Relating heterogeneous models by a mapping is a non-trivial task. For example, a FBMT
in Fig. 2.2 relates a feature model, a class model (of components), and (implicitly) their
metamodels. As annotations, such as «dual», change the class model itself, complicated
syntactic checks are needed to guarantee the correctness of all template configurations. For
example, when «dual» is deselected and ECU2 is consequently removed, then master may
become a dangling association (because it is mandatory and has no presence condition).
Thus, the configured template does not conform to the UMLmeta-model for class diagrams.
Verification of annotative model templates is a non-trivial task and requires specialized
tools [46].

2.2.4 Toward a Solution

We conclude that a solution to the aforementioned issues is to design a (class-based) meta-
modeling language with first-class support for feature modeling. We postulate that such a
language should satisfy the following design goals:

1. Provide a concise notation for feature modeling

2. Provide a concise notation for class modeling

3. Allow mixing of feature models and class models

4. Provide support for partial instances

5. Use a minimal number of concepts and have a uniform semantics

15



The last requirement is aimed at a language that unifies the concepts of feature and class
modeling as much as possible, both syntactically and semantically. In other words, we do
not want a hybrid language. We see the following advantages of unification: 1) the ability
to encode a variety of models, especially allowing flexible mixing of feature and class
models as shown by the example, 2) the ability to relate feature and class configurations
via ordinary constraints, 3) a common infrastructure to support analyses of these models,
and 4) simplified implementation of the tools.

2.3 Concluding Remarks

In this chapter we introduced the running example. We showed the deficiencies of represent-
ing it fully using either cardinality-based feature modeling or class-based meta-modeling.
The former notation becomes complex and lacks precise semantics. The latter lacks first-
class support for hierarchical models, which impedes their evolution. We also presented
the challenge of relating the problem and the solution space models.

We propose to address these issues by designing a language that unifies feature and
meta-modeling. Such a unified language would be based on first principles that govern
both formalisms. An alternative would be to design a hybrid language that integrates
feature and meta-modeling, or to design an infrastructure that enables reasoning on the
two types of models together. First, syntactic integration of two notations in a hybrid
language is likely to cause ambiguities. For example, an edge that relates two features rep-
resents a sub-feature relationship; an edge that relates two classes represents a bidirectional
association. The former expresses an implication between feature selections, while the lat-
ter does not have to express an (analogous) existential dependency between instances of
classes. Second, in the end, both alternative solutions would require a uniform semantics
to support reasoning about the two notations. Hence, a uniform semantics is unavoidable.

16



Chapter 3

Clafer: Unifying Class and Feature
Modeling

In this chapter we model the telematics example in Clafer. We show how the language
addresses the three problems introduced in the previous chapter. First, we encode the
feature model of component options and the meta-model of components. We then show
that both models can be arbitrarily mixed via inheritance and references. Inheritance
allows us to extend models with new elements and to specialize them by adding constraints.
Constraints are a very flexible mechanism that support (partial) configuration of variability
models (e.g., feature models) and models with variability (e.g., model templates). We also
demonstrate that constraints can couple feature and class-based meta-models, i.e., when a
feature model is configured, then it is reflected in a specific configuration of components.
Finally, we present an instance of a Clafer model encoded at the class level via subclassing.

3.1 Clafer vs. the Three Problems

3.1.1 Clafer in a Nutshell

Clafer has a minimalistic syntax but rich semantics that unifies class, association, and
property (which includes attribute, reference, and role) into a single concept called clafer.
For example, Fig. 3.1a shows a sample Clafer model consisting of two clafer declarations.
First, a clafer display is declared, then the declaration of the clafer server is nested under
the first declaration (the latter, implicitly, is nested under the synthetic root clafer). A

17



display ∗

server→ ECU 1..1

(a) Clafer model (b) Rendering as a UML
Class Diagram

Figure 3.1: Clafer model and its meaning

clafer declaration includes multiplicities, and may optionally contain a superclafer or a
reference to a clafer or both. In the example, clafer display has multiplicity *: there can
be any number of instances of this clafer. Clafer server refers to clafer ECU to be defined
somewhere in the model, and has multiplicity 1..1: each display has exactly one ECU
server.

A clafer declaration (server) specifies a relationship between its parent class (display)
and its target class (ECU), and declares the following (see Fig. 3.1b):

1. A new class server and a bidirectional composition association, which enables navi-
gation to the introduced class via the end server and back to the parent/owner;

2. A unidirectional association ref to navigate to the target class from the new class;

3. A unidirectional association server* to navigate to the target from the parent class
(note that the * mimics a dereferencing operator on ref ). By default, it is assumed
that for any instance this of class display, the equality this.server.ref=this.server*
holds. In fact, this condition means that class server can be considered as a reification
of association server* in the sense of UML’s association classes. Figure 3.1b uses the
UML syntax for representing an association class (the dashed line from the association
to server) to indicate this fact.

If a clafer has no reference (i.e., has neither class ECU nor maps ref and server* ), then it
corresponds to pure containment (server would be still contained by display). We call clafers
with references reference clafers, otherwise they are basic clafers. Further in Sect. 4.1 we
will make these concepts more precise.

18



1 abstract options
2 xor size
3 small ?
4 large ?
5 cache ?
6 size→ int
7 fixed ?
8 [ small && cache =⇒ fixed ]

Figure 3.2: Feature model of component options in Clafer

3.1.2 Solving Problem 1: Merging Feature and Class Models

Let us model the running example in Clafer. In general, a Clafer model consists of three
types of constructs: clafers, constraints, and goals. In this dissertation, we are only con-
cerned with clafers and constraints ; goals are discussed elsewhere [99]. Each line in Fig. 3.2
declares a new clafer (lines 1-7) or a constraint (in square brackets, line 8). Clafers can be
arbitrarily nested (in the containment hierarchy) using indentation: clafer options is at the
top level; clafers size (line 2), cache, and the constraint are nested under options; clafers
small and large are nested under size; etc. Below we discuss the Clafer model step by step.
Appendix C.1 provides the entire model of the running example for reference.

Feature Modeling

The Clafer model in Fig. 3.2 corresponds to the model of display options in Fig. 2.2c. The
clafer options is abstract (cf. keyword abstract)—it has no direct instances, that is, all
its instances are instances of some other concrete (i.e., non-abstract) clafer extending it
(similar to abstract class in UML). One of the applications of abstract clafers is to support
reuse, as we will show shortly.

The clafer options contains a hierarchy of features and a constraint. Each clafer can
contain any number of children clafers and constraints, shown by indentation. Clafers can
be preceded by group cardinality, which constrains the number of instances of children
clafers. For example, the keyword xor means that size allows either small or large but not
both (nor none of the two) as a child instance.

Clafers are constrained by multiplicity constraints: a multiplicity is an interval m..n,
where m ∈ N, n ∈ N ∪ {∗},m ≤ n, assuming that i < ∗ for all i ∈ N. A clafer can only
have the number of instances l from this interval: m ≤ l ≤ n. Besides direct notation

19



m..n, some syntactic sugar exists. For example, the clafer cache is followed by the question
mark ? (meaning 0..1), i.e., cache is optional. By default the multiplicity for clafers is 1..1,
so size is mandatory; for top-level abstract clafers it is 0..*, so there is no restriction on
options. As the examples will show, such a design choice smoothly integrates feature and
class models.

Similarly to feature models, Clafer models have an important property: a child clafer
cannot exist unless its parent also exists. The clafer size → int corresponds to a feature
with an attribute of type integer; it also nests another clafer fixed (cf. Fig. 2.2b). If cache
is eliminated, then its children size→ int and fixed are eliminated too.

Constraints

Constraints express dependencies among clafers or restrict string and integer values. For
example, the constraint in line 8 requires that a small display with cache must have cache
of fixed size. The clafer small is found within size; the full path inserted by the compiler will
be this.size.small. We designed constraints after Alloy; its notation is elegant, concise, and
expressive enough to restrict both feature and class models. We fully define the constraint
language in Appendix B.2.

Each clafer introduces a local namespace. For example, the two different clafers named
size exist in different namespaces (one is within options, and one within cache). In general,
names are path expressions, used for navigation like in OCL or Alloy. Clafer has name
resolution rules; they are important when resolving clafer names used in constraints and
clafer definitions. A name is resolved in the context of a clafer using the following rules.
First, it is checked whether it is a special reserved name, such as this. Second, it is looked
up in descendants in the containment hierarchy in a breadth-first-search manner. If it
is not found, the algorithm searches within the ancestor clafers. Otherwise, the name is
looked up in all top-level definitions. If the name cannot be resolved or is ambiguous within
one rule, an error is reported.

Class-Based Meta-Modeling

Figure 3.3 shows a component meta-model (from Fig. 2.2b) encoded in Clafer. Clafer version
(line 2) corresponds to the attribute of the class comp in Fig. 2.2b; and clafer server (line
7) corresponds to the unidirectional association pointing to the class ECU in Fig. 2.2b. All
concrete clafers are contained by their parents (the synthetic root is a parent of top-level
clafers). Clafers declared using the arrow notation (version and server) are reference clafers,

20



1 abstract comp
2 version→ int
3

4 abstract ECU : comp
5

6 abstract display : comp
7 server→ ECU
8 ‘options // shorthand for options : options
9 [ version ≥ server.version ]

Figure 3.3: Component meta-model in Clafer

OOM Concepts Clafer Concepts
class

claferproperty
reified association
single inheritance single inheritance

containment clafer nesting
unidirectional association reference clafer

bag-valued bag
set-valued set
multiplicity multiplicity

Table 3.1: Corresponding concepts in OOM and Clafer

i.e., they hold references to instances (note that primitive types are clafers, too). All other
clafers are called basic clafers—they have no references. Table 3.1 summarizes OOM and
Clafer constructs. Although association reification is a transformation in UML, in Clafer
it is captured by the concept of clafer, as associations are always reified.

Clafer supports single inheritance. If clafer A extends clafer B (written A : B), then
every instance of A is also an instance of B. In Fig. 3.3, clafer ECU inherits version from
comp. The clafer display additionally extends comp by adding two clafers and a constraint
stating that display’s version cannot be lower than server’s version. Inheritance in Clafer
is disjoint by default.

Quotation (see ‘options in Fig. 3.3) is a syntactic sugar for inheritance. Syntactically,
quotation ‘A expands to A : A. It introduces a clafer that extends another clafer (defined
elsewhere in the model) and reuses its name. In the running example, quotation will

21



1 abstract plaECU : ECU
2 plaDisplay : display 1..2
3 [ !cache
4 server = parent ]
5

6 ECU1 : plaECU
7

8 ECU2 : plaECU ?
9 master→ ECU1

Figure 3.4: Architectural template in Clafer

effectively include options from Fig. 3.2 as a part of display in Fig. 3.3.

While inheritance is about sharing a supertype, reference clafers enable sharing in-
stances. The reference clafer server will point to some ECU instance. In general, there may
be several displays that will reference the same ECU instance as a server.

Mixing class and feature models in Clafer is done via inheritance or reference clafers.
If a clafer has a supertype, the supertype can be any clafer, regardless of whether it plays
the role of a feature or a class. Similarly, any clafer can be the target of a reference clafer.
The concept of clafer is flexible. It can model (reified) unidirectional associations, set-
and bag-valued collections, and containment among clafers, which mitigates the problems
discussed in Sect. 2.2.

3.1.3 Solving Problem 2: Representation of Partial Instances

Clafer natively supports partially specified models. It can encode model templates in a
way that configurations are always syntactically correct. Figure 3.4 encodes the template
from Fig. 2.2d in Clafer. The predefined keyword parent points to the current instance of
plaECU, which is either ECU1 or ECU2. Instead of making existence of a class optional, it
is assumed that the class exists, but has multiplicity 0..1. Its presence condition becomes a
normal constraint that regulates instantiation — as it is typically done in class modeling.
The constraint can easily relate feature and class models, because they are in a unified
notation. Thus, the model template contains variability and is always a valid instance of
the assumed meta-model. Later, in Chapter 5, we show a general mechanism of encoding
partial instances at the level of models so that partiality can be expressed without changing

22



1 telematics
2 xor channel
3 single ?
4 dual ?
5

6 extraDisplay ?
7

8 xor size
9 small ?

10 large ?
11

12 [ dual⇔ ECU2
13 extraDisplay⇔#ECU1.plaDisplay = 2
14 extraDisplay⇔ (ECU2 =⇒ #ECU2.plaDisplay = 2)
15 large⇔ !plaECU.plaDisplay.options.size.small
16 small⇔ !plaECU.plaDisplay.options.size.large ]

Figure 3.5: Feature model with mapping constraints

the semantics of the base language.

3.1.4 Solving Problem 3: Mapping Feature to Component Con-
figurations

Having defined the architectural template, we can expose the variability points present
in it as a product-line feature model. Figure 3.5 shows this model (cf. Fig. 2.2a) along with
constraints coupling its features to the variability points of the template. The template
in Fig. 3.4 allows the number of displays (plaDisplay under ECU1 and ECU2) and the size
of every display to vary independently. We want to further restrict the variability as
stipulated in the feature model, however, requiring either all present ECUs to have two
displays or all to have no extra display, and either all present displays to be small or all to
be large. We opted to explain the meaning of each feature in terms of the model elements
to be selected rather than defining the presence condition of each element in terms of the
features. Both approaches are available in Clafer, however.

Constraints allow us to restrict the model to a single instance (to configure it). Fig-
ure 3.6 shows top-level constraints specifying a single product, with two ECUs, two large
displays per ECU, and all components in version 1. The configuration corresponds to the
one in Fig. 2.1d. Tools, such as ClaferIG [7], can automatically instantiate the product

23



1 // concrete product
2 [ dual && extraDisplay && telematics.size.large ]
3 [ all c : comp | c.version = 1]

Figure 3.6: Constraint specifying a single product

1 e1 : ECU1
2 d1 : plaDisplay
3 s1 : server→ e1
4 o1 : options
5 s1 : size
6 l1 : large
7 v1 : version→ 1
8 d2 : plaDisplay
9 s2 : server→ e1

10 o2 : options
11 s2 : size
12 l2 : large
13 v2 : version→ 1
14 v3 : version→ 1

15 e2 : ECU2
16 m1 : master→ e1
17 d3 : plaDisplay
18 s3 : server→ e2
19 o3 : options
20 s3 : size
21 l3 : large
22 v4 : version→ 1
23 d4 : plaDisplay
24 s4 : server→ e2
25 o4 : options
26 s4 : size
27 l4 : large
28 v5 : version→ 1
29 v6 : version→ 1

Figure 3.7: Configuration in Clafer

24



line by deriving a configuration of the architectural template.

Clafer offers the same syntax for encoding models and instances (configurations), and
the latter can be partial. Figure 3.7 shows a Clafer model that encodes exactly one config-
uration that was previously specified by constraints. The encoding is done by hierarchical
redefinition among clafers — subclassing among clafers and subclassing among references.
For example, in Fig. 3.4 the clafer plaDisplay is nested under plaECU, thus in Fig. 3.7 the
singleton clafer d1 subclasses plaDisplay and is nested under e1. For reference clafers, the
target of the reference gets redefined. For example, in Fig. 3.4 the clafer master points
to ECU1 and is nested under ECU2; in Fig. 3.7 the clafer m1 (line 16) subclasses master,
is nested under e2, and points to e1, which is a subclass of ECU1 (line 1). Note that
redefinition of basic or reference clafers allows refining their multiplicities.

3.2 Concluding Remarks

In this chapter we introduced Clafer. We showed, on the telematics example, that Clafer
syntactically unifies feature and meta-modeling, and that both types of models can be
mixed (using inheritance and references), specialized (partially completed), and coupled
(related using constraints). The constraint language plays a very important role: it specifies
(partial) configurations of models and provides a mapping between feature and meta-
models. Finally, we encoded an instance of a Clafer model as a configuration of classes
related via subclassing. Thus, the same syntax is used for representing class and (partial)
object models. We make this encoding precise and general in Chapter 5.

25



Chapter 4

Concept Unification and Arbitrary
Property Nesting

In this chapter we show that Clafer’s concise concrete syntax encodes a rich semantics.
First, we present the abstract syntax of Clafer models. We formalize the abstract syntax so
that its structure follows the concrete syntax. We then define the concept clafer that unifies
classes, associations, and properties. We discuss different kinds of clafers and explain how
arbitrary property nesting is realized. Next, we present the integration of inheritance into
hierarchical modeling. We formally specify the aforementioned mechanisms by defining
meta-models expressed as formal class diagrams. Finally, we show that Clafer models
are hierarchical views of class diagrams, and, similarly, instances of Clafer models are
hierarchical views of object diagrams.

4.1 Anatomy of a Clafer Model and Its Instantiation

This section discusses the basic ingredients of Clafer syntax and presents instantiation of
Clafer models. The technical details of concrete syntax can be found in Appendix B.1. We
start with the abstract syntax.

4.1.1 Clafers as Views to Class Diagrams

The rich semantics of Clafer models is expressible in a concise syntax. We designed the
concrete syntax so that it hides the complexity of its semantics. The mechanism is realized

26



Figure 4.1: Architecture of Clafer’s syntax

plaECU ∗

master→ plaECU ?

(a) Clafer model (b) LMCS (c) Labeling as a graph mapping

(d) UML Class Dia-
gram

Figure 4.2: A Clafer model (a), its compilation (b), view extraction (c), and the rendering
using reified association (d)

via the architecture of Clafer’s syntax shown in Fig. 4.1. A Clafer model has a front-
end—the Clafer model as such—, an intermediate representation—a Labeled Multi-Clafer
Shape (LMCS)—, and a back-end—a class diagram. The Clafer spec provides a hierarchical
view on the class diagram. It explicates that LMCS encodes this view by a labeling mapping
from an Unlabeled Multi-Clafer Shape (UMCS) (which corresponds to an LMCS with all
labels/names stripped). We provide an example to motivate and explain each component.

Figure 4.2a shows a Clafer model where plaECU is a top-level basic clafer with an unre-
stricted multiplicity. The optional reference clafer master is contained within plaECU and,
simultaneously, has plaECU as a reference target. Furthermore, it is possible to navigate
from the top-level plaECU to the one pointed to by master. Figure 4.2d shows an intu-
itive meaning of the model, i.e., a UML class diagram with a reified association being a
loop. This intuitive meaning is precisely captured in Fig. 4.2b by an LMCS that follows
the concrete syntax of Clafer. LMCS defines Clafer models in terms of formal class dia-
grams [53] (formal CDs or just CDs for short), which we use as a notation for our semantic
domain. In general, an LMCS is a tree-like structure composed by joining Labeled Clafer
Shapes (LCSs). A single LCS defines a clafer declaration. In the example the LMCS is

27



composed of only one LCS.

A formal CD is a graph with additional labels encoding constraints. For the CD in
Fig. 4.2b, the graph encompasses three nodes and three edges, and the constraint labels
denote multiplicities and a commutativity constraint ([=]); special arrow tails and heads
also encode constraints that we will explain shortly. Nodes of the graph (think of UML
classes) are interpreted as sets (of their instances). Edges (think of UML associations)
are interpreted as mappings, i.e., sets of links mapping elements from the source set to
the elements of the target set. The commutativity constraint denotes that the mapping
master* is the sequential composition ofmaster followed by ref. In fact, this equality means
that class master together with its pair of associations (parent, ref) can be considered as
reification of association master* (which is shown by a dashed line in the UML diagram
in Fig. 4.2d).

We use the following notation for maps. Predefined maps, e.g., parent, are underlined.
By default, maps are partially defined and multi-valued, and are denoted by arrows with
a black triangle head, see, e.g., the shapes of arrows master and master* in Fig. 4.2b.
An open arrow head (e.g., arrow ref) means that the map is single-valued : each master
points to at most one plaECU. A black bullet arrow tail means that the map is total : each
master points to at least one plaECU. A black diamond arrow tail (arrow master) denotes
containment considered as a conjunction of two conditions: multiplicity 1 (there is one
and only one plaECU for a master) and existence dependency (master deletion implies its
plaECU deletion). The first condition is often referred to as non-sharing (and multiplicity
is sometimes relaxed to 0..1). The second condition is also referred to as cascade deletion.
Although it is not expressible in the CD formalism described in this work (which does
not have any means of expressing dynamic constraints), it is an important part of Clafer
semantics. Existence dependency can be formalized in the framework of CD with dynamic
predicates described in [49]. Our arrow notation for maps is summarized in Tab. A.1 in
the Appendix.

Notice, however, that the LMCS in Fig. 4.2b is not a valid class diagram, because it
contains two classes named plaECU. What is the meaning of this strange diagram then?
In contrast with class diagrams (where names are unique), the Clafer model (and the
corresponding LMCS) distinguishes two different roles that instances of class plaECU can
play: (i) being the parent of reference master, and (ii) being the target of the reference.
What Fig. 4.2b actually encodes is a mapping from a diagram of roles to a diagram of
classes and associations, as shown in Fig. 4.2c. The source of the mapping is the carrier
graph of the diagram from Fig. 4.2b with all labels/names stripped. The target is a formal
class diagram that makes the meaning of the class diagram from Fig. 4.2d precise. Indeed,
as an object of class master is supposed to reify a master link, such an object must have

28



(a) Labeled Clafer Shape (b) Class Diagram

Figure 4.3: Sample LCS and corresponding CD

a source projection reference (to the source of the association) that returns the source
component of the link, and a target projection reference (to the target of the association)
that returns the target component of the link. In Fig. 4.2c, these projection references are
given by parent and ref associations (maps) in the target CD.

The mapping specified in diagram Fig. 4.2c consists of links assigning labels to roles;
they are shown with dashed lines. The two links targeting at the same class plaECU show
that class plaECU plays the two roles of being both the parent and the target of association
master. Note that the mapping preserves the graph structure: it maps edges to edges so
that their sources and targets are respected. This preservation is an important condition
to be respected by labeling.

We will say that Fig. 4.2c describes a view on the class diagram, and call the mapping
a view mapping. For a complex Clafer model consisting of multiple clafers, the role graph
has the shape of multiple triangles joined together into a hierarchical structure that we call
an UMCS; labeling again amounts to a mapping into a complex class diagram behind the
Clafer model (see, for example, Fig. 4.5c). Thus, a Clafer model is compiled into an LMCS,
whose labeling encodes a mapping from an (unlabeled) UMCS to a class diagram. We will
again call this mapping a view mapping, and say that it is extracted from the LMCS. The
view mapping will be crucial for reverse encoding of object diagrams that instantiate the
back-end class diagrams into instances typed over LMCS, in which different roles played
by the same object are explicit.

Below we consider Clafer syntax and LMCS compilation in more detail.

4.1.2 Clafer Shape

The diagram in Fig. 4.3a is a more detailed representation of the diagram in Fig. 4.2b.
Nodes of the diagram denote roles played by the involved classes, and edges are roles
played by mappings (unidirectional associations). The bidirectional containment associa-
tion is split into two mappings, which are declared as mutually inverse. Note the predicate

29



Figure 4.4: Unlabeled Clafer Shape

declaration [inv](master , parent), which is visually shown by the label [inv] hung on the two
arrows. Furthermore, the diagram carries the multiplicities of the associations master and
master*, which are equal because mapping ref is single-valued.

Thus, the diagram of roles is a graph endowed with predicate labels declaring certain
properties of the mappings involved. We will call such graphs DP-graphs, meaning graphs
with diagram predicates. In fact, formal CDs are nothing but DP-graphs in some predefined
signature of diagram predicates required to express static semantics of UML class diagrams.
Now we can say that a clafer declaration is compiled into a specific DP-graph (formal CD)
of a specific shape specified in Fig. 4.4. We call this specific DP-graph an Unlabeled Clafer
Shape, and name its elements as shown in the figure.

The clafer shape has a standard visual layout: the source class is always above the
head class; the target class is to right of the head class. The head class indicates the clafer
introduced by the compiled declaration; the source class relates the introduced clafer to
its parent in the containment hierarchy. The ref map and the target indicate the target
type of the reference. Note that mappings ref and parent are always single-valued. Among
predicate declarations embodied into a clafer shape, all but multiplicity m..n is automati-
cally assumed by default; multiplicity m..n is declared by the user (and is assumed to be
1..1 unless explicitly stated in concrete syntax to be otherwise).

4.1.3 Kinds of Clafers

There are two kinds of user-defined clafers: basic clafers and reference (bag and set) clafers.
We describe them and specify their semantics via generic examples below. Table 4.1
summarizes the discussion and shows sample models and their LCSs. Although, the figures
use concrete names, such as display and server, the compilation works analogically for any
clafer of a given kind. Each of the clafers can be either abstract or concrete.

30



Clafer Kind Clafer Model LCS

Basic telematics
extraDisplay m..n

Reference bag display
server � ECU m..n

Reference set display
server→ ECU m..n

Table 4.1: The meaning of a clafer declaration

Basic Clafers

They establish containment hierarchy among clafers by nesting (same as composition in
UML). An example is shown in the first row of Tab. 4.1. A distinction of a basic clafer’s
shape is that the maps ref and target and the target class are excluded.

Reference Bag Clafers

They correspond to bag-valued references, i.e., two or more references from the same source
instance can point to the same target instance. The target clafer name follows the double
arrow symbol (�). For example, there may be several connections from a display to ECU.
The second row of Tab. 4.1 illustrates a compilation of the reference bag clafer server to
a corresponding LCS. In fact, reference bag clafers follow the structure of basic clafers,
but additionally have the target class. In reference bag clafers the map playing the role of
target is bag-valued, hence the annotation [bag] on server*.

31



Reference Set Clafers

They are set-valued references and their name is followed by the arrow symbol (→). They
are similar to reference bag clafers, but the same source instance cannot point to the same
target instance multiple times.

The compilation of reference bag and set clafers to LCSs is similar, but the latter have
an additional predicate declaration [key](parent , ref ) (see the last row of Tab. 4.1). The
predicate means that each instance this of the head class is identified by a pair of instances
(this.parent, this.ref) from the source and target classes, and hence “rows” in the “table”
server are not duplicated. Then navigation from the source to the target results in a set-
valued mapping. In the example, for a given instance of display, each instance of server
points to a different instance of ECU, and the mapping server* is set-valued. Conversely,
if the target mapping is set-valued, the pair of projections is a key.

Abstract Clafers

Abstract clafers define only a type (no direct instances). We distinguish nested and top-
level abstract clafers. The LCS of the former is the same as of previously described clafers.
Top-level abstract clafers, on the other hand, have slightly different LCSs: they have no
parent in the containment hierarchy, i.e., the LCS excludes the head class and correspond-
ing maps. When a top-level clafer is declared abstract, then all its descendants (in the
containment hierarchy) are declared abstract by default. The descendants represent the
case of nested abstract clafers.

Predefined Clafers

There are several clafers that are predefined in the language: clafer Sing and a family
Dom of clafers representing primitive domains (e.g., int for integers, and string for strings
of characters). Sing is very important although it does not appear in the concrete syntax.
Each Clafer model by default has Sing as the root of the containment hierarchy, and hence
Sing is the parent of top-level concrete clafers. It also is important in the context of
top-level abstract clafers that have no parent. The synthetic root embodies the concept
of existence. In Clafer, being reachable from the synthetic root is necessary for a clafer
to exist when the model gets instantiated. Sing only has the head class, which is some
predefined singleton class {*} also called Sing and has neither a parent nor a target (see
the upper triangle in Fig. 4.5b). Any clafer in Dom is a child of Sing, its head class is the
class of the respective values (integers, strings, etc.), and the target class is absent.

32



4.1.4 Clafer Nesting

A Clafer model is a tree of clafer declarations. The concrete syntax expresses that hierarchy
via indentation. For example, master is a child of plaECU in Fig. 4.5a. Clafers can arbitrarily
nest clafers irrespective of their kind. In particular, reference clafers can nest clafers, which
corresponds to nesting properties under UML association classes. In contrast to property
nesting in UML, clafers can be nested arbitrarily deeply, however.

Clafer nesting is realized through cojoining LCSs that form an LMCS. If a clafer B is
a child of (nested under) clafer A, then the head class of A is the source class of B, so that
the B’s LCS is plugged into A’s LCS at its head class:

A.head = B.source

For example, Fig. 4.5b shows three cojoined LCSs where plaECU is a parent of master and
Sing is a parent of plaECU.

Section 4.1.1 showed that a single LCS amounts to a labeling mapping from a UCS to a
CD. Correspondingly, an LMCS amounts to a labeling mapping from a UMCS to a bigger
CD. Figure 4.5c presents the extraction of this mapping for our example. The UMCS
(left part of the figure) has no labels and follows the tree-like structure of the LMCS.
The mapping itself is specified in Fig. 4.5c’. The names C1, C2, M1, M2, etc., represent
unique class or map identifiers, respectively. The CD, generated by the mapping label,
demonstrates that labeling glues together some nodes from the UMCS.

4.1.5 Inheritance

Inheritance between two clafers is defined at the level of their LCSs and means their inclu-
sion: the corresponding classes in LCS are related by inclusions, as in Fig. 4.6. Inclusion
maps are denoted by hollow-triangle heads, which resemble UML notation for inheritance.
Formally, a map m with a hollow-triangle head means a predicate declaration [incl](m).
The idea of modeling subsetting via inclusion maps is borrowed from category theory. Fig-
ure 4.7 shows an example. The clafer master under ECU2 specializes master under plaECU.
Effectively, for reference clafers inheritance is a redefinition. The redefinition for maps also
holds due to commutativity condition of maps: supers.head = head.superh. If an LCS has
no target (is a basic clafer) or no parent (an abstract clafer), then there is no inclusion
between missing classes.

Inheritance among any types of clafers is allowed, but is subject to the following re-
strictions:

33



1 plaECU 0..∗

2 master→ plaECU 0..1

(a) Clafer model

ClassRole Label
C1 Sing

C2, C4 plaECU
C3 master

MapRole Label
M1 parent
M2 plaECU
M3 parent
M4 master
M5 master*
M6 ref

(b) Corresponding LMCS (c’) Definition of mapping label

(c) Corresponding Clafer Spec containing the mapping label defined in (c’)

(d) Sample Clafer model instance

Figure 4.5: Compilation of a Clafer model to LMCS, extraction of CD, and instantiation

34



Figure 4.6: Inheritance among two UCSs

Figure 4.7: An example of clafer inheritance

35



• a basic clafer cannot inherit from a reference clafer (because the subtype would
remove the reference);

• a bag clafer cannot inherit from a set clafer (because the subtype would remove a
constraint);

• if the super-clafer is not a top-level abstract clafer (i.e., it has a parent), then both
the sub- and super-clafer must have the same parent in the containment hierarchy
(because a clafer cannot have multiple parents).

When an abstract clafer A is a direct super type of clafers B1, . . . ,Bn, then the constraint
[cover] is declared in the LMCS on the superh maps relating head classes of B1, . . . ,Bn with
their super classes. That way all instances of an abstract clafer must be instances of its
concrete subtypes.

4.1.6 Instantiation

Many non-trivial model analyses (e.g., checking model consistency) can be reduced to the
problem of finding a model instance by combinatorial solvers. Therefore, instantiation of
Clafer models is the primary functionality of the Clafer toolchain. The toolchain works
as follows. The Clafer compiler [7] transforms a Clafer model (Fig. 4.5a) to an Alloy [76]
model that corresponds to a class diagram CD (the right part of Fig. 4.5c). Classes are
translated to Alloy’s signatures, maps to relations, and constraints to facts. Alloy uses
a SAT solver to generate an instance of the CD, i.e., an object diagram OD typed over
the CD. A sample instance is shown in the right part of Fig. 4.5d. Finally, ClaferIG [7]
takes that OD and, using the links in the labeling mapping, represents (unfolds) it into a
multi-clafer-shaped OD typed over the UMCS, as shown in the left part of Fig. 4.5d. We
call such a multi-clafer-shaped OD an Unlabeled Multi-Clafer Instance (UMCI). Elements
of a UMCI are object and link roles, which are labeled by real objects and links in the
corresponding OD. Similarly to how the same class may play different roles in a UMCS, the
same object can play different roles in a UMCI. For example, object e1 from the example
in Fig. 4.5 plays three roles: an independent plaECU (shown by its position at the role box
e1:C2), the master of object e2 (e1:C4), and the master of itself (e1:C4). Mapping label*
maps roles in a UMCI to the OD’s objects and links that perform these roles.

Figure 4.8a gives a general definition of a UMCI. As a Clafer model is a hierarchical view
on a class diagram, which is defined by a labeling mapping label : UMCS→CD, we consider
an instance of a Clafer model to be a similar hierarchical view on an object diagram OD

36



(a) Definition (b) Derivation

Figure 4.8: Clafer model instance

instantiating CD. That is, a Clafer model instance is a graph UMCI typed over the graph
UMCS and labeled by elements of the OD (via mapping label* : UMCI→OD) so that the
square diagram in Fig. 4.8a commutes.

Moreover, for a given Clafer Spec label : UMCS→CD and any instance OD of the CD
(shaded elements in Fig. 4.8b), it is possible to generate a correct UMCI and mappings
type* and label* (blank elements with blue frames) by applying to them an operation
Claferize (shown by a chevron). There is a unique such UMCI. In Sect. 4.2.3 we will
precisely specify how this operation works.

4.2 Formal Semantics

We will specify Clafer’s syntax and semantics using formal class diagrams (CDs), a.k.a.
DP-graphs, as our meta-meta-notation (which we have already briefly discussed in Sections
4.1.1, 4.1.2). That is, we will treat all models and meta-models involved as formal CDs,
and mappings between them as structure-preserving mappings (morphisms) between formal
CDs. (The adjective ’formal’ will often be skipped.) Hence, we will begin with a precise
description of CDs in the next section. Then we discuss a formalization of Clafer’s syntactic
mechanism (Sect. 4.2.2), and finally consider instantiation (Sect. 4.2.3).

4.2.1 Formal Class Diagrams and Their Instantiation

Figure 4.9a presents a simple UML class diagram D. An abstract class Comp has two dis-
joint subclasses (note the label [disj]), which are interrelated by a bidirectional association.
In addition, version numbers of displays and their servers must satisfy a constraint [VC]:
“the version number of the ECU serving a display must be not lower than the display’s
version number”, which is written in the OCL format below the diagram. An abstract

37



(a) UML CD, D (b) Formal CD, FD

(c) Meta-model of formal class diagrams ([nd] and [ad] are Name Discipline and Arity Discipline
constraints resp.)

Figure 4.9: Formal Class Diagrams: an instance in UML (a), formal CD rendering (b),
and the meta-model (c)

38



meaning of this diagram in terms of sets and mappings is that we have a set Comp parti-
tioned into two disjoint subsets, which are interrelated by two mutually inverse mappings:
server that maps displays to ECUs, and display that maps an ECU to the displays it serves.
The attribute version can be also considered as a mapping that assigns an integer to each
component. Finally, this configuration of sets and mappings must satisfy the constraint
[VC].

This meaning is accurately specified by a formal diagram FD in Fig. 4.9b. The latter is
a directed graph encompassing four nodes and five arrows, which in addition carries several
predicate declarations (constraints) shown in red square brackets. Thus, the diagram is a
pair FD = (Γ[FD],Φ[FD]) with the first component being the carrier graph, and the second
one being the set of constraints (we will also say formulas, hence, the symbol Φ), which
will be formalized shortly. We call such formal diagrams formal CDs. We will first discuss
the carrier graph and its instantiation, and then proceed to constraints. Next, we give a
formal definition of formal CDs by specifying their meta-model. Formalization of the set-
and-mapping semantics of CDs involves muny details, which we present in Appendix A.2.1.
In the present section we will assume that the notions of a set and a (partial multi-valued)
mapping between sets are intuitively understood; Appendix A.2.1 supports this intuition
with a system of formal definitions.

Instantiation of Formal CDs, I: The Graph Structure.

Nodes in FD are to be interpreted as sets: JCompK, JIntK, JECUK etc. We will often say “a
component” for an element of set JCompK, “an ECU” for an element of JECUK etc. Arrows
are to be interpreted by mappings (functions) between sets, which map elements from
the source to sets of elements in the target. For example, an ECU is mapped to a set
(perhaps, empty) of the displays it serves. We recall our convention about mappings that
we have been using. If the mapping is defined for each element in the source (and results
in a non-empty subset of the target), we call the mapping total and denote it by arrow
with a bullet tail. If each element from the source, for which the mapping is defined, is
mapped to a singleton, we say that the mapping is single-valued and denote it by arrow
with an open-ended head. Thus, mapping server is partial single-valued, and version is
total single-valued. In contrast, display is a general mapping, i.e., partial and multi-valued.

Very important and very special mappings are inclusions, which are denoted by arrows
with a hollow triangle head — see arrows i1 and i2 in the diagram in Fig. 4.9b. An
inclusion between two sets can be defined iff the source is a subset of the target; inclusion
maps each element of the source to itself, but now considered as an element of the target.
For example, inclusion i1 means that JECUK ⊂ JCompK and i1(e) = e for all e ∈ JECUK.

39



Thus, inclusion changes the role/type of ECU object e: object i1(e) is a component with
all its ECU-properties forgotten. In this way inclusions model inheritance. As there can
be only one inclusion between a subset and its superset, we can name all inclusions by the
same default name “isA” and omit it in concrete visualizations of formal CDs. Labels i1,
i2 in Fig. 4.9b are IDs of the arrows rather than their names.

The discussion above can be summarized by saying that an instance of formal class
diagram FD is a mega-mapping J..K : Γ[FD] → SetMap from the carrier graph of FD
into a universe of sets and mappings, SetMap, also arranged as a directed graph: nodes
are sets and arrows are mappings between sets. This mega-mapping preserves the graph
structure (nodes are mapped to nodes and arrows to arrows so that their incidence is
preserved), and respects mappings’ properties: arrows with bullet tails are mapped to
total mappings in SetMap, arrows with hollow-triangle heads are mapped to inclusion
mappings in SetMap, etc.

A mega-mapping J..K is practically equivalent to a standard UML understanding of
instantiation as having an object diagram typed over a class diagram. Indeed, sets JECUK
etc. give us the objects, and mappings JserverK etc. give us the links. If, for example, for
an object e ∈ JECUK, we have JdisplayK(e) = {d1, .., dn} ⊂ JDisplayK, then in the object
diagram we create n links from ECU e to displays d1, d2, ...dn, all typed by mapping
display. We will also have a link from e ∈ JECUK to e ∈ JCompK typed by i1, a link from
e ∈ JCompK to an integer JversionK(e), and so on. In this way, a mega-mapping J..K gives
rise to a directed graph GJ..K of objects and links, and a typing mapping tJ..K : GJ..K →
Γ[FD], which again respects the graph structure. Conversely, an object diagram O with
object-link graph GO and typing mapping tO : GO → Γ[FD] gives rise to a mega-mapping
J..KO : Γ[FD]→ SetMap by defining

JECUKO = {n is a node (object) in GO : tO(n) = ECU},
JDisplayKO = {n is a node in GO : tO(n) = Display},
JserverKO = {a is an arrow (link) in GO : tO(a) = server}

and so on. An accurate formal definition of this construction, and a proof of equivalence
of the two ways of instantiating formal class diagrams (via mega-mappings into SetMap
and typing), are known in category theory under the name of the Grothendieck construc-
tion [15].

Instantiation of Formal CDs, II: The Constraints.

We have already discussed multiplicities—simple constraints assigned to single arrows.
However, the diagram FD also has four constraints shown in square brackets, which regulate

40



instantiation of groups of arrows. Three of them, [disj,cover,inv], have a predefined meaning
and their names are written in small font; the fourth, [VC], has a user-defined meaning
specified by the OCL expression in Fig. 4.9a (links from the label [VC] to the four arrows,
whose instantiation [VC] constrains, are not shown in the diagram to avoid line clutter).

In the abstract syntax, the four constraints encode the following expressions: [inv](server,
display), [disj](i1,i2 ), [cover](i1,i2 ), and [VC](server , i1, i2, version) of the format P (a1, ...an)
with P a predicate name and a1...an a list of arguments matching the predicate arity. The
predicate [inv] can be declared only for two arrows between two classes going in the op-
posite directions, [cover] works for a group of arrows with a common target, and [disj] has
the same arity. We can use these arities to check correctness of constraint declarations.
Similarly, multiplicities are constraints for a single arrow, and diagram FD actually de-
clares several such constraints: [single-valued](server), [total](version), [0..5](display), etc.,
and also [incl](i1 ), [incl](i2 ).

In contrast, the arity of the user-defined predicate [VC] is given by the constraint declara-
tion, and the arity condition is automatically true as soon as the expression is syntactically
correct. In fact, any OCL, or another constraint language, expression written over a class
diagram can be trivially considered as a respective diagram predicate declaration of the
aforementioned format. Moreover, there exists a compact set of predefined diagram pred-
icates, which allows one to express any FOL (and actually higher-order too) constraint as
a composition of these predefined predicates [86]. This result may be useful for our future
work on Clafer, but we do not need it here. The Clafer compiler treats a Clafer constraint
expression as a property of the respective configuration of classes and mappings, like it is
done in OCL.

Each predefined predicate has a certain semantics in terms of sets and mappings. For
example, two mappings with a common target satisfy the predicate [cover] iff any element
in the target belongs to the image of one of the mappings, or to both. The latter possibility
is prohibited by predicate [disj]. Predicate [inv] holds iff the two mappings are mutually
inverse. For example, for any ECU e and display d, e ∈ JserverK(d) iff d ∈ JdisplayK(e).
Semantics of user-defined predicates is given by the user. Thus, a legal instance of diagram
FD is a mega-mapping J..K such that all constraints declared in Φ[FD] are satisfied. Note
that we have modeled abstractness of class Comp by requiring the two inclusions to be
covering, i.e., stating that

JCompK = JECUK ∪ JDisplayK

and hence any component is either ECU or Display (but not both because of the [disj]
declaration). In contrast to the UML class diagram in Fig. 4.9a, typing the name Comp in
italic in the formal CD is a pure decoration without semantic meaning.

41



Meta-model

A meta-model of formal CDs is specified in Fig. 4.9c. It is itself a formal CD, MCD, and
any valid formal CD should have a valid instance J..K : MCD → SetMap. The meaning of
the central part (dashed-framed) of the formal CD is standard; we show how it works for
our formal CD FD in Fig. 4.9b. The latter is the following instance of the meta-model (we
denote names of meta-classes in Small Capital font):

JClassK = {#Comp,#Int,#ECU,#Display},
JMapK = {#version, i1, i2,#server,#display},

where #xyz denotes the ID of the classifier named xyz. This gives us the set JClassifierK =
JClassK ∪ JMapK. Mapping JnameK is defined as follows:

JnameK(#ECU) = “ECU” ∈ JStringK,
JnameK(#display) = “display” ∈ JStringK,

. . . ,

JnameK(i1) = JnameK(i2) = “isA” ∈ JStringK,

where JStringK is the set of all possible strings, and string “isA” is the default name of
inclusions.

Definition of mappings JsoK and JtaK are also clear:

JsoK(#display) = #ECU,

JtaK(#server) = #ECU,

and so on. And JInclK={i1,i2} so that JInclK ⊂ JMapK as required. It is also easy to
check that mega-mapping J..K is a correct graph morphism, and all multiplicities are also
respected.

Let us consider the meaning of the left part of the meta-model (to the left of the dashed
frame). Meta-class SING is a singleton with a predefined (but optional) instantiation by
a class Sing, which, in turn, is instantiated (optionally) by a predefined object *. That
is, for any formal CD F instantiating MCD, set JSINGKF is (either empty or) the same
fixed singleton class {Sing}; for any object diagram O instantiating F , JSingKO is (either
empty or) the same fixed singleton {*}. Meta-class SING is not instantiated in CD in
Fig. 4.9b, but in formal CDs generated by the Clafer compiler, class Sing is always present
as discussed in Sect. 4.1.3.

42



Similarly, meta-class Dom is instantiated by (names of ) predefined primitive-value
domains like Int, String, or Bool, which, in turn, are instantiated by predefined sets of
values. For example, for formal CD in Fig. 4.9b, JDomK={#Int}, and instances of #Int are
predefined integer values. Thus, for a CD F , we have a set of predefined classes JPredefKF ,
which have predefined fixed names, say, JnameK(#Int) = “Int” ∈ JPredefStrK and
are common for all CDs. Constraint [nd] (read Name Discipline) requires that names of
predefined classes be taken from predefined strings, and that names of user-defined classes
be taken outside predefined strings.

Finally, the right part of the meta-model defines formulas. Meta-class Signature is
instantiated by predicates, which can be used in constraint declarations. For the diagram
in Fig. 4.9b,

JSignatureK = {[cover],[disj],[inv],[incl],[set],[VC]}
∪ {[m..n]:m ∈ N, n ∈ N ∪ {∗}}

although not all multiplicities are used. Meta-class Formula is instantiated by constraint
formulas declared in the CD, and the constraint [key] states that a formula φ ∈ JFormulaK
is uniquely determined by its predicate symbol P = JpredK(φ) and its list of arguments
(a1, ..., an) = JargsK(φ) (we consider a list of formulas as a bag/family of formulas indexed
by natural numbers, see Appendix A.2.1). That is, a formula is actually a pair (P, (a1...an)),
which we typically write as P (a1...an). For example, for the diagram in Fig. 4.9b, the set
JFormulaK is

{[disj](i1, i2), [cover](i1, i2), [inv](#server,#display),

[incl](i1), [incl](i2), [0..5](#display),

[1..1](#version), [0..1](#server)
[VC](server , i1 , i2 , version)}

plus three default declarations

{[set](#version), [set](#server), [set](#display)}.

Importantly, the list of arguments in the formula P (a1, .., an) must match the arity of
predicate symbol P as it was discussed in Sect. 4.2.1. In detail, the mapping args is bag-
valued, and the indexing set for a formula φ (Sect. A.2.1) is the list of the arrows of the
arity graph of predicate pred(φ); a precise formal definition can be found in the Appendix.
This condition is encoded by a meta-constraint [ad] (read Arity Discipline), which is a part
of the meta-model like other meta-constraint declarations: [key](args, pred), [nd], etc.

Thus, legal instances of the meta-model Fig. 4.9c are (formal) CDs or, synonymously,
DP-graphs.

43



4.2.2 Formalizing Clafer Syntax

Architecture of Clafer’s syntactical mechanism

Figure 4.10 presents a schema of the mechanism, which refines the rough architecture dis-
cussed earlier in Fig. 4.1. There are three meta-models: Abstract Syntax Tree (AST)
meta-model, Labeled Multi-Clafer Shape (LMCS) meta-model, and Class Diagram (CD)
meta-model. They define three classes of syntactic artifacts that are important for Clafer:
Clafer models, Labeled and Unlabeled Multi-Clafer Shapes (LMCSs and UMCSs), and
(formal) Class Diagrams (CDs). The LMCS meta-model includes the AST meta-model
and extends it with new properties of clafers; it is shown by the inclusion mapping i. The
LMCS meta-model also includes the CD meta-model but names its elements differently; it
is shown by the injection mapping j. We will describe the meta-models in Sections 4.2.2
and 4.2.2, respectively.

Formally, all nodes in the schema are CDs (i.e., DP-graphs), and horizontal arrows
are mappings between them (DP-graph morphisms). The semantics of vertical arrows is
different. They are graph morphisms typing elements in their source graphs by elements in
the target graphs. In addition, these typing mappings must satisfy constraints declared in
their target graphs (meta-models). We visualize this requirement by labeling the mapping
with symbol |=.

The Clafer compiler takes a Clafer model that conforms to the AST meta-model, and
extends it to an LMCS conforming to the LMCS meta-model. Formally, it can be seen as
an operation shown in the schema by chevron labeled Compile: the operation takes three
CDs and two mappings (all shown shaded), and produces a new CD and two mappings
(unfilled with blue contours).

Operation Extract provides Clafer Spec, i.e., a mapping from a hierarchically structured
UMCS to a CD. In essence, Extract considers labels in LMCS as a definition of a mapping
from UMCS to some formal CD encoded by the Clafer model, ignoring the AST structure.

We will discuss compilation and extraction in more detail in Sect. 4.2.2 and Sect. 4.2.2
resp.

Abstract Syntax Tree

The AST meta-model (see Fig. 4.11) specifies Clafer’s abstract syntax. The AST corre-
sponds to a grammar of Clafer models (Fig. B.2 in the Appendix). We discuss the meta-
model starting from the left. Each clafer has a unique name (note the constraint [key]),

44



Figure 4.10: Clafer syntax mechanism.

some multiplicity and, optionally, a super -type. The class BasicClafer stands for a ba-
sic clafer declaration; RefClafer for reference clafer; and RefSetClafer for reference
set clafer. The map target specifies the target of a reference clafer, and the map abstract
indicates whether a clafer is abstract. The class Dom represents a family of primitive
domain clafers (for example, clafer Int is a basic clafer whose parent is synthetic root); the
singleton class Sing represents the synthetic root clafer. The map parent establishes the
containment hierarchy among Clafers. It is specified for each clafer besides the synthetic
root and top-level abstract clafers: for any clafer C, if C.parent = ⊥ and C 6= Sing, then
C.abstract = true.

The class Constraint represents user-defined constraints in Clafer models. The map
context points to the clafer, in which a constraint was declared. The map scope indicates a
bag of clafers that each constraint refers to (besides the context clafer). For example, group
cardinalities, such as the xor group cardinality in line 2 in Fig. 3.2, are simple constraints
that relate a clafer with its children. There, the constraint c relates the clafer size with its
children small and large; formally:

JcontextK(c) = size,

JscopeK(c) = {small, large}.

The constraint language of user-defined constraints is specified in Appendix B.2. The
language can be considered as a part of the meta-model.

Labeled Multi-Clafer Shape

The result of compilation is an LMCS. The meta-model in Fig. 4.12 defines the structure
of an LMCS. As discussed in Sect. 4.1.2, in Fig. 4.4, each clafer actually declares a labeled
clafer shape, i.e., a labeled graph of class and map roles. The three leftmost vertical arrows
(head, source, and target) give three classes (i.e., class roles) that make up the shape of a
clafer: the head class is always present, but the source (parent) and the target are optional

45



Figure 4.11: Clafer AST Meta-Model

depending on the kind of clafer. The next four vertical arrows in the middle (head, parent,
ref, target) give four maps (all optional) that make up a clafer shape. The three rightmost
vertical arrows give optional inclusion maps, if the clafer has a supertype. For example,
the Clafer model in Fig. 4.5b amounts to the following instance of the meta-model:

JSingK = ##Sing,

JClaferK = {##Sing,##plaECU,##master},
JparentK(##plaECU) = ##Sing,

. . .

JSINGK = #Sing,

JsourceK(##plaECU) = #Sing,

JheadK(##plaECU) = #plaECU

. . .

where ##xyz refers to the clafer named xyz, and #xyz refers to the class role named
(labeled by) xyz.

LMCS is augmented with diagram predicates over maps, which is represented by class
Formula and is defined as for formal CDs. The predicates natively express predefined
constraints, and also user-defined constraints. The latter are translated by the compiler
into diagram predicates.

The meta-model as shown in Fig. 4.12 allows for any configuration of ClassRoles
and MapRoles. They may form incorrect structures that are not LCSs. The meta-
model is also underconstrained with respect to containment and inheritance hierarchies
of clafers (LCSs may be cojoined incorrectly). Hence, we augment the metamodel with

46



Figure 4.12: LMCS Meta-Model. It must satisfy the constraints from Tabs. B.1–B.4.

extra constraints to guarantee that its instances are valid LMCSs. There are four groups
of constraints, all are given by conditional equations.

1) Incidence Equations define a correct graph structure of an LCS, i.e., the correct
incidence of nodes and arrows. The constraints are specified in Tab. B.1 in the Appendix:
first, a description is given, then its formalization follows. (To ease reading the formulas,
we qualify map names in the meta-model from Fig. 4.12 by their targets.) For example,
the first row requires that the map head_map in LCS has the source class as a source (so)
and the head class as a target (ta).

2) Clafer Cojoining Equations specify the overlapping of LCSs. Clafers overlap iff
there is parent-child relationship between them, or when a clafer is another clafer’s target.
Table B.3 lists the cojoining equations. For example, the first row requires that whenever
one clafer is a parent of another clafer, then its head class plays the role of source class in
child’s LCS.

3) Clafer Kind/Shape Discipline Equations specify the structure of LCSs of differ-
ent kinds of clafers. Table B.2 lists the clafer kind equations. For example, the first row
specifies that the synthetic root clafer has neither source nor target classes, nor super-type.

4) Naming Discipline Equations specify the Clafer naming economy mechanism:
given a clafer C, names of all elements in C’s shape are derived from C’s name, and

47



can be used for navigation over the hierarchy. These constraints are also necessary for
resolving targets of reference clafers and supertypes. Table B.4 presents the naming con-
straints. For example, the equation from the first row requires that the head map in a
given LCS has the same label as the head class.

Compilation: From Clafer Model to Labeled Multi-Clafer Shape

A Clafer compiler consecutively traverses a Clafer model and builds a corresponding LMCS.
It takes a Clafer declaration D, decodes into an Unlabeled Clafer Shape (UCS) CS(D),
and labels the elements of the latter using the name provided by D. After processing a
declaration D, the compiler processes its children one by one. Decoding of each child Di

is regulated by the Cojoining Equations, so that shapes CS(D) and CS(Di) are properly
cojoined into LMCS. And so on until the entire Clafer model is traversed. Algebraically,
compilation appears as an operation Compile described by the leftmost square in Fig. 4.10,
as we discussed earlier.

Extracting: From Labeled Multi-Clafer Shape to Clafer Spec and Class Dia-
grams

A Clafer model provides: 1) a collection of classes and maps, and 2) a view on this
collection, arranging classes into a hierarchy. The same class can play different roles in
the hierarchy: being a parent of one class (source), a child of another class (head), or a
reference class of another (target). Thus, elements of an LMCS are class and map roles
rather than instantiatable (real) classes and maps. The latter are given by labels, and are
instantiated by, respectively, objects and links. In contrast, roles are not instantiated, they
impose a hierarchy on real classes and maps. This idea is captured by Clafer Spec. It
considers labeling in an LMCS as a formal graph morphism, from the graph of class and
map roles (UMCS) to the graph of real classes and maps (CD) formed by labels.

Importantly, the labeling mapping respects constraints: a predicate declaration in an
LMCS is carried into the corresponding declaration in the CD. Thus, the labeling mapping
is a formal CD morphism.

4.2.3 Formalizing Instantiation

Figure 4.8b presents a definition of Clafer instances and their main feature — derivability
from the respective CD instances. Below we will see that derivability requires considering a

48



Figure 4.13: Architecture of Clafer instantiation

deeper schema that involves meta-models as shown in Fig. 4.13. The four upper models are
formal CDs (DP-graphs), whereas the two bottom models are merely graphs (Clafer model
instances, like ODs, do not carry constraints). All vertical arrows are typing mappings that
respect the graph structure and satisfy the constraints (note the symbols |=). The right
“column” of models conforms to the standard MOF architecture of instantiation; the left
column is its counterpart for Clafer. All horizontal mappings are also graph morphisms; in
addition, mappings label and j respect constraints (are DP-graphs morphisms). Chevron
Claferize denotes an operation that completes a CD’s instance, i.e., a pair (OD, type) to
a Clafer instance (UMCI, type* ) (which is traced to the original instance via mapping
label* ). Below we will often refer to instances by their source graphs, and say “instance
OD” and “instance UMCI”.

Let us consider an example showing how the operation Claferize works. Figure 4.15
elaborates the example from Fig. 4.5d by adding an intermediate preinstance UMCI0, and
slightly changes the notation to ease reading. Now we denote role classes and role maps
by their class and map names, and shorten plaECU to ECU. Note that the class ECU plays
two roles (formerly C2 and C4 in Fig. 4.5d): the source of the map master (ECUso) and
the target of the map (ECUta).

As we have seen in Sect. 4.2.1, an instance of a CD can be seen as a mega-mapping J..K :
CD → SetMap. In the example, we have the instance JSingKOD={*}, JECUKOD={e1, e2},
Jmaster*KOD={m21, m11}, etc. Sequential mapping composition label.J..KOD then yields an
instance of LMCS. That is, for any element x of graph UMCS, we define JxK=Jx.labelKOD,
which gives us a mega-mapping J..K : UMCI → SetMap. The latter can be represented by
a typed graph (due to the Grothendieck construction discussed at the end of Sect. 4.2.1),

49



which we denote by UMCI0 (read “Unlabeled Multi-Clafer Instance”0, or preinstance for
short). In other words, we set JxKUMCI0 = Jx.labelKOD=x.label.J..KOD for all elements x of
graph UMCS.

Note that as the mapping label maps two different roles into one class (JECUsoKUMCI0

= JECUtaKUMCI0 = {e1, e2}), each object ei, i = 1, 2 plays two roles of being potentially
the source and the target of master links. Hence, in the carrier graph UMCI0 we have
two clones of e1 (e1:ECUso and e1:ECUta) and two clones of e2 (e2:ECUso and e2:ECUta).
Other OD elements are not cloned because the mapping label only glues together classes
ECUso and ECUta. Mapping label∗0:UMCI0 → OD provides traceability of roles to objects,
particularly, it glues together clones into their original objects.

Note that graph UMCI0 is properly typed over graph UMCS. It also satisfies all mul-
tiplicities declared in UMCS because the mapping label carries these predicates into CD
and the instance OD satisfies them.

Despite these good properties of the instance UMCI0, it has two drawbacks. First,
the clone e2:ECOta is not a master of any ECU, and does not actually fulfill its potential
master role. Hence, its presence in the instance graph is unjustified. An example of this
fact is that the node e2:ECUta is not reachable from the root node {*}. Second, the graph
UMCI0 is not a correct multi-clafer shape: it has two different clafers (with heads m2:master
and m1:master) with a common target node e1:ECUta, which is not allowed by the LMCS
meta-model. Recall that the only two ways of cojoining two clafers are

this.source_class = this.parent_clafer.head_class
this.target_class = this.target_clafer.head_class.

To make the UMCI0 a correct multi-clafer shape, the clone e1:ECUta must be cloned once
again into e11:ECUta and e12:ECUta, as shown in the graph UMCI. Thus, the instance
produced by mapping composition label.J..KOD needs some postprocessing to make it an
actual multi-clafer shape: garbage removal to eliminate unreachable (unused) roles, and
cloning to restore the correct clafer joining. Of course, each element in graph UMCI can
be traced back to an element in the preinstance UMCI0; this gives us a mapping trace.
Mapping composition of trace and label∗0 gives us a mapping label* commuting with typing
mappings.

An abstract schema of our work with the example is presented in Fig. 4.14. It shows
three operations with models and mappings, Pullback, Recover , and Compose, consecutively
performed. Pullback (i) converts an instance OD into a mapping J..KOD : CD → SetMap
by setting JxKOD = type−1(x) for an element x in OD, then (ii) sequentially post-composes
J..KOD with mapping label, and presents the result as a graph UMCI0 (details can be found in

50



Figure 4.14: Clafer model instantiation

[15]). This operation is often read as “instance (OD, type) is pulled-back along the mapping
label". It is proved in [55] that if the mapping label respects the constraints declared in
LMCS and CD (which is always the case for Clafer compilation), and instance (OD, type)
satisfies them, then the result of pulling it back also satisfies the constraints. Thus, the
instance (UMCI0, type∗0) is correctly typed over LMCS, and satisfies all instance-regulating
predicate constraints declared in UMCS.

However, it may happen that the corresponding deep instance (UMCI0, Type∗0) with
typing

Type∗0 = type∗0.Type∗: UMCI0 → LMCSMetamodel

violates the constraints of clafer co-joining declared in the LMCS meta-model. Indeed, the
mapping label cannot respect these constraints, because class diagram CD knows nothing
about them. Hence, we need some operation to process the preinstance and fix its defects—
this is done by our operation Recover . It takes a preinstance (UMCI0, type∗0), removes
objects unreachable from the root, and clones objects that glue clafers in an illegal way.
The result is an instance UMCI, whose deep typing type∗.Type∗ conforms to the LMCS
meta-model. This instance is traced back to the preinstance by mapping trace, whose
composition with mapping label∗0 gives us a traceability mapping label∗— a Clafer model
instance is built.

51



Figure 4.15: Clafer model instantiation: example

52



4.3 Concluding Remarks

In this chapter we precisely defined Clafer. Our formalization is done in a structure-
explicit way. We have shown that the concept clafer indeed unifies classes, properties,
and attributes. The main advantage of such a unification is the ability to arbitrarily
nest properties, and to integrate inheritance into hierarchical modeling. These two key
mechanisms allow Clafer to merge feature and class modeling in a single notation. Features
are encoded as clafers with multiplicities 0..1 (for optional features) and 1..1 (for mandatory
features). The use of singleton clafers is also important in our language for another reason.
They allow to encode (partial) instances at the level of types, which we explain in the next
chapter.

The work on formalization had a significant impact on Clafer design and implementa-
tion. The initial version of Clafer defined semantics of the language by translation to Alloy.
Formalization of Clafer revealed several flaws in the language, helped to correct them, and
introduced new language features. For example, initially,

• Clafer unified containment and reference clafers into a single kind of clafer which
modeled inheritance and references via (multiple) inheritance. The work on seman-
tics revealed that such a unification limited expressivity of the language. Later, it
became clear that inheritance and references are separate mechanisms, but can be
used simultaneously via hierarchical redefinition.

• Clafer did not permit hierarchical redefinition of clafers. It became possible only
after precisely defining the concept of clafer.

• navigation over reference clafers was problematic due to potential name clashes. For
example, if a clafer C had a child named D and the reference of C pointed to a clafer
which also had a child named D, then there was no way of disambiguating the two
cases. The work on formal semantics allowed us to clearly distinguish both cases in
the abstract and concrete syntax.

• it was unclear whether clafers that point to types of primitive domains (e.g., integer)
can nest other clafers in the containment hierarchy. Formalization of the concept of
clafer showed that it is indeed possible.

Since we precisely defined Clafer, the toolchain development has been evolving simultane-
ously with the formal definition of the language.

53



Chapter 5

Partial Instances via Subclassing

The traditional notion of instantiation in OOM requires objects to be complete, i.e., be
fully certain about their existence and attributes. In this chapter we explore the notion
of partial instantiation of class diagrams, which allows the modeler to omit some details
of objects depending on the modeler’s intention. Partial instantiation allows modelers
to express optional existence of some objects and slots (links) as well as uncertainty of
values in some slots. We show that partial instantiation is useful and natural in domain
modeling and requirements engineering. It is equally useful in architecture modeling with
uncertainty (for design exploration) and with variability (for modeling software product
lines).

Partial object diagrams can be (partially) completed by resolving (some of) the optional
objects and replacing (some of) the unknown values with actual ones. Under the Closed
World Assumption (CWA), completion reduces uncertainty of already existing objects, or
deletes them if their existence is optional. Under the Open World Assumption (OWA),
completion may additionally introduce new elements, perhaps uncertain. We present a
simple theory of partial instantiation and completion under the CWA. We show that partial
object diagrams can be modeled by subclassing and multiplicity constraints. As a result,
class diagrams can implement partial instances with the well-known notions of subtyping
and inheritance. Consequently, Clafer can use this encoding to specify models and (partial)
instances in the same syntax.

5.1 Partial Instances and Object-Oriented Modeling

Instances play a major role in modeling. They represent real-world objects for which

54



models provide abstractions. In OOM, an instance of a class diagram is an object diagram,
i.e., a collection of objects and links instantiating, respectively, classes and associations.
For a link l : o→ v, we will also say that object o owns slot l that holds value v.

Traditionally, objects are complete. Their types are known, and all slots have well-
defined values. Such a notion of an instance, however, is restrictive when modeling involves
uncertainty, variability, or simply underspecification. This is because classic (we will also
say complete) instantiation requires that all slots are assigned values simultaneously. We
discuss the notion of a partial instance that enriches the traditional instantiation. It allows
object diagrams to have partiality, by which we assume that (a) existence of some objects
and slots can be optional, and (b) there are slots with unknown values. By resolving op-
tionality and replacing unknown values with actual ones, a partial object diagram becomes
complete. There are many different completions of the same partial instance, and so the
latter implicitly represents a set of instances. In this sense, a partial instance works like a
class; in this dissertation we will make this observation precise.

Partial instances represent partial knowledge. They leave out knowledge that is un-
available at a given time, either due to uncertainty, variability, or underspecification. In
uncertainty, the modeler captures several options but is unsure which one is the correct
one (which one is correct is the missing knowledge). In variability, the modeler captures
several options, each of which are correct and should be supported (the missing knowledge
is the set of choices for a particular application). In underspecification, the modeler leaves
out information that is irrelevant with respect to the modelers viewpoint. Thus, they differ
in the intention. Partial instances, under various names, occur in:

• Models with uncertainty. Uncertainty captures possible choices that the modeler is
unsure about (“don’t know” semantics). An example would be a mobile device with
hands-free input; this could be head gestures or voice input; the designer is uncertain
about the choice, but the final solution will pick one of them. Partial instances of
meta-models can represent uncertainty in models. They can treat uncertainty in
requirements [28, 59] and in architectural models [60].

• Models with variability. Several choices are possible, each for a different product
configuration (e.g., for a different customer). Partial instances of meta-models rep-
resent variability in models [46]. They are used to represent requirements models
for product lines (including the product line scope), product line architectures (as
demonstrated on the telematics product line example in Chapter 2), and product line
tests. The variabilities in tests can be configured when the application is configured.

• Models with underspecification. Modelers focus on certain system aspects and can

55



leave other aspects, which are outside their scope, underspecified (“don’t care” se-
mantics). Partial instances allow us to express partial specification of test cases as
in Test-Driven Design (TDD) [79, 96].

• Variability models (e.g., feature models [82]). Instances of variability models rep-
resent system configurations; their partial instances represent partial configurations
and support staged configuration [43], as shown in Chapter 3. Variability models are
related to models with variability, but they do not consider further instantiations of
the configurations (linguistically), because they are not meta-models.

• Data with uncertainty. Partial instances of data schemas represent uncertainty in
application data. They are useful in databases [72], exchanging web data [14], and
model finding [125].

The above applications of partial instances are difficult (if at all possible) to manage
with complete instances. Partial instances allow one to delay design decisions and to
construct instances incrementally. The missing parts of partial instances can be completed
either by the modeler, or automatically by tools.

Despite the important applications, the traditional notion of instantiation in OOM
offers limited support for partial instances. For example, UML object diagrams cannot
express optionality of objects. One can use, however, UML class diagrams “as is” to encode
partial instances. Our contribution makes this encoding precise and general. We show
that partial object diagrams can be encoded by subclassing and strengthening multiplicity
constraints. One of the implications is that OOM languages with no direct support
for partial instances can support them via class-based modeling.

5.2 Requirements Elicitation with Partial Instances: An
Example

Example-Driven Modeling (EDM) [28] systematically uses examples for eliciting, modeling,
verifying, and validating complex business knowledge. During requirements elicitation a
Subject Matter Expert (SME) transfers their knowledge to a Business Analyst (BA) who
then explicates it as documents, models, and code. This section motivates the necessity
of partial instances for eliciting and validating requirements, and in OOM in general.
First, we consider partial instances under the CWA, where completion of partial instances
means reduction of uncertainty, variability, or underspecification. Later, we discuss partial
instances under the OWA, in which new objects and slots (perhaps, optional) can be added.

56



5.2.1 Completion under the Closed World Assumption

Alice is an SME and her organization needs a system for booking meeting rooms. She
hires Charlie, a BA, to build such a system. Charlie’s task is to implement room booking
functionality. He is concerned with the timing aspect of scheduling meetings. Requirements
elicitation is a complex task and, in practice, can only be done iteratively. The first session
between Alice and Charlie goes as follows:

alice: We need to keep track of bookings to ensure that rooms and people are not
double-booked. Recently, for example, Sue, the head of research, had scheduled
two meetings at the same day at 10am.

charlie: How did that happen?

alice: First, she organized a meeting at 10am. The other meeting was organized
by Sam also at 10am. Sue somehow understood that Sam wanted to attend
her meeting and confirmed her attendance of Sam’s meeting. It wasn’t the first
time that miscommunication happened.

charlie: I see. So how does Sue deal with conflicting meetings?

alice: In several ways. First, she may cancel one of the meetings. Alternatively,
she confirms only one of the meetings while keeping the other one unconfirmed.
She can also confirm the two meetings but they cannot overlap. Sometimes she
combines the two meetings into one if the topics are similar. Each employee
should have a daily agenda of meetings. Based on that they should be able to
confirm or decline each meeting.

charlie: That’s quite complex. I think I understand...

[Charlie writes down the possible ways of scheduling meetings (Fig. 5.1).]

In Fig. 5.1, Conflict models the situation where Sue has two meetings scheduled at 10am.
The object diagram shows her agenda with the meetings m1 and m2. It conforms to the
class diagram in Fig. 5.1 CD, where time of the meeting is mandatory. The object diagram
violates an important constraint that one person cannot have several meetings scheduled
at the same time. To manage conflict resolution, Charlie creates a template for inserting
information about the two meetings, in fact, a partial instance POD as shown in Fig. 5.1.
The dashed arrow part indicates this activity. The initial partial instance must be as
uncertain as possible. However, Sue cannot manage the time of Sam’s meeting, hence, this
attribute cannot be uncertain. By completing the partial instance incrementally, Charlie

57



Figure 5.1: Several cases of completion of partial object diagrams. Changes between object
diagrams are highlighted in yellow.

can arrive at a non-conflicting schedule. The partial instance conforms to the class diagram
in Fig. 5.1 CD.

The partial instance POD has two types of partiality. First, the time of meeting m1 is
unknown (has value _). As an organizer, Sue may pick the time later. The meaning of _ is
that the concrete value exists but is unknown and it may be specified by a more complete
instance. The second type of partiality is that the two meetings and corresponding slots
are optional (labeled with ?). For example, it is unknown whether Sue confirms or declines
the meeting m1 and/or m2. The meaning of ? is that an element may or may not exist.

Figure 5.1 depicts several cases of POD completion. The arrows c1 . . . c6 in Fig. 5.1
illustrate possible ways of scheduling meetings by Sue. They are partial or full comple-
tions of Fig. 5.1 POD. All these completions conform to the class diagram CD. Under the
CWA, a partial instance is a (partial) completion of another partial instance if it removes
some unknown value _ (by specifying the actual value) or label ? (by instantiating or
deleting an element). A more complete instance can only reduce uncertainty, variability,
or underspecification.

Completion c1. Sue cancels the meeting m2. Elements labeled with ? (m2 and
its slot) have no instances in the more complete diagram. Additionally, she confirms the
meeting m1, but may decide later when to schedule it. The object m1 and its slot are no

58



longer labeled with ?. The slot time still has an unknown value, as Sue cannot pick the
time unless she talks to her colleagues. The completion c4 shows that Sue may decide to
schedule the meeting at 11am. The more complete diagram replaces the unknown value _
with the actual value. The meeting is a fully complete instance without uncertainty, and
is encoded as an object diagram.

Completion c2. Sue confirms the meeting m1 and schedules it at 11am. In the partial
object diagram, the label ? is removed from m1 and its slot. The value of time is specified
as 11. Sue keeps the meeting m2 unconfirmed (still labeled as ?). The diagram can be
further completed in two ways. First, Sue can cancel the meeting m2 as in the completion
c5. Alternatively, as in the completion c6, she can confirm the meeting m2; its time does
not overlap with m1. There may be several completion chains (e.g., c1.c4 and c2.c5 )
leading to the same result.

Completion c3. Sue decides to merge her meeting with Sam’s one because the topics
are similar. Formally, two objects are combined into one named m12 (we will also say that
objects are glued together).

5.2.2 Completion under the Open World Assumption

Charlie works with his partner, Bob, to build the room booking system. The two BAs are
interested in different aspects of the system. Charlie’s task is to take care of scheduling;
Bob needs to keep track of the available equipment. The session between Alice and Bob
goes as follows:

alice: Each meeting is organized by a chair who is responsible for booking the
room. The chair also notifies other participants about the meeting. Rooms
have different equipment and, obviously, different numbers.

bob: Let’s understand a concrete meeting. Could you please give me an example of
a room booking? What equipment is used?

alice: Sure. For example, Sue organizes meetings for her research group. They use
an electronic whiteboard, as it simplifies sharing notes online.

[Bob writes down the example (see Fig. 5.2 Bob I).]

bob: Perfect. Do all rooms have an electronic whiteboard?

alice: No. All rooms have a traditional whiteboard, but only some rooms offer the
electronic one.

[Bob completes the example (see Fig. 5.2 Bob II).]

59



Figure 5.2: Abstraction and partial completion of examples. Changes between object
diagrams are highlighted in yellow. Note that Bob II refines the type of room r.

In the next session Alice talks to Charlie again:

alice: As you may know, each meeting is organized by a chair.

bob: Right, such as Sue. Alice, how often are the meetings scheduled? Can you give
me a concrete example?

alice: For example, Sue organizes weekly meetings at 10am. They discuss progress
done on research projects.

[Charlie writes down the example (see Fig. 5.2 Charlie).]

After the two sessions Bob and Charlie meet to consolidate their knowledge of different
aspects of the system. Their goal is to come up with a consistent picture. Bob learned about
rooms and equipment, whereas Charlie learned that meetings may repeat. Figure 5.2 shows
the elicited examples and that the process of adding details can be modeled as instance
completion.

Bob’s first example (Fig. 5.2 Bob I) specifies that there is a meeting SM organized by Sue
and that the meeting requires an Electronic whiteboard. He also specifies that the meeting
takes place in some room r, but he does not know the room number num. After clarifying

60



some details, Bob learned that only certain rooms provide the electronic equipment that
Sue needs. He completes the previous example by refining the type of r to an assumed
subtype ERoom (Fig. 5.2 Bob II). Charlie’s example (Fig. 5.2 Charlie) shows that he learned
that Sue schedules meetings at 10am and they repeat weekly.

Based on the partial examples Bob and Charlie create an example that merges their
knowledge (Fig. 5.2 POD II). The partial object diagram is a combination of Charlie’s
example and Bob’s refined example. Fortunately, there are no conflicts in the merged
example. There is, however, still one unknown: the room number num where Sue meets her
group. The two BAs propose a class diagram (Fig. 5.2 CD) that provides an abstraction
for meetings. Abstractions generalize information to improve understanding of a set of
examples. The BAs were able to construct the class diagram only after consolidating their
partial knowledge.

Bob and Charlie decide to meet Alice again to validate the merged example and the
proposed class diagram. Alice confirms that the example is valid. She also says that Sue
uses room 200. Figure 5.2 OD shows a complete object diagram.

The completion in Fig. 5.2 works under the OWA. OWA allows completions to add new
elements. For example, the completion POD II adds new elements to Bob’s and Charlie’s
examples. Some slots do not exist in the examples by Bob (e.g., rep) or Charlie (e.g., wb).
Also, Charlie’s initial example had no uncertainty, but the partial instance POD II has
uncertainty: the room number num is unknown. Clearly, completion based on OWA is
more general than the one based on CWA.

Partial instances naturally express stakeholder’s partial view of the world. When BAs
focus on different aspects of the system, they construct partial examples. Modeling with
partial instances has an important advantage over modeling with always complete in-
stances. It explicates what is known and unknown given current knowledge. Our example
showed that completion of partial examples may work under the CWA or the OWA. The
former is useful for conflict resolution and exploring a set of configurations. The latter
is adequate for requirements elicitation by various parties. OWA-completions subsume
CWA-ones.

5.3 Modeling Partial Examples with Subclassing

This section shows that instantiation (partial and complete) of a class diagram can be
encoded as extending the latter via subclassing. The main idea is that objects of class
C are encoded as singleton subtypes of C; then links instantiating C’s associations are

61



naturally encoded as associations either inherited from C to the subclasses, or redefined in
the subclasses.

5.3.1 Extension under the CWA

Figure 5.1 showed possible ways of resolving a conflict between two overlapping meetings.
Let us now model all the solutions with subclassing as shown in Fig. 5.3. It parallels the
structure of the previous figure. Instead of typing and completion, the diagrams are related
by subclassing (arrows with hollow heads placed between class name and its superclass)
and extension (hollow arrows between diagrams). Extension is a relation expressing that
a more complete diagram includes the less complete one.

Figure 5.3 CD+ encodes Fig. 5.1 POD as a class diagram. The class diagram CD+
includes classes from Fig. 5.3 CD (the same as in Fig. 5.1 CD), but makes them abstract, and
introduces subclasses. The class A is a singleton subclass of Agenda. Its class multiplicity is
1 (following class name and superclass), meaning that there is exactly one instance of this
class. The two optional meetings are modeled by subclasses M1 and M2 with multiplicities
0..1. The two references from A to the meetings are also optional. As A is a subclass
of Agenda, the two references redefine mt, i.e., they restrict the targets of mt to the two
subclasses of Meeting. Both subclasses inherit the attribute time from Meeting. The class M1
says nothing about time and keeps its value unknown. The class M2 redefines the attribute
time by specifying its value to be 10.

The extensions e1 . . . e6 parallel the completions c1 . . . c6 from Fig. 5.1. Informally,
extension means that each element of the less complete diagram can be mapped to an
element of the more complete one. Under the CWA the extensions reduce uncertainty.
Class diagrams can do that by: introducing singleton subclasses, restricting multiplicities of
classes/references/attributes, redefining targets of references, and assigning default values
of attributes. All the extensions should include the class diagram from Fig. 5.3 CD, but
with classes made abstract (similarly to CD+). We omit these classes to ease reading.

The extension e1 models a situation when Sue confirms one of the meetings and cancels
the other one. The multiplicity of M1 (and its slot) is redefined as 1. The multiplicity
of M2 (and its slot) is redefined as 0. The diagram shows M2 to make it explicit that
its multiplicity is 0. Removal of M2 from the diagram would have the same meaning.
Furthermore, the value of time in M1 is kept unknown. The extension e2 can be understood
analogously. The extension e3 describes a situation where Sue combines two meetings. It
introduces a class M12 that merges information from classes M1 and M2 by subclassing
them. Additionally, it refines class and slots multiplicities to be 1. In the case of diamond

62



Figure 5.3: Several cases of extension of class diagrams (compare with Fig. 5.1)

inheritance, the properties from the common base are not duplicated. Thus M12 redefines
the merge of the redefinitions of mt from M1 and M2.

5.3.2 Extension under the OWA

Bob & Charlie elicited examples of booking a meeting in Fig. 5.2. Figure 5.4 encodes
the diagram with subclassing and extension. The class model in Fig. 5.4 CD is exactly
the same as in Fig. 5.2. Other models are created as previously: objects are encoded as
singletons, slots are encoded as redefined references/attributes, and each model includes
classes from Fig. 5.4 CD but makes them abstract (omitted to avoid repetition). The
mapping completion is replaced by extension.

Working under the OWA is natural when using subclassing and extension. For example,
regardless of the definition of class Meeting, Charlie’s class SM can easily add new attributes.
They may have defined or undefined values. All the arrows e1 . . . e6 could, in principle, be
replaced by subclassing. The subclasses would need to be renamed to avoid name clashes.

63



Figure 5.4: Partial examples as subclassing (compare with Fig. 5.2)

5.3.3 Encoding Partial Instances as Class Diagrams

We denote the encoding of partial object diagrams as class diagrams by a function cdenc.
It takes a partial instance and encodes it as a class diagram that extends the class diagram
that the partial instance conforms to. Figure 5.5 shows the previously defined class diagram
from Fig. 5.1 CD and the partial instance from Fig. 5.1 POD that conforms to it. It
also shows the completion c6 of POD. All derived elements are shown as dashed and
blue. The result of function cdenc is shown in the upper right corner of Fig. 5.5. The
function cdenc takes POD, and extends CD with singleton classes (that encode objects) and
references/attributes (that encode slots). It respects the labels ? by placing multiplicities
in the class diagram. If an attribute has undefined value, then it is skipped in the resulting
class diagram, because it is inherited from one of the superclasses.

The derived class diagram (cdenc(CD, POD) in Fig. 5.5) has two important properties.
First, it is an extension of CD that POD partially instantiates. Hence, the partial instance
POD can be typed over the derived class diagram by type+. Second, all the completions
of POD that are instances of CD must be isomorphic with instances of the derived class
diagram. In the example, the completion c6 (POD) is isomorphic with POD’, i.e., an
instance of cdenc(CD, POD). The partial object diagrams are not exactly the same due to
different typing. The partial object diagram c6 (POD) is typed over CD, whereas POD’ is
typed over cdenc(CD, POD). We formally show that the typing of c6 (POD) over cdenc(CD,

64



Figure 5.5: Example of partial instantiation via subclassing

POD) and the typing of POD’ over CD can be derived under the CWA.

5.4 Partial Instantiation as Subclassing

This section formalizes class diagrams (CDs) and partial object diagrams (PODs) used
in Sections 5.2 and 5.3 by building their meta-models. Although we already introduced
formal CDs in Chapter 4, here we present a slightly modified version so that they more
accurately fit in the context of partial instances. In particular, we extend the meta-model
with explicit subclasses for attributes (with optional default values). We follow the same
notation that is explained in Appendix A.1.

We also formalize the extension relations between CDs, and the completion relation
between PODs, and prove a theorem stating that the latter can be encoded by the former
(under the CWA for extension and completion).

5.4.1 Formal Class Diagrams and Their Extensions

The Meta-model: Classifiers.

Figure 5.6 specifies a meta-model of class diagrams. It is a graph whose nodes are meta-
classes to be interpreted by sets; elements of those sets instantiate meta-classes. Node
Class is instantiated by classes, for example, by Agenda, Meeting, int, string in Sample
CD in Fig. 5.7; then we write JClassK = {Agenda, Meeting, int, string}. Node Ref is
instantiated by references, for example, Sample CD instantiates Ref by set {person, mt,
time}.

65



Figure 5.6: Meta-model of formal class diagrams

Figure 5.7: Sample instance:
class diagram Sample CD and
Sample CD+

Arrows in the meta-model are unidirectional meta-associations. Meta-associations are
instantiated by sets of pairs of elements instantiating nodes; for example, for Sample CD,
set JownerK consists of pairs (person, Agenda), (mt, Agenda), (time, Meeting).

The subclassing relation between classes is modeled by the meta-association isA. If this
meta-association is instantiated — e.g., in the Sample CD+ , set JisAK has two elements
(pairs of classes): (mngrAgenda, Agenda) and (mngrMeeting, Meeting) — it means that
mngrAgenda is a subclass of Agenda, and mngrMeeting is a subclass of Meeting.

The keyword redefines means inclusion Jmt*K ⊂ JmtK of the corresponding set of pairs.
In such a case, UML says mt* subsets mt, and thus defines a meta-association loop isA
for references too.

The isA (subset) mechanism is used in the meta-model itself (Fig. 5.6). The arrow from
Dom to Class says that some of meta-classes are domains. For example, in Sample CD,
JDomK={string, int} ⊂ JClassK is the set of primitive domains used in the class diagram.
Node Attr denotes the result of the query “Select all references whose type is a domain”;
for Sample CD, JAttrK={person, time}. We will say that it is a derived node (its frame is
dashed and blue). The query also produces derived arrow type* , which subsets (redefines)
type.

As an attribute can be initialized with a concrete value (to be final in our context), the
meta-model has a partially-defined meta-association val. Its target Val is instantiated by
singleton classes that represent values of the primitive domains, JValK = {{i} : i ∈JintK}∪
{{s} : s ∈JstringK}, and function JTypeK provides their type: if x ∈JValK is in JintK, then
JTypeK(x)=int. We require that for any object diagram instantiating the meta-model, and
for any its attribute a ∈JAttrK, if a is initialized with a value, then the value has to be of
the same type as the attribute, i.e., a.JvalK.JTypeK = a.Jtype*K. We encode this constraint
by labeling the three arrows with commutativity predicate [=].

66



Meta-model II: Constraints.

Constraints are an important part of formal class diagrams. Specification of constraints
begins with a signature Sign of predicate symbols (or labels), each one is supplied with
its arity, i.e., a configuration (graph) of nodes and arrows for which the predicate can be
declared (as explained in Sect. 4.2.1). In our examples, the signature is Sign = mult-nodet
mult-arr t {abstract, disj, =}. Set mult-node=int×int∗ consists of pairs of integers (including *
for int∗), which can be declared for classes, i.e., the arity of each predicate in mult-node is
some fixed single-node graph. Set mult-arr=int×int∗ consists of pairs of integers (including
*), which can be declared for associations, i.e., the arity of each predicate in mult-arr is some
fixed single-arrow graph (analogously to the signatures in Tab. A.2 in the Appendix). The
arity of predicate abstract is also a singleton node graph. If a class is abstract, it can only
be instantiated via its subclasses. In other words, there are no elements whose typing
mapping points to the abstract class, but must point to one of the subclasses. UML’s
notation for declaring a class abstract is to display its name in italic.

Predicate = (commutativity) can be declared for any arrow diagram, in which there
are two paths between the same source and target, like in the lower part of Fig. 5.6. The
declaration ensures that for any element instantiating the source class, the two instan-
tiated paths lead to the same element instantiating the target class. Note that having
commutativity actually allows us to define subsetting (redefinition) of associations. For
example, in Fig. 5.7 Sample CD+, declaring mt* redefines mt means commutativity: for
any object diagram instantiating the diagram, and any object a ∈ JMngrAgendaK, we have
a.Jmt*K.JisAK = a.JisAK.JmtK.

Extension Relation.

We first give a formal definition and then explain its meaning with special cases. Let
CD be a consistent class diagram, i.e., Inst(CD) 6= ∅. (Note that an empty instance is
legal if allowed by the constraints.) We say that a class diagram CD′ extends CD (write
CD ≤ CD′), if

1. CD graph is a subgraph of CD′ graph, particularly, they may coincide.

2. if a class A’ belongs to CD′ − CD, then

(a) there exists a family of CD classes sup(A′) = (A0,A1, ...,An) with A0 being the
parent of A1..An, which are all (i = 0..n) declared abstract in CD′ and such

67



that A′ is a child of all A1..An (and hence of A0 too). The case n=0, hence,
sup(A′) = (A0), is not excluded.

(b) if B’ is another class (not equal to A’) in CD′−CD with sup(B’) = (B0,B1, . . . ,Bm)
and B0 = A0, then A’ and B’ are declared disjoint.

(c) if a reference r′ is owned by class A′ in CD′ −CD, then there is some Ai in the
family sup(A′) such that r′ is either inherited from Ai or redefines its reference
r. In the latter case, if type(r) = B and type(r′) = B′, then B occurs into sup(B′).

3. all constraints in CD go into CD′. New constraints introduced in CD′ must be
consistent with constraints in CD so that CD′ is also consistent.

Thus, CD ≤ CD′ means that there is an embedding mapping e : CD → CD′ satisfying
the conditions above. There are several special cases of extension.

1. Strengthening constraints. CD is one class A with multiplicity 0..n and some at-
tributes. CD′ is composed of classes A and A’, such that A is abstract and A’ is a
subclass of A, and the multiplicity of A’ is 0 ≤ m′ . . . n′ ≤ n with attributes inherited
and/or redefined. Then because A is abstract in CD′, CD′ actually amounts to class
A’ with all its attributes inherited/redefined from A, that is, A’ is A but with stronger
multiplicity. For example, Fig. 5.3 shows that extension e1 makes M1 a singleton.

2. Deletion. If in the first case the multiplicity is strengthened to be 0..0 for A’, then the
class A in CD will be effectively deleted. For example, Fig. 5.3 shows that extension
e1 deletes M2.

3. Gluing. CD consists of class A with two subclasses, A1 and A2, with multiplicities
m1..n1 and m2..n2 respectively. CD′ has in addition class A′12 subclassing both A1

and A2, which are declared abstract in CD′, and its multiplicity is m’..n’. Because all
(grand) parents of A′12 are abstract in CD′, the latter, in fact, amounts to class A’12
with attributes inherited from A1 and A2. Thus, A1 and A2 have glued in CD′ into
A’12. For example, Fig. 5.3 shows that extension e3 introduces M12 that subclasses
M1 and M2. To prohibit extensions with gluing, it is enough to specialize the general
definition by setting n = 0, i.e., sup(A′) = (A0): a class in the extension has exactly
one superclass.

For a class diagram CD, we write Ext(CD) for the set of all its extensions.

68



5.4.2 Partial Instances and Their Completion

Instantiation of Class Diagrams by Object Diagrams.

A class diagram is a pair CD = (GCD, CCD) with GCD a graph with some additional
structure specified in the previous section, and CCD a set of constraints declared over the
graph. An object diagram OD over CD is a graph GOD equipped with a typing mapping
typeOD : GOD → GCD. Nodes in graph GOD represent objects and values; arrows are links
between them. As in UML, we also call links slots : for a link time : M1 → 10, we say that
object M1 owns slot time that holds value 10, and for a link room : M1 → R, we say that
slot room holds a reference to object R. The typing mapping is a correct graph morphism
compatible with partition into classes and domains. For example, if a node in GOD is typed
by int, then it must be an integer value.

We call an OD correctly typed over a CD’s preinstance, and write PInst(CD) for the
set of CD’s preinstances.

Inverting the typing mapping maps nodes of graph GCD into sets, and arrows into
mappings. For example, if C is a class in GCD, then type−1OD(C) is the set of objects typed
by C. In Sect. 5.4.1 we denoted such sets by JCK. Similarly, if r : C → C’ is a reference
arrow in GOD, then type−1OD(r) is the set of links (i.e., pairs of objects) typed by r. In
Sect. 5.4.1, we denoted such sets by JrK, and noted that such a set defines a mapping
JrK : JCK → JC’K. Hence, we can check whether multiplicities and other constraints declared
in CD are satisfied.

We say that an OD over CD is its correct (or legal) instance if all constraints are
satisfied. Let Inst(CD) denote the set of all legal CD’s instances. Clearly, Inst(CD) ⊂
PInst(CD).

Instantiation of Class Diagrams by Partial Object Diagrams.

A partial object diagram is an object diagram, where some values in slots may be unknown,
and some objects and slots may not exist (our examples marked such by label ?). To deal
with unknown values, we add to every primitive domain a countable set of null values
{_1, _2, . . .} called indexed nulls. (In the database literature, they are called labeled nulls.)
For a given domain, say, int, we need many nulls (not just one), because different attributes
of type integer may have (potentially different) unknown values. Making attributes certain
means replacing nulls by actual (non-null) integer values, but having only one null value
would force us to make all values equal. In our examples, we placed symbol _ into a slot

69



Figure 5.8: Meta-model of partial object
diagrams

Figure 5.9: Rules of instance completion

with unknown value, but we assume that different slots (of the same type) hold different
indexed nulls.

If existence of an object or slot is declared uncertain, we label it by ? and say it is
optional. Otherwise, an object or slot is considered certain and mandatory. If in concrete
syntax slots belong to an optional object, then they are optional themselves. A mandatory
object may have optional slots, but if a slot is mandatory (in the semantics), its owner is
mandatory too (but the value may be unknown). Moreover, to avoid dangling references,
a mandatory slot holding a reference must refer to a mandatory object. We admit optional
slots with known values (for example, optional meeting M2 with certain time in Fig. 5.1).

The Meta-model.

Meta-model in Fig. 5.8 makes the discussion precise. The upper part (Element, Object,
Slot) says that a partial object diagram is a graph. Meta-classes Object! and Slot!
represent mandatory objects and slots; mandatory elements form a correct subgraph of the
partial object diagram graph.

Metaclass Value represent values of primitive domains (e.g., integers and strings)
together with the indexed nulls. For simplicity, values are assumed to be special objects
(class Value is a subclass of Object). Class Value• represents actual values of primitive
domains (nulls excluded). Derived class ValueSlot is for slots holding values rather than
references, and ValueSlot• is subclass of slots holding actual known values.

To be precise, instances of the meta-model in Fig. 5.8 are partial graphs rather than
partial object diagrams: the latter are endowed with typing mapping into some class
diagram. The meta-model states that a partial graph is a triple PG = (G,G!, G•) with G

70



a graph, G! its subgraph of mandatory elements, and G• a subgraph of slots with known
values.

Given a class diagram CD, a partial object diagram over it, POD, is a partial graph
PGPOD = (GPOD,G!POD,G•POD) with a totally defined typing mapping (graph mor-
phism) typePOD : GPOD → GCD, which maps proper objects to classes and values to value
domains. The pair (GPOD, typePOD) is denoted by |POD|; it is the POD with all ?-labels
removed.

Given a CD, we say that a POD is a (partial) preinstance if typePOD is a correct
graph morphism (thus, the set PInst(CD) also includes well-typed graphs with unknown
values). We call a preinstance POD an (partial) instance if GPOD = G•POD (i.e., all values
are known) and all constraints are satisfied, i.e., |POD| ∈ Inst(CD). We denote the set
of (partial) preinstances by pPInst(CD) and of (partial) instances by pInst(CD).

Partial Object Diagram Completion.

Let PG = (G,G!,G•) be a partial graph. Its (partial) completion comprises another partial
graph PG′ = (G′,G’!,G’•) and a partially defined graph mapping c : G → G′, which is
compatible with the extra partial graph structure. To wit: both restrictions of mapping
c to the two subgraphs, c! : G! → G′ and c• : G• → G′, are actually inclusion mappings
into the respective subgraphs of G′, i.e., mapping c provides two inclusions c! : G! → G’!
and c• : G• → G’• as shown in Fig. 5.9 (and so G! ⊂ G’! and G• ⊂ G’•). Completion
of partial object diagrams, i.e., typed partial graphs, requires, in addition, commutativity
with typing mappings as shown in the upper part of the figure.

Let us see how this definition works. Given a CD, we say that a partial object diagram
POD′ is more complete than partial object diagram POD, if some unknown values _ in
POD are replaced by actual values, and some of labels ? are removed by either removal of
labels ? from objects/slots, or removal of objects/slots labeled by ?. The former removal
means that an ?-element in POD certainly exists in POD′, the latter removal means
that a ?-element certainly does not exist in POD′. The multiplicities on the complete
arrow in Fig. 5.9 are important. The multiplicity 0..1 means that an element of POD
may have only one completion in POD′. The multiplicity 1..* means that a completion
completes at least one element, i.e., it can reduce uncertainty by gluing elements (if the
multiplicity was 1, gluing would be prohibited). Generally, we have a partially defined
mapping c : POD → POD′ commuting with typing of POD and POD′. We call this
mapping complete (see Fig. 5.9), and write c : POD ≤ POD′.

71



Figure 5.10: Projection of prein-
stances

Figure 5.11: Instances of CD+ are instances of
CD and completions of POD

We write Compl(POD) = {|POD′| ∈ PInst(CD) : POD ≤ POD′} for the set of all
completions of POD.

5.4.3 Partial Object Diagrams via Class Diagrams

We first note that an extension ext : CD → CD′ of diagram CD gives rise to a function
ext∗ : PInst(CD′) → PInst(CD) that projects preinstances of CD′ to preinstances of
CD (see Fig. 5.10). Let OD′ be a preinstance of CD′, e′ is its element, and t′ = type′(e) is
its type in CD′. If t′ = ext(t) for some type t ∈ CD, then ext∗ copies e into OD and gives
it the type t. If t′ ∈ (CD′ \ CD), then e is not copied into OD. In this way, by traversing
all elements in OD′, we build a CD’s preinstance OD and traceability mappings from OD
to OD′.

Theorem 1 For any consistent class diagram CD and its partial preinstance POD there
is a class diagram CD+

POD and an extension extPOD : CD → CD+
POD such that the mapping

ext∗ : Inst(CD+
POD)→ Inst(CD) ∩Compl(POD)

is a bijection. Moreover, if POD 6= POD′, then CD+
POD 6= CD+

POD′.

Figure 5.11 visualizes the theorem. Any correct instance of the class diagram CD+
POD,

projected onto preinstances of CD, is a correct instance of CD and is a completion of POD.
All completions of POD, that are correct instances of CD, must also be correct instances
of CD+

POD. Note that there are completions of POD that are not correct instances of CD
(they may violate its constraints).

We prove the theorem for the simpler case of completion without gluing, and corre-
spondingly CD+

POD without multiple inheritance.

72



Proof. The proof consists of two parts. In Part 1, we specify a function cdenc, which
for a given pair (CD,POD), as above, produces CD+

POD and an extension mapping
extPOD : CD → CD+

POD. In Part 2, we prove that ext∗ is a bijection.

Part 1. (Below we will skip the index POD near CD+ and ext)

Function cdenc encodes any partial object diagram POD as a class diagram CD+, such
that CD+ is an extension of CD (CD ≤ CD+). For a given class diagram CD, any partial
object diagram POD, such that |POD| ∈ PInst(CD), the function cdenc(CD,POD)
constructs CD+ ∈ Ext(CD) as follows.

1. Copy all elements of CD to CD+.

2. Label all classes of CD+ that belong to CD as [abstract].

3. For each o ∈ Object belonging to POD, create a singleton class c ∈ Class belong-
ing to CD+. The class subclasses o’s class, i.e., isA(c) = type(o). If o ∈ Object!
then the multiplicity of c is 1..1, otherwise it is 0..1.

4. For each s ∈ Slot where owner(s) = o and val(s) = v, such that v 6= _, create
a reference r ∈ Ref belonging to CD+. Let us assume that the objects o and v
are mapped to classes c and d, respectively, in CD+. The reference r is defined
so that owner(r) = c. Additionally, the reference redefines its type from CD, i.e.,
isA(r) = type(s). If s ∈ ValueSlot, then type(r) = Type(type(v)) and val(r) = d,
otherwise type(r) = d. In the former case, the type of r is one of the primitive
domains. If s ∈ Slot! ∪ValueSlot• then the multiplicity of r is 1..1, otherwise it
is 0..1.

Part 2. For the function cdenc, as defined above, the mapping ext∗ defined at the very
beginning of Sect. 5.4.3 is a bijection.

2.1)Given a correct instance I in Inst(CD)∩Compl(POD), there is I+ in Inst(CD+)
such that ext∗(I+) = I.

The partial graph of POD can be typed over CD+, because of encoding by cdenc.
Each element ePOD of POD can be typed over CD+ by typePOD : GPPOD → CD+. If I
completes POD, then for each element e belonging to I, we have e = complete(ePOD). The
instance I+ can be constructed by having the same partial graph as I and typing each e of
I over CD+ by type+(e) = typePOD(ePOD). The instance I+ is correct, as CD+ preserves
the constraints of CD and POD.

Furthermore, ext∗(I+) = I holds. The instance ext∗(I+) is a correct instance of CD,
because extension is compatible with constraints. That is, we also have a function

73



ext∗ : Inst(CD+) → Inst(CD) (denoted again by ext∗). That way each correct instance
of CD+ can be projected onto a correct instance of CD.

2.2)Given a correct instance I+ ∈ Inst(CD+), the projection ext∗(I)+ is in Inst(CD)∩
Compl(POD).

As shown previously, any correct instance I+ of CD+ can be projected onto a correct
instance of CD, i.e., ext∗(I+) ∈ Inst(CD).

Furthermore, I+ also belongs to Compl(POD). It is because, POD can be typed
over CD+. Each element belonging to I+ has exactly one type t+ such that exactly
one element of POD is mapped to t (it is established by cdenc). This correspondence
establishes completion between elements of I+ and |POD|, and from that follows that
ext∗(I+) ∈ Compl(POD).

As it is seen from the proof, the constructions 2.1 and 2.2 are mutually inverse. The
last statement of the theorem is also evident by construction. �

We conjecture that the theorem remains true for the general case of POD completions
with gluing, but an accurate proof is our future work.

5.5 Partial Instances in Clafer

Having shown that the encoding of partial instances as class diagrams is sound and com-
plete with respect to completions, we are ready to demonstrate its realization in Clafer.
Figure 5.12 shows Clafer models corresponding to the class diagrams from Fig. 5.3 (both
figures follow the same visual arrangement of models). The top right corner of the figure
encodes the class diagram of Agendas and Meetings.

The diagram CD+ (composed of the two top adjacent boxes) encodes a partial instance
representing the uncertainty in Sue’s agenda. The clafer A is a singleton (by default). The
agenda A contains two optional reference clafers (mt1 and mt2) that redefine mt and point to
meetings M1 and M2, respectively. Further, the targets of references are redefined correctly,
since M1 and M2 are subtypes of Meeting.

The meetings M1 and M2 are singletons with multiplicities 0..1 (written as ?). The
clafer M1 keeps time uncertain, while M2 specifies that the value of time is 10. The meaning
of time → 10 is the following: time : time → 10. The former time refers to an element of
M2, whereas the latter time refers to the element of the same name inherited from Meeting.
Finally, 10 can be considered a predefined singleton subtype of int representing number
ten.

74



// CD+
abstract Agenda

mt→ Meeting ∗

abstract Meeting
time→ int

A : Agenda
mt1 : mt→ M1 ?
mt2 : mt→ M2 ?

M1 : Meeting ?
M2 : Meeting ?

time→ 10

// CD
Agenda ∗

mt→ Meeting ∗

Meeting ∗

time→ int

A : Agenda
mt1 : mt→ M1
mt2 : mt→ M2 0

M1 : Meeting

M2 : Meeting 0
time→ 10

A : Agenda
mt1 : mt→ M1
mt2 : mt→ M2 ?

M1 : Meeting
time→ 11

M2 : Meeting ?
time→ 10

No multiple inher-
itance in Clafer

A : Agenda
mt1 : mt→ M1
mt2 : mt→ M2 0

M1 : Meeting
time→ 11

M2 : Meeting 0
time→ 10

A : Agenda
mt1 : mt→ M1
mt2 : mt→ M2

M1 : Meeting
time→ 11

M2 : Meeting
time→ 10

Figure 5.12: Extension of class diagrams in Clafer

75



All extensions e1 . . . e6 besides e3 follow the same pattern of subclassing and redefini-
tion. The extension e3 is currently not supported due to lack of multiple inheritance in
Clafer. Extensions under OWA (Fig. 5.4) can be encoded analogically.

5.6 Concluding Remarks

Partial instances enable modeling with uncertainty, underspecification, and variability. As
an example, we showed their use in OOM in requirements elicitation and validation. We
considered partial instances and their completion under the CWA and the OWA. Despite
many applications, support for partial instances in OOM languages is limited.

The chapter contributes to the design of modeling notations. It showed that under
the CWA partial instances can be encoded as class diagrams by strengthening multiplic-
ity constraints, redefinition, and subclassing. In other words, partial instantiation and
subclassing+redefinition are formally equivalent for modeling uncertainty and variability
within the presented scope. One of the implications is that any OOM language can of-
fer support for partial instances as long as it offers the notion of subclassing for classes
and properties (associations and attributes), and refinement of multiplicities. Our work
makes this encoding generic and precise, therefore the presented concepts may be widely
applicable.

We see several advantages of this encoding: 1) any OOM language without native sup-
port for partial instances can support them at the class level, simply by syntactical means;
2) encoding (partial) instances as class diagrams allows the modeler to specify constraints
in the context of each such instance – in contrast, objects in object diagrams cannot con-
tain constraints –, enables mixing abstractions and examples in the same notation – thus
facilitating Example-Driven Modeling [28, 6] –, and enables cross-referencing between in-
stances and types, e.g., an object (encoded as a singleton class) can be used as a type of a
reference; 3) a user of such a language has fewer concepts to learn.

On the other hand, we also see two main drawbacks of this syntactical unification. A
general disadvantage is that fundamental OOM concepts (instances and types) are not
directly visible in the syntax, which may lead to confusion in case of singleton classes.
Second, the class diagrams that encode partial instances are, arguably, bulky and convo-
luted. In the presented encoding, we abused class modeling by specifying “degenerated”
class diagrams composed of singleton classes. It is unlikely that practitioners would work
directly with such diagrams. A dedicated UML profile could address this problem. Clafer
avoids this problem by a suitable syntax design.

76



Clafer natively encodes (partial) instances via classes. We argue that using the same
syntax for expressing (partial) instances and class diagrams is a mechanism of syntactical
unification of instances and types. Of course, instances still exist in the semantics, but
they do not have to be exposed in the concrete syntax. This is another kind of unification
in Clafer, besides the unification of classes, associations, and properties. When the two
unifications are combined together, they allow to concisely specify: 1) feature models along
with their partial configurations; 2) partial instances of meta-models; and 3) redefinition at
any nesting level in the containment hierarchy and for clafers playing any role – something
that is not possible, e.g., in UML class diagrams.

77



Chapter 6

Evaluation

In this chapter we evaluate Clafer analytically and experimentally. We argue that Clafer
can encode feature and meta-models at least as concisely as state-of-the-art feature and
meta-modeling languages. We then evaluate Clafer on realistic feature and meta-models,
model templates, and domain models. We show that these rich structural models with
complex constraints can be expressed in Clafer and analyzed within seconds. Finally, we
discuss threats to validity.

6.1 Analytical Evaluation

We examine the extent to which Clafer meets its design goals from Sect. 2.2.

1. Clafer provides a concise notation for feature modeling. This can be seen by com-
paring Clafer to TVL, a state-of-the-art textual feature modeling language [34]. Fig-
ure 6.1 shows the TVL encoding of the feature model from Fig. 3.2. Conciseness can
be measured as the number of elements used to encode a model. The Clafer model
has slightly fewer concepts than the TVL model. Feature models in Clafer look very
similar to feature models in TVL, except that TVL uses explicit keywords (e.g., to
declare groups), braces for nesting, and feature names must be unique.

Clafer’s language design reveals several key ingredients allowing a class modeling
language to provide a concise notation for feature modeling:

78



1 Options group allof {
2 Size group oneof { Small, Large },
3 opt Cache group allof {
4 CacheSize group allof {
5 SizeVal { int val; },
6 opt Fixed
7 }
8 },
9 Constraint { (Small && Cache)→ Fixed; }

10 }

Figure 6.1: Options feature model in TVL

• Concept unification: The concept clafer unifies basic constructs of structural
modeling, such as class, association, and property (which includes attribute, ref-
erence, and role). Such a unification enables arbitrary property nesting, which
allows us to concisely specify feature models in a class modeling language. Nei-
ther UML nor Alloy provide this mechanism; there, associations and classes are
declared separately, and properties cannot be arbitrarily nested. Although UML
offers association classes, they cannot use primitive domains as association ends.
• Instance composition and type nesting : Clafer nesting accomplishes instance

composition and type nesting in a single construct. UML provides composition,
but type nesting is specified separately (cf. Fig. 2.5b). Alloy has no built-in
support for composition and thus requires explicit parent-child constraints. It
also has no signature nesting, so name clashes need to be avoided using prefixes
or alike.
• Default singleton multiplicity : All clafers that have a parent in the containment

hierarchy, are singletons by default. It allows one to specify mandatory features
without declaring their multiplicity explicitly in the concrete syntax. In UML
and Alloy, on the other hand, associations are multi-valued by default.
• Group constraints : Clafer’s group constraints are expressed concisely as inter-

vals. In UML groups can be specified in OCL, but using a lengthy encoding,
explicitly listing features belonging to the group. The same applies to Alloy.
• Constraints with default quantifiers : Default quantifiers on relations allow writ-

ing constraints that look like propositional logic, even though their underlying
semantics is first-order logic. For example, each clafer name in the last line in
Fig. 3.2 would be preceded by the quantifier some (cf. lines 11-13 in Fig. B.1).
Name resolution rules further contribute to the conciseness of constraints.

79



1 class Comp {
2 reference version : integer
3 }
4

5 class ECU extends Comp {}
6

7 class Display extends Comp {
8 reference server : ECU
9 attribute options : Options

10 }

Figure 6.2: Component meta-model in KM3

• Navigation over optional clafers : Navigation expressions of the form n1.n2 . . . nm
encompass navigation along the clafer hierarchy and occur in constraints (e.g.,
in the last line of Fig. 3.3). Each of the names ni may refer to a clafer of any
multiplicity; in particular, the clafer n1 may be optional, whereas n2 mandatory.
In Clafer and Alloy, all navigation expressions uniformly evaluate to a set (either
empty or not). In OCL, however, one needs to explicitly check if navigation over
an optional element evaluates to an empty set before proceeding to the next
element. Otherwise, the navigation results in an undefined value indicating an
error. Formally, unconditional mapping composition is defined in OCL for only
total mappings, whereas in Clafer and Alloy one can compose partial mappings
as well.

2. Clafer provides a concise notation for meta-modeling. Figure 6.2 shows the meta-
model of Fig. 3.3 encoded in KM3 [80], a state-of-the-art textual meta-modeling lan-
guage. The most visible syntactic difference between KM3 and Clafer is the use of
explicit keywords introducing elements and mandatory braces establishing hierarchy.
Both models have the same number of concepts. KM3, however, cannot express
additional constraints in the model. They are specified separately, e.g., as OCL
invariants.

3. Clafer allows one to concisely mix feature and meta-models. Clafer integrates sub-
classing into hierarchical modeling. Clafers at any nesting level in the containment
hierarchy can subclass other clafers. Inheritance among clafers is a semantically
rich operation. For example, inheritance among two reference clafers introduces two
classes (head and target), four maps (head, parent, ref, and head* ), and three inclu-
sions (head s, headh, and head t), with all the constraints regulating well-formedness

80



of LCS and inheritance. Using inheritance, one can reuse feature or class types in
multiple locations; reference clafers allow reusing both types and instances. Feature
and class models can be related via constraints.

4. Clafer provides support for partial instances. Clafer was designed to allow for mod-
eling with uncertainty (e.g., as in partial models [59]) and variability (e.g., as in
FBMTs [46]). Clafer encodes partial instances of models at the level of types. The
partiality of models may be specified: 1) explicitly by using clafer multiplicity con-
straints, and 2) implicitly by omitting constraints when one clafer inherits partially
specified elements from another clafer.

Clafer covers the entire scope of FBMTs, as shown in Chapter 3, and most of the
scope of partial models. Below we discuss the four kinds of partialities in partial
models [115] and relate them to Clafer:

• May – uncertainty about the existence of model elements. In Clafer it is modeled
by mandatory and optional clafers, and constraints restricting their multiplici-
ties.

• Abs – uncertainty about how a set is refined into subsets. The Abs partiality
can be modeled in Clafer by declaring an abstract clafer and then partitioning
it via subclassing and redefinition.

• Var – uncertainty about identity of model elements. The partiality Var cor-
responds to the gluing case of object completion presented in Chapter 5. The
current Clafer implementation does not handle it due to lack of multiple in-
heritance. Multiple inheritance will be added to Clafer in the nearest future,
however.

• OW – uncertainty about model completeness. The partiality OW is about the
distinction between the OWA and the CWA in the interpretation of complete-
ness. The modeler can always extend Clafer models with new elements (as in
the OWA). Our current tools, however, perform reasoning under the CWA.
Reasoning under OWA is being implemented.

5. Clafer tries to use a minimal number of concepts and has uniform semantics. While
integrating feature modeling into meta-modeling, our goal was to avoid creating a
hybrid language with duplicate concepts. In Clafer, there is no distinction between
class and feature types; they are all clafers. Features are relations and, besides
their obvious role in feature modeling, they also play the role of attributes in meta-
modeling.

81



We also contribute a simplification to feature modeling: Clafer has no explicit feature
group construct; instead, every clafer has a group cardinality to constrain the number
of children. This is a significant simplification; we no longer need to distinguish
between grouping features (features used purely for grouping, such as menus) and
feature groups. The grouping intention and grouping cardinalities are orthogonal:
any clafer can be annotated as a grouping feature, and any clafer may choose to
impose grouping constraints on children. This idea has also been adopted in the
current draft of CVL [71].

Finally, both feature and class modeling have uniform semantics. Syntactic and se-
mantic unification in Clafer keeps the language small, allows for uniform representa-
tion of models, and also simplifies development of tools for model analyses. Further,
unification has the potential of simplifying model evolution as fewer special cases
(concepts) need to be considered. In general, however, syntactic unification may also
have some drawbacks, such as a lack of correspondence between the modeler’s intent
and native support for that intent in the language, worsened model comprehension,
and less efficient model analyses. On the other hand, one could easily introduce
two subclasses of clafer: class and feature, allowing the user to state an intention
explicitly. All the tools, however, could still benefit from the semantic unification by
looking at instances of features and classes as instances of clafer.

6.2 Experimental Evaluation

Our experiment aims to show that Clafer can express a variety of realistic variability
models, meta-models, model templates, and domain models, and that useful analyses can
be performed on these encodings in reasonable time. It follows that the richness of Clafer’s
applications does not come at a cost of lost analysis potential with respect to modeling in
more specialized languages.

The experiment methodology is summarized in the following steps:

1. Identify a set of models representative of the main use cases of Clafer: variability
modeling, meta-modeling, mixed variability and meta-modeling, and domain model-
ing. We chose models that can be encoded in the current implementation of Clafer.
The set includes: FODA feature models, class-based meta-models that do not require
multiple inheritance, Feature-Based Model Templates that combine feature and class
models, and hierarchical domain models.

82



2. Select representative analyses. We studied the analyses in published literature and
decided to focus on a popular class of analyses that reduce to model instance finding.
These include inconsistency detection, element liveness analysis (detecting whether
an element can never be instantiated), offline and interactive configuration, guided
editing, etc. Since all these analyses share similar performance characteristics, we
decided to use model instance finding, consistency and element liveness analysis as
representative.

3. Translate models into Clafer and record observations. We created automatic trans-
lators for converting models to Clafer when applying simple rewriting rules sufficed.
For all other cases translation was performed manually.

4. Run the analyses and report performance results. The analyses were performed by
using our Clafer compiler, ClaferIG, and then employing the Alloy Analyzer (which
is an instance finder) to perform the analysis.

The Clafer compiler is written in Haskell and comprises several chained modules: a
lexer, layout resolver, parser, desugarer, semantic analyzer, optimizer, and code generator.
The layout resolver makes braces grouping subfeatures optional. Clafer is composed of two
languages: the core and the full language. The first one is a minimal language with well-
defined semantics (as presented in Chapter 4). The latter is built on top of the core language
and provides a large amount of syntactic sugar. The semantic analyzer resolves names and
deals with inheritance. The code generator translates the core language into Alloy. The
generator has benefited from the knowledge about the class of models, with which it is
working, to optimize the translation. Similarly, analyzers for specialized languages have
this knowledge.

The experiment was executed on a laptop with a Core Duo 2 @2.4GHz processor and
8GB of RAM, running Linux. The Alloy Analyzer was configured to use Minisat as a
solver. All Clafer and generated Alloy models are available online1. In the subsequent
paragraphs we present and discuss the results for the four subclasses of models.

Variability Models. In order to find representative models we first consulted SPLOT [94]
— a popular repository of feature models. We succeeded in automatically translating all
341 models from SPLOT to Clafer (non-generated, human-made models; available as of
July 18th, 2013). These included models with and without cross-tree constraints, ranging
from a dozen to hundreds of features. Here, we report the most interesting cases together

1http://gsd.uwaterloo.ca/kbak/thesis

83

http://gsd.uwaterloo.ca/kbak/thesis


size

model name nature [# features] [# constraints] running time [s]

Digital Video System Realistic 26 3 0.003
Dell Laptops Realistic 46 110 0.007
Billing Realistic 88 59 0.016
Android Realistic 150 56 0.061
eShop Realistic 287 21 0.043
FM-500-50-1 Generated 500 50 0.117
FM-1000-100-2 Generated 1000 100 0.320
FM-2000-200-3 Generated 2000 200 0.899
FM-5000-500-4 Generated 5000 500 5.000
The Linux Kernel Realistic 6784 6058 8.935

Table 6.1: Results of consistency analysis for feature models expressed in Clafer.

with an additional four, which have been randomly generated; all are listed in Tab. 6.1.
Digital Video Systems is a small example with few cross-tree constraints. Dell Laptops models
a set of laptops offered by Dell in 2009. This is one of the few models that contains more
constraints than features. Billing describes a product line of billing methods; it contains
tens of features and constraints. EShop [88] is the largest realistic model that we found
on SPLOT. It is a domain model of online stores. The remaining models are randomly
generated using SPLOT, with a fixed 10% constraint/variable ratio. Besides SPLOT, we
also translated two other models: Android and The Linux Kernel. The former is a realistic
variability model of the product line of Android phones. It was created based on pub-
licly available documents. The model goes far beyond standard feature modeling due to
the presence of integer and string attributes, abstract clafers, and inheritance. The latter
model is a Boolean feature model extracted from KConfig model of the Linux kernel [119].
We included it in the benchmark because it is the largest realistic and publicly-available
feature model we are aware of.

We checked the consistency (i.e., lack of contradicting constraints) of each model
through instance finding. Tab. 6.1 presents a summary of the results. The analysis time
was less than a second for up to two thousand features and less than ten seconds for up
to several thousand features. We observed that the biggest bottleneck was translation of
Alloy models into CNF formulas by the Alloy Analyzer. Reasoning about CNF formulas
in a SAT-solver takes no more than hundreds of milliseconds even for the largest models.

84



Meta-Models In order to identify representative meta-models, we first turned to the
Ecore Meta-model Zoo2. From there, we selected the following meta-models: AWK Pro-
grams, ATL, ANT, BibTex, UML2, ranging from tens to hundreds of elements. We extracted
OCL constraints from the UML specification [103] and manually added them to the Clafer
encoding of UML2. We also explored the Repository for Model Driven Development (Re-
MoDD)3, from where we selected the following meta-models with OCL constraints: ER2RE,
CPFSTool, OMGDD, Workflow, and RBAC.

We translated all the Ecore meta-models into Clafer automatically. One interesting
mapping was the translation of EReference elements with eOpposite attribute (symmetric
reference), as there is no first-class support for associations in Clafer yet. The same de-
ficiency has been reported in a preliminary study that compared Clafer with UML class
diagrams [134]. We modeled the association as two reference clafers related by constraints.
Moreover, although for the meta-model of UML2 we expressed multiple inheritance in Clafer
syntax, we only performed reasoning for slices that required single inheritance.

Besides meta-models, we also manually encoded OCL constraints from an OCL bench-
mark [63] (benchmarks B1 and B3) to show that Clafer can express many non-trivial OCL
constraints over class models. We observed certain patterns during the translation of OCL
constraints to Clafer and believe that this task can be automated for a large class of con-
straints. Tab. 6.2 presents sample OCL constraints from the UML2 meta-model translated
into Clafer. Each constraint, but the last one, was written in the context of some class.
Their intuitive meanings are as follows: 1) ownedReception is empty if there is no isActive;
2) endType aggregates all types of memberEnds; 3) if memberEnd’s aggregation is different
from none, then there are two instances of memberEnd; 4) there are no two types with the
same names.

There are several reasons why Clafer constraints are more concise and uniform com-
pared to OCL invariants. Similar to Alloy, every Clafer definition is a relation. This
approach eliminates extra constructions such as OCL’s collect, allInstances, checking for
empty collections, and conversions between scalars and singletons. Finally, assuming the
default some quantifier before set expressions (e.g. memberEnd.aggregation - none), we can
treat the result of an operation as if it were a propositional formula, thus eliminating extra
exists quantifiers. Although more concise, the Clafer constraint language lacks some fea-
tures of OCL, such as support for higher-order associations, transitive closure, and ordered
sets.

We applied automated analyses to: 1) slices of the UML2 meta-model: Class Diagram

2http://www.emn.fr/z-info/atlanmod/index.php/Ecore
3http://www.cs.colostate.edu/remodd/

85

http://www.emn.fr/z-info/atlanmod/index.php/Ecore
http://www.cs.colostate.edu/remodd/


Context OCL Clafer

Class (not self.isActive) implies !isActive =⇒ no ownedReception
self.ownedReception→isEmpty()

Association self.endType = self.memberEnd→ endType = memberEnd.type
collect(e | e.type)

Association self.memberEnd→exists(aggregation memberEnd.aggregation - none =⇒
<> Aggregation::none) implies #memberEnd = 2
self.memberEnd→size() = 2

– Type.allInstances()→ forAll (t1, t2 | all disj t1;t2 : Type | t1.name != t2.name
t1 <> t2 implies t1.name <> t2.name)

Table 6.2: Constraints in OCL and Clafer.

size

meta-model/instance [#classes] [#constraints] running time [s]

State Machines 11 28 0.029
Class Diagram 19 17 0.037
Behaviors 20 13 0.057
CPFSTool 64 62 0.033
ER2RE 89 183 0.151
RBAC 96 128 0.058
Workflow 104 76 0.067
OMGDD 163 34 0.070

Table 6.3: Results of strong consistency analysis for UML2 meta-model slices and ReMoDD
meta-models in Clafer

from [32], State Machines, and Behaviors; and 2) ReMoDD meta-models with OCL con-
straints (Tab. 6.3). Each meta-model had tens of classes and our goal was to include
a wide range of OCL constraints. We checked the strong consistency property [31] for
these meta-models. To verify this property, we instantiated the meta-models’ elements
that were at the bottom of inheritance hierarchy by restricting their multiplicity to be at
least one. The same constraints were imposed on containment references within all meta-
model elements. The analysis confirmed that none of the meta-models had dead elements.
Our results thus showed that element liveness analysis can be done efficiently for realistic
meta-models of moderate size.

Feature-Based Model Templates. The next class of models were Feature-Based Model
Templates akin to our telematics example from Chapter 2. A FBMT consists of a feature

86



FBMT #features/#classes/#constraints instantiation [s] liveness [s]

Telematics (8) 8/7/17 0.007 0.049
FindProduct (16) 13/29/10 0.041 0.080
TaxRules (7) 16/24/62 0.069 0.086
Checkout (41) 18/78/314 0.734 2.520

Table 6.4: Analyses for Feature-Based Model Templates expressed in Clafer. Parentheses
by the model names indicate the number of optional elements in each template.

model (cf. lines 1–10 in Fig. 3.5), a meta-model (cf. Fig. 3.3), a template (cf. Fig. 3.4), and
a set of mapping constraints (cf. lines 12–16 in Fig. 3.5). To the best of our knowledge,
Electronic Shopping [88] is the largest example of a model template found in the litera-
ture. We used its templates, listed in Tab. 6.4, for evaluation: FindProduct and Checkout
are activity-diagram templates, and TaxRule is a class-diagram template. Each template
has substantial variability in it. All templates have between 10 and 20 features, tens of
classes, and from tens to hundreds of constraints. For comparison, we also include our
telematics example.

We manually encoded the above FBMTs in Clafer. For each of the diagrams in [88], we
took a slice of the UML2 meta-model and created a template that conforms to the meta-
model, using mandatory and optional singleton classes as described in Sect. 3.1.4. To create
useful and simple slices of UML diagrams, we removed unused attributes and flattened the
inheritance hierarchy, since many superclasses were left without any attributes. Thus, the
slice preserved the core semantics. Furthermore, we sliced the full feature model, so that
it contained only features that appear in diagram. Finally, we added mappings to express
dependencies between features and model elements, as described in Sect. 3.1.4.

We performed two types of analyses on FBMTs. First, we created sample feature
configurations (like in Fig. 3.6) and instantiated templates in the Alloy Analyzer. We
inspected each instance and verified that it was the expected one.

Second, we performed element liveness analysis for the templates. The analysis is
similar to element liveness for meta-models [31], but now applied to template elements.
We performed the analysis through repeated instance finding; in each iteration we required
the presence of groups of non-exclusive model elements. Tab. 6.4 presents a summary of
the inspected models and times of analyses.

We consider our results promising since we obtained acceptable timings for slices of
realistic models without fully exploiting the potential of reasoners. The results can be
further improved by better encoding of slices (for example, representing activity diagram

87



size

domain model [#clafers] [#constraints] running time [s]

Electronic Stability Control 78 10 0.046
Merchandise Financial Planning 142 118 0.044
Business Motivation Model 155 54 0.085

Table 6.5: Results of consistency analysis for domain models in Clafer

edges as relations instead of as sets in Alloy) and using more intelligent slicing methods; e.g.
some constraints are redundant, such as setting source and target edges in ActivityNodes.
Removing these constraints would speed up reasoning process. However, we can already see
that Clafer is a suitable vehicle for specifying FBMTs and analyzing them automatically.

Domain Models. Domain models capture complex business knowledge about the whole
domain. They express the knowledge in terms of concepts and constraints. The concepts
form a hierarchy where more complex concepts are decomposed into simpler ones. Fur-
thermore, such models contain a fair number of constraints. We encoded several realistic
models. Electronic Stability Control4 is an initial model based on US Electronic Stability Con-
trol standard. Merchandise Financial Planning5 is a domain model extracted from Oracle’s
documentation. It handles three types of hierarchies: Calendar, Product, and Location.
Business Motivation Model6 is based on documentation by the Business Rules Group. As
with the variability models, we performed consistency analysis for each domain model.
Table 6.5 reports the results.

6.3 Threats to Validity

External Validity Our evaluation is based on the assumption that we chose represen-
tative models, and useful and representative analyses.

All models, except the four randomly generated feature models, were created by humans
to model real-word artifacts. Some of the models come from academia, while others from
the industry, thus they should share characteristics with other industrial models. The
majority of practical models have fewer than a thousand features [83], so reasoning about

4http://t3-necsis.cs.uwaterloo.ca:8091/ESC/FMCSA571.126-model
5http://t3-necsis.cs.uwaterloo.ca:8091/Merchandise%20Financial%20Planning
6http://t3-necsis.cs.uwaterloo.ca:8091/BMM/model

88

http://t3-necsis.cs.uwaterloo.ca:8091/ESC/FMCSA571.126-model
http://t3-necsis.cs.uwaterloo.ca:8091/Merchandise%20Financial%20Planning
http://t3-necsis.cs.uwaterloo.ca:8091/BMM/model


corresponding Clafer models is feasible and efficient. Perhaps the biggest real-world feature
model to date is the Linux Kernel model [119]. Our tools handled a Boolean version of
this model. Analysis of the full model (with non-Boolean attributes and constraints) may
require reasoning with CSP and SMT-solvers instead of SAT-solvers. Working with models
of this size requires proper engineering of analyses. Our objective here was to demonstrate
feasibility of analyses. Robust tools for Clafer are under development.

We believe that the slices of the UML2 that were selected for the experiment are rep-
resentative of the entire meta-model, because we picked the parts with more complex
constraints. While there are not many existing FBMTs to choose from, the e-commerce
example [88] was reverse-engineered from the documentation of an IBM e-commerce plat-
form, making the model quite realistic. Similarly, domain models are also based on existing
industrial specifications.

Not all model analyses can be reduced to instance finding performed using combinatorial
solvers (i.e., the relational model finder in case of Alloy [125]). Combinatorial analyses,
however, are most widely recognized and most effective [18].

Instance finding for models has similar uses to testing and debugging for programs [76]—
it helps to uncover flaws in models and assists in evolution and configuration [28]. For
example, it helped us to debug the initial telematics model. Some software platforms
already provide configuration tools using reasoners. For example, Eclipse uses a SAT-
solver to help users select valid sets of plug-ins [89].

Liveness analysis for model elements has been previously exploited, for instance in
[124, 31]. Tartler et al. [124] analyze liveness of features in the Linux kernel code, reporting
about 60 previously unreported dead features in the released kernel versions. Linux is not
strictly a feature-based model template, but its build architecture, which relies on (a form
of) feature models and presence conditions in code (i.e., conditional compilation), highly
resembles our model templates.

Analyzers based on instance finding solve an NP-hard problem, thus, no hard guarantees
can be given for their running times. Although progress in solver technologies has placed
these problems in the range of practically tractable, there do exist instances of models and
meta-models that cannot be effectively analyzed with our tools. Our experiments aim to
show that this does not happen for realistic models.

There exist more sophisticated analyzes (and classes of models) that cannot be ad-
dressed with Clafer infrastructure, and are not reflected in our experiment. For example,
instance finding based on SAT-solving is limited to instances of bounded size. It is possi-
ble to build sophisticated meta-models that only have very large instances. This problem
is irrelevant for feature models and model templates as they allow no classes that can

89



be instantiated without bounds. SMT-solvers, however, are able to reason about infinite
models.

Moreover, special-purpose languages may require more sophisticated analysis tech-
niques such as behavioral refinement checking, model checking, model equivalence checking,
etc. These properties typically go beyond static semantics expressed in structural models
and thus are out of scope of generic Clafer tools.

Internal Validity Translating models from one language to another can introduce errors
and change the semantics of the resulting model.

We used our own tools to convert SPLOT and Ecore models to Clafer and then to
translate Clafer to Alloy. We translated FBMTs and OCL constraints manually. The
former is rather straightforward; the latter is more involved. We published all the models
so that their correctness can be reviewed independently.

Another threat to correctness is the slice extraction for the UML2 and e-commerce
models. Meta-model slicing is a common technique used to speed-up model analyses, where
the reasoner processes only relevant parts of the meta-model. We performed it manually,
while making sure that all parts relevant to the selected constraints were included; however,
the technique can be automated [117].

The correctness of the analyses relies on the correctness of the Clafer compiler and the
Alloy analyzer. The Alloy analyzer is a mature tool. We have been testing the Clafer
compiler for years by translating hundreds of models to Alloy and inspecting the results.

6.4 Concluding Remarks

We demonstrated Clafer’s potential in feature, meta-, and domain modeling. The ana-
lytical evaluation showed that Clafer can concisely express feature and meta-models via
uniform syntax and unified semantics. The experimental evaluation showed that Clafer
can express and analyze a range of structural models augmented with complex constraints:
domain, variability, class, and meta-models. Besides the mentioned applications, Clafer
has also been used for modeling architectural framework concepts [8] and for specifying
the structure of documents in Intelligent ET [109], a tool for extracting knowledge from
office documents.

90



Chapter 7

Related Work

In this chapter we compare Clafer with variability, OO, data modeling, and knowledge
representation languages. We also discuss tool support for model analyses and the notion
of concept unification.

7.1 Variability Modeling

Clafer builds on several previous works, including encoding feature models as UML class
models with OCL [44]; a Clafer-like graphical profile for Ecore, having a bidirectional
translation between an annotated Ecore model and its rendering in the graphical syn-
tax [121]; and the Clafer-like notation used to specify Framework-Specific Modeling Lan-
guages (FSMLs) [8]. Moreover, feature models have been characterized as views on class
diagrams (referred to as ontologies) in [45]. None of these works provided a proper language
definition that unifies feature and class modeling, and did not provide an implementation
like Clafer’s; also, they lacked Clafer’s concise constraint notation. Although we introduced
Clafer earlier [24], our previous work lacked precise semantics because semantic unification
posed a major challenge. In our current work, we precisely specify the unification of feature
and class modeling constructs and present Clafer’s semantics.

Cardinality-based feature models have been formalized in [42] as context-free gram-
mars, and in [95] using set theory. None of the works covers references, attributes, and a
constraint language that can deal with multiply-instantiated features. Our work is more
complete in that sense and, in fact, subsumes cardinality-based feature modeling, equip-
ping it with inheritance. Also, none of the works considers unification of feature and class
models, whereas we precisely show how it can be done.

91



Text-based Variability Language (TVL) is a textual feature modeling language [34].
It favors the use of explicit keywords, which some software developers may prefer; Clafer
avoids them. TVL covers feature models with attributes, i.e., Boolean features and features
of other primitive types such as integer. The key difference is that Clafer is also a class
modeling language with multiple instantiation, references, and inheritance. It would be
interesting to provide a translation from TVL to Clafer. The opposite translation is only
partially possible. Currently TVL models can be analyzed with a SAT-solver.

Common Variability Language (CVL) is an Object Management Group (OMG) pro-
posal for a standard for specifying and resolving variability [71]. CVL is being designed by
a working group whose members include variability modeling tool vendors, industrial prac-
titioners, and academics. In contrast with other works, CVL models are not self-contained.
CVL allows for introducing variability into any existing model that conforms to the MOF
meta-model. In particular, it can be used to create families of UML models. Similar to
UML, the language has explicit syntactical constructions for different concepts. For ex-
ample, depending on feature type it is either choice (Boolean feature), classifier (feature
with multiplicity), or parameter (feature with attribute). In contrast with CVL, Clafer is
unified and focuses on analyses. It may be used as a CVL’s backend for model analyses.

Kconfig and Component Description Language (CDL) are domain-specific languages
that model variabilities in operating systems [20]. Kconfig models describe configuration
options of the Linux kernel; CDL is used by eCos. Both languages express feature models
with attributes. The languages have domain-specific concepts, e.g., Kconfig has tristate
features (yes, no, module), while CDL groups features into packages. Both languages mix
variability with mechanisms to control how models are presented to users in a configurator.
Clafer, on the other hand, is general-purpose, has one construct, and is user-interface
agnostic. It can express Kconfig and CDL models, except for the UI aspects.

Asikainen and Männistö present Forfamel, a unified conceptual foundation for feature
modeling [10]. The basic concepts of Forfamel and Clafer are similar; both include sub-
feature, attribute, and subtype relations. The main difference is that Clafer’s focus is to
provide a concise concrete syntax, such as being able to define feature, feature type, and
nesting by stating an indented feature name. Also, the conceptual foundations of Forfamel
and Clafer differ; e.g., features in Forfamel correspond to Clafer’s instances, but features
in Clafer are both types and instances. Also, a feature instance in Forfamel can have
several parents; in Clafer, an instance has at most one parent. These differences likely
stem from the difference in perspective: Forfamel takes a feature modeling perspective and
aims at providing a foundation unifying the many existing extensions to feature modeling;
Clafer limits feature modeling to its original Feature-Oriented Domain Analysis (FODA)
scope [82], but integrates it into class modeling. Finally, Forfamel considers a constraint

92



language as out of scope, hinting at Object Constraint Language (OCL). Clafer comes
with a concise constraint notation.

Decision models group decisions and focus on product derivation from a product fam-
ily [41]. Notations for specifying decision models include a tabular notation [116] and
Synthesis [120]. Clafer models are more expressive, and therefore subsume decision models
(modulo language features controlling UI aspects such as visibility).

7.2 Object-Oriented Modeling

UML [103] class and object diagrams are two standardized structural modeling notations.
UML class diagrams is a syntactically much richer notation than Clafer. While Clafer
reduces structural modeling concepts to clafer, UML class diagrams make each concept
explicit both in the syntax and semantics (e.g., different types of associations). UML
class diagrams offer limited support for property nesting. Clafer, on the other hand, was
designed as a language for hierarchical modeling. Both UML class diagrams and Clafer
offer support for subclassing of classes and associations, and for partial instances. The
latter can be encoded via singleton classes and subclassing.

OCL [101] is a language that augments UML models with constraints. The Clafer
constraint language is heavily inspired by Alloy’s: sets are always flattened. OCL, on the
other hand, allows nested sets (i.e., sets of sets), provides first-class support for ordered
sets and bags, and is based on the three-valued logic. The language is very expressive and
can also be used for specifying queries and model transformations. OCL, however, has
been criticized for complexity, verbosity, and poor concrete syntax [127].

UML object diagrams [103] offer partial support for partial instances. Slots may have
unknown values, called nulls, that correspond to our _. Objects and slots, however, cannot
be labeled as optional. Our work provides syntax for both partialities and supplies it
with a formal semantics. UML class diagrams, on the other hand, can support partial
instances “as is” via subclassing of classes, attributes, and associations. Our work makes
this encoding precise; it assumes, however, that the typing mapping from object diagrams
to class diagrams is total. UML object diagrams allow partial typing for objects, i.e.,
objects may have a missing classifier. Partial typing is also supported by subclassing, as
new attributes and associations can be introduced in subclasses (as in Fig. 5.4) but the
presented theory needs to be extended to cover that case (extension for OWA).

UML class and object diagrams are two separate diagrams that exist independently,
i.e., have separate meta-classes and cross-referencing in certain ways is not allowed (e.g.,

93



an object cannot be used as a type of a reference and links cannot be made between objects
and classes). In practice, relating UML object to class diagrams is troublesome, because it
requires the modeler to constantly switch attention between separate diagrams. In Clafer,
classes can be naturally mixed and cross-referenced with objects (encoded as singleton
classes). Also, due to syntactic unification, singleton classes encoding instances can be
easily evolved into traditional classes by updating their multiplicities.

Modal Object Diagrams (MODs) [93] extend UML object diagrams with positive/neg-
ative and example/invariant modalities. We focused on positive examples; the conflicting
example in Sect. 5.2 would be a negative example in MODs. MODs have two further
extensions: partial and parametrized object diagrams. The former are related to our la-
bels ? and extension relation. The latter are related to unknown values _. We provide
concrete syntax and semantics for both. MODs were encoded in Alloy as partial instances
via existentially quantified formulas, whereas we encode them generically via singletons.
Existentially quantified formulas do not reflect explicitly the structure of diagrams.

UML models are specified mostly in a graphical notation, but there are also textual
notations. UML-based Specification Environment (USE) [62] is a language and toolkit for
analyzing class models. UML Human-Usable Textual Notation (HUTN) [100] is an OMG
standard for specifying object models. TextUML Toolkit [104] visualizes textually encoded
models. The textual notations are incomplete in many respects, e.g., they lack constraints,
associations, or cannot model classes, etc. Clafer is a single language that provides all the
above and subsumes the listed textual notations.

In essence, Alloy [76] is a modeling language that reduces OOM to two primitives:
signatures (typed sets) and relations. The former correspond to classes; the latter to
associations. In the context of variability modeling Alloy has the same shortcomings as
UML class diagrams. In contrast with Clafer, Alloy provides no first-class support for
redefinition and for encoding hierarchical models (in Clafer, clafers can be nested arbitrarily
deeply). Both can be realized indirectly by specifying model constraints. Alloy can encode
and analyze more conceptually complex UML class diagrams [4]. Alloy is supported by a
reasoner; Kodkod [125] is Alloy’s relational model finder. Internally, it uses a SAT-solver
for instance finding and model checking. Clafer can additionally use a CSP-solver and has
a preliminary implementation using an SMT-solver. Although Kodkod has direct support
for partial instances, Alloy does not expose it in the concrete syntax. One way of encoding
partial instances is through singletons. We make this encoding precise. AlloyPI [96] extends
Alloy with special syntax for partial instances; i.e., types and partial instances have distinct
notations.

MOF [102] is an OMG standard for class-based meta-modeling. The language is strat-

94



ified into an essential subset (EMOF) and a complete one (CMOF). Kernel Meta Meta
Model (KM3) [80] is a state-of-the-art textual notation for class-based meta-modeling. As
mentioned earlier, class-based meta-modeling languages, such as MOF and KM3 and MOF
cannot express feature models as concisely as Clafer. Furthermore, Clafer covers the same
scope as MOF, but is based on fewer concepts. In MOF, similarly to UML object diagrams,
properties may have unknown values. They are specified as a question mark ? (we use _
for the same purpose). MOF does not consider the second type of partiality, i.e., optional
existence of elements (that we label as ?). Clafer models can express both.

Nivel is a meta-modeling language, which was applied to define feature and class model-
ing languages [9]. It supports deep instantiation, enabling concise definitions of languages
with class-like instantiation semantics. Clafer’s purpose is different: to provide a concise
notation for combining feature and class models within a single model. Nivel could be used
to define the abstract syntax of Clafer, but it would not be able to naturally support our
concise concrete syntax.

Partial instances occur in the contexts of uncertainty, variability, or underspecification.
Modal Transition Systems express partiality of behavioral models by introducing transi-
tions with optional existence [87]. Salay et. al showed an application of partial instances to
model uncertainty in software requirements [114] and presented a technique for refinement
verification between partial models [113]. Partial models [59] express uncertainty about
a concrete model variant. Model templates [46] express variability and model multiple
variants simultaneously. These works use annotations (similar to our labels ?) to indicate
optional elements. Our work, on the other hand, shows how a language can natively sup-
port partial instances by encoding them at the type level. The annotations go beyond the
semantics of assumed base languages.

Furthermore, as we have noted in Sect. 2.2.3, certain variants of model templates (par-
tial models, respectively) may be syntactically incorrect and dedicated analyses are needed
to detect such variants in advance [46]. The subclassing approach, on the other hand,
may encode labeled models at the level of types to make them compatible with the base
languages, as shown in this dissertation. Each valid instance of such a model encoded
at the meta-level represents a syntactically correct variant. Consequently, the problem of
syntactically incorrect variants does not occur. It is possible, however, to define dedicated
verification procedures for model templates in Clafer if needed.

Under the OWA, our theory of partial completion assumes that two partial instances,
that are completed by another (partial) instance, are consistent with each other. For
example, we exclude the case of two partial object diagrams POD1 and POD2 that contain
an object o with a slot s and the slot has different values in POD1 and POD2. The problem

95



of merging inconsistent graph-based structures is discussed in [112]. That work, however,
is not concerned with encoding partial instances via types.

Architectural languages, such as AADL [60] and AUTOSAR [106], support subclassing
of classes and associations. They are used to define partial architectures and refine subcom-
ponents. Clafer can specify architectural models with variability, and perform consistency
analysis and configuration optimization on them.

7.3 Data Modeling

Entity-relationship (ER) model [118] is a classical representation of data in relational
database systems. ER models are based on entities, relationships, and attributes. Original
ER models are very simple and a number of extensions was proposed, e.g., role names.
From the viewpoint of ER, the concept clafer unifies entities with relationships and at-
tributes, as the relationship is always reified. Navigation from the head class to the target
class in clafer is given directly, while in ER diagrams it would have to be derived, e.g., by
executing a query. Relational databases typically require models to be in the first normal
form (no nested tables). Clafer allows arbitrary nesting of clafers. Clafer, however, some
limitations with respect to ER, such as no primary and foreign keys, and no queries for
view computation.

Structured Query Language (SQL) [75] is a textual domain-specific language for man-
aging data in relational databases. Originally it was based on the theory of relational
algebra and had the same expressivity as First-Order Logic (FOL). Relational algebra
applies set operators over finitary relations (database tables). SQL can express non-trivial
constraints and queries. In fact, current SQL is Turing complete; Clafer is less expressive.

Partial instances, under the name of incomplete information, is a classical topic in
databases, from a seminal (and still influential) paper [72] to lattice-theoretic models [92]
to semistructured data [14]. However, this work is based on the value-oriented relational
data model; optionality of objects and slots is not considered.

Object-Role Modeling (ORM) [67] is a conceptual modeling method for querying and
expressing structure, business rules, ontologies, and data. It uses diagrams and provides a
Controlled Natural Language (CNL) verbalization so that specification of model elements
may resemble English sentences. Although ORM is a complete language, its concrete
syntax is quite complex. Similarly to Clafer, ORM treats attributes and more complex
concepts uniformly.

96



Extensible Markup Language (XML) [131] is a standardized markup language for ex-
changing data over the web and among applications. Conceptually, XML distinguishes
elements, attributes, and references. XML Schema (XSD) [130] is a language for describ-
ing model of XML documents. Similarly to UML, it has a number of overlapping concepts
and types. As XML and XSD, Clafer can naturally express hierarchical data models. Al-
though all three languages support references and attributes, Clafer additionally supports
complex constraints and integrates all of that into a concise framework. XML has been
criticized for verbosity, complexity, and being hardly human-readable [13, 29]. Clafer’s
concrete syntax is more concise and is meant to be human-readable.

7.4 Knowledge Representation

Knowledge Representation languages capture the structure of data together with its mean-
ing. Hierarchical models play an important role in Knowledge Representation (KR). They
are used for building a common vocabulary, e.g., in the form of ontologies specified in
RDF [128] or OWL [132]. The former is a set of triples subject-predicate-object and does not
have an explicit structure. In contrast, Clafer models recursively decompose concepts. RDF
Schema (RDFS) [129] is a semantic extension of Resource Description Framework (RDF)
and provides a meta-model for RDF documents.

Web Ontology Language (OWL) [132] is a family of standardized languages based on
Description Logic (DL) for modeling ontologies. The idea behind DL was to define the
largest decidable fragment of FOL. OWL defines three sublanguages (Lite, DL, and Full)
that have different expressive power. OWL DL is decidable, OWL Full is not [135]. OWL
focuses on the inheritance hierarchy, whereas Clafer focuses both on the inheritance and
the containment hierarchy. In contrast to RDF and OWL, Clafer is based on FOL. Clafer
and OWL are supported by reasoners. While OWL tool support focuses on classification,
Clafer instantiates models.

Prolog [37] is a declarative logic programming language based on FOL. It has been
used in artificial intelligence, natural language processing, and databases. Prolog programs
consist of rules and facts. Due to Prolog’s expressiveness programs are not guaranteed to
terminate. Datalog [33] is a syntactic subset of Prolog that guarantees termination. Prolog
is a more general language than Clafer.

OWL relies on the Open World Assumption, while Prolog and Clafer on the Closed
World Assumption. Hierarchical models are typically more concise in Clafer than in RDF,
OWL, and Prolog.

97



7.5 Analyses

Many analyses rely on the fundamental problem of checking satisfiability of a propositional
formula (SAT problem). SAT-solvers, such as MiniSat [58], Sat4j [21], Chaff [97], are pro-
grams that automatically check satisfiability of Boolean formulas. Although, in the worst
case the problem is exponential, modern solvers effectively deal with complex formulas.

Working with propositional formulas directly is inconvenient. Kodkod [125] is a rela-
tional model finder that translates relational logic models to SAT. CrocoPat [22] is a tool for
imperative relational programming. It internally uses Binary Decision Diagrams (BDDs).

Satisfiability Modulo Theory (SMT) extends SAT with theories that are typically within
FOL, such as functions, integers, strings, arrays. In contrast with SAT-solvers, SMT-solvers
can work with infinite models. Examples of SMT-solvers include Z3 [48], Yices [57], and
Hampi [84]. Many solvers implement SMT-LIB [16], a common input language and a set
of benchmarks.

SAT and SMT-solvers enable push-button verification, i.e., they work completely au-
tomatically. Theorem provers, on the other hand, work interactively. Their reasoning is
based on axioms and inference rules. Higher Order Logic (HOL) [2], Isabelle [107], and
Prototype Verification System (PVS) [105] are some prominent theorem provers.

Some structural modeling languages have strong mathematical foundations and are
meant to be analyzed. Z [74] is a set-based notation for describing models in terms of
pre- and post-conditions. The language is supported by theorem provers. Alloy [76] is
a state-of-the-art formal modeling language supported by SAT-solvers. Clafer uses the
Alloy Analyzer and a CSP-solver to perform model analyses. FORMULA [77] is a general-
purpose rich modeling language supported by an SMT-solver. Clafer has a preliminary
implementation that uses an SMT-solver as a reasoner.

Other reasoning techniques include Answer Set Programming (ASP) and Rewriting
Logic (RL). ASP is a form of purely declarative logic programming. It can express more
constructs than SAT, but fewer than SMT. Disjunctive Logic Programming (DLV) sys-
tem [90] and Smodels [98] are some of ASP-solvers. RL substitutes terms of a formula
with other terms. Maude system [36] is a state-of-the-art implementation of RL. Clafer
models may contain defaults. Reasoning over such models is easy in Maude or DLV, while
it is non-trivial using SAT and SMT-solvers.

98



7.6 Unification

A rigorous approach to unification of different types of associations based on mathematical
operations with mappings, particularly, tabulation, was proposed in [53]. Clafer develops
this idea further by introducing: 1) inheritance among clafers, 2) the ability to arbitrarily
nest properties, 3) a naming discipline that compacts syntax, and 4) the notion of multi-
clafer shape and the corresponding hierarchical view on Class Diagrams.

Formalization and unification of different views on relationships and properties has
been done in conceptual modeling, e.g., [133, 47]. In contrast to our work, they typically
focus on complex semantic aspects rather than seemingly simple tabular and navigational
aspects, and use first-order rather than diagrammatic logic and algebra.

In OOM, unification often appears within the problem of discontinuity in transition
from the design to implementation. The attempts to bridge the gap ranged from designing
a new programming language (or extending an existing one) [85, 56] to defining relation-
ships at implementation level in terms of an existing language constructs [30, 17, 66] to
concrete work on implementing UML associations in Java [123, 3, 61]. These works rarely
discuss implementation of reified associations, which are basic for Clafer. UML 2 has both,
navigable and reified associations, but the corresponding fragment of the meta-model is
inconsistent [52].

Refactoring of UML class diagrams is a practical activity performed during model
evolution [122, 12]. We acknowledge the importance of refactorings, but our idea with
Clafer is more radical: we conjecture that unification of modeling concepts reduces the
number of required model refactorings.

Formalization of conceptual modeling constructs within a framework based on diagram
predicates and operations over sets and mappings was proposed in [51, 49]. The subsequent
idea to interpret various diagrammatic notation used in structural modeling as different
visualizations of the same format of DP-graphs is developed in [54] (where DP-graphs are
called sketches). Particularly, considering UML class diagrams as visualizations of formal
class diagrams is elaborated in [50, 53]. Several applications of DP-graphs to model-driven
software engineering are developed in [110, 111]

Relating problem-space feature models and solution-space models has a long tradition.
For example, feature models have been used to configure model templates before [39,
68]. That work considered model templates as superimposed instances of a meta-model
and presence conditions attached to individual elements of the instances; however, Clafer
implements model templates as specializations of a meta-model. Such a solution allows us
treating the feature model, the meta-model, and the template at the same metalevel, simply

99



as parts of a single Clafer model. This design allows us to elegantly reuse a single constraint
language at all these levels. As another example, Janota and Botterweck show how to
relate feature and architectural models using constraints [78]. Again, our work differs from
this work in that our goal is to provide such integration within a single language. Such
integration is given in Kumbang [11], which is a language that supports both feature and
architectural models, related via constraints. Kumbang models are translated to Weight
Constraint Rule Language (WCRL), which has a reasoner supporting model analysis and
instantiation. Kumbang provides a rich domain-specific vocabulary, including features,
components, interfaces, and ports; however, Clafer’s goal is a minimal clean language
covering both feature and class modeling, and serving as a platform to derive such domain
specific languages, as needed.

7.7 Concluding remarks

In this chapter we placed Clafer in the context of structural modeling languages, partial
instantiation, model analyses, and concept unification. Clafer has similar expressivity as
the discussed languages and subsumes some of them. Similarly to Alloy and FORMULA,
it offers push-button verification. Clafer reduces structural modeling to single, well-defined
concept: clafer that has the characteristics of class, association, and property. As such, it
may be used in the design of future hierarchical modeling languages that integrate feature
and class modeling.

100



Chapter 8

Conclusion

In this dissertation we presented our research on modeling and analysis of variability in
SPLs. The premise for our work are usage scenarios mixing feature and class models
together, such as representing components as classes and their configuration options as
feature hierarchies, and relating feature models and component models using constraints.
In Chapter 2, we showed that modeling problem and solution space using either cardinality-
based feature modeling or class modeling brings extra complexity, and cardinality-based
feature models lack precise semantics. Moreover, we also argued that representing partial
instances (of meta-models) and relating feature to component configurations is non-trivial.

In Chapter 3, we introduced Clafer. We integrated feature modeling into class model-
ing, rather than trying to extend feature modeling as previously done [42]. The design of
Clafer revealed that a class modeling language can provide a concise notation for feature
modeling if it unifies concepts, supports clafer nesting, group cardinalities, and constraints
with default quantifiers. Also, hierarchical redefinition and encoding partial instances via
subclassing allow to concisely mix feature and class models. This work also has implica-
tions for programming language design. Current OO programming languages suffer from
the same problems as UML class diagrams. The need for arbitrary object nesting (declar-
ing containment and the type of contained object) has been recognized in, for example,
JavaScript Object Notation (JSON) [38] and Protocol Buffers [65].

We formalized Clafer in Chapter 4. The language design and precise definition were a
major effort. It took us a considerable amount of time to understand the basic concepts
of structural modeling, discuss various design choices, evaluate them on examples, and to
implement them in tools. Our design contributes a precise characterization of the rela-
tionship between feature and class modeling. Representing both types of models in single

101



language allows us to use a common infrastructure for model analysis and instantiation,
as shown in Chapter 6.

In Chapter 5 we demonstrated how to encode partial instances as class models. While
several previous works encode partial instances as singletons (singleton idiom in Alloy;
in AADL and in AUTOSAR, the components are nested and they have cardinalities—
AUTOSAR calls them prototypes), we are not aware of a formalization of this idea. The
presented theory makes the concept of partial instances via subclassing and its relation
to explicit partial instances precise, improving the understanding of both approaches to
language design and their tradeoffs. The encoding allows any OOM language without
native support for partial instances to support them at the class level. Clafer natively uses
this encoding to specify class models and to encode object models in the same syntax.

8.1 Limitations and Future Work

The work on Clafer presented in this dissertation is limited to structural modeling. As of
now, Clafer provides no first-class support for behavioral modeling and analysis. Behavioral
extensions, however, are under investigation and will become a part of Clafer in the future.

Clafer lacks some features of prominent structural modeling languages, such as UML
class diagrams and Alloy. Due to asymmetry of textual syntax, Clafer has no first-class
support for bidirectional associations. The semantics, however, fully support them. We
have proposed several syntactic variants for encoding associations. Clafer also lacks support
for multiple inheritance. Moreover, in contrast with OCL and Alloy, Clafer constraint
language does not support functions, transitive closure, and operations on relations. They
remain future work.

Clafer is intended for abstract modeling, therefore Clafer models typically do not con-
tain all the necessary implementational details. For example, the language does not dis-
tinguish unordered and ordered sets, as OCL does. Unlike Kconfig and CDL, Clafer is
not concerned with the way of presenting models in user interface. It is unclear whether a
structural modeling language should be able to define that.

Clafer has a compact, yet non-customizable syntax. Although it can express a variety
of models, the current concrete syntax may be unnatural for some of them. Providing
customizable concrete syntax (on top of the unified semantics) remains future work.

Clafer strives for minimality while providing expressiveness of concept-rich languages.
There are tradeoffs between notations that are unified and that explicate concepts in con-
crete syntax. Unification allows keeping the language small and simplifies implementation

102



of tools, as fewer special cases need to be considered; however, users may prefer an explicit
notation to better express their intents, for better comprehension, and, potentially, for
more efficient tools. Once two concepts are unified in semantics, differentiating them in
syntax is easy (e.g., using annotations or syntactic extensions as in DSLs). The benefit
is that a common infrastructure can still be used owing to the semantic unification. Uni-
fication also eases composition in the language (e.g., polymorphism in OO eases objects
composition). In a sense, unification is of interest also for languages that are targets of
DSL extensions. The benefits and disadvantages of concept unification in practical model-
ing should be investigated further in user studies. Also, we are not aware of any objective
and precise guidelines that specify which language construct should be unified and which
should express domain concepts explicitly. Such guidelines would be helpful for designing
more usable notations.

We have done preliminary tests with real-world users to evaluate Clafer’s usability, i.e.,
the ease of learning, writing, and understanding. A small test with students, BAs, and
consultants showed that they are able to specify correct models after reading a short tuto-
rial [5]. We also created an exercise [27] for the SE464 (Software Design and Architecture)
course students where they modeled, analyzed, and optimized a Software Product Line of
mobile phones. The students expressed positive comments on language usability and use-
fulness of analyses, but complained about the complex process of setting up tools. Proper
user studies are needed to objectively evaluate the usability of Clafer.

The current Clafer toolchain supports model analyses, collaborative model develop-
ment, and configuration. All these activities are performed with no connection to source
code. We acknowledge that models have limited use on their own; they should be related
with the source code. Tools for generating code from Clafer models remain future work.

In the context of partial instances, the formal part of our work focused on completion
and extension under the CWA. It omitted the case of completion with gluing instances.
The latter case and formalization under the OWA remain future work.

103



References

[1] choco: an Open Source Java Constraint Programming Library. http://www.emn.fr/
z-info/choco-solver/. (online; accessed August 2013).

[2] The HOL system description. http://hol.sourceforge.net. (online; accessed August
2013).

[3] D. Akehurst, G. Howells, and K. Mcdonald-Maier. Implementing associations: UML
2.0 to Java 5. SOSYM, 6, 2007.

[4] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. UML2Alloy:
A challenging model transformation. 2007.

[5] Michał Antkiewicz. Concept modeling using Clafer: Tutorial. Technical report, GSD
Lab, University of Waterloo, 2011.

[6] Michał Antkiewicz, Kacper Bąk, Krzysztof Czarnecki, Dina Zayan, Andrzej Wą-
sowski, and Zinovy Diskin. Example-Driven Modeling Using Clafer. In MDEBE,
2013.

[7] Michał Antkiewicz, Kacper Bąk, Alexandr Murashkin, Jimmy Liang, Rafael
Olaechea, and Krzysztof Czarnecki. Clafer Tools for Product Line Engineering. In
SPLC, 2013.

[8] Michał Antkiewicz, Krzysztof Czarnecki, and Matthew Stephan. Engineering of
framework-specific modeling languages. IEEE TSE, 35(6), 2009.

[9] Timo Asikainen and Tomi Männistö. Nivel: a metamodelling language with a formal
semantics. Software and Systems Modeling, 8(4), 2009.

[10] Timo Asikainen, Tomi Männistö, and Timo Soininen. A unified conceptual founda-
tion for feature modelling. In SPLC, 2006.

104

http://www.emn.fr/z-info/choco-solver/
http://www.emn.fr/z-info/choco-solver/
http://hol.sourceforge.net


[11] Timo Asikainen, Tomi Männistö, and Timo Soininen. Kumbang: A domain ontology
for modelling variability in software product families. Adv. Eng. Inform., 21(1), 2007.

[12] Dave Astels. Refactoring with UML. In XP, 2002.

[13] Jeff Atwood. XML: The Angle Bracket Tax. http://www.codinghorror.com/blog/2008/05/
xml-the-angle-bracket-tax.html. (online; accessed August 2013).

[14] Pablo Barceló, Leonid Libkin, Antonella Poggi, and Cristina Sirangelo. XML with
incomplete information: models, properties, and query answering. In PODS, 2009.

[15] Michael Barr and Charles Wells. Category theory for computing science, volume 10.
Prentice Hall New York, 1990.

[16] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard Version 2.0 Reference
Manual. http://www.smt-lib.org. (online; accessed August 2013).

[17] W. Harrison C. Barton and M. Raghavachari. Mapping UML designs to Java, vol-
ume 35. ACM, 2000.

[18] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of
feature models 20 years later: a literature review. Information Systems, 35(6), 2010.

[19] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. A survey of variability modeling in
industrial practice. In VaMoS, 2013.

[20] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof Czar-
necki. Variability modeling in the real: a perspective from the operating systems
domain. In ASE, 2012.

[21] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satis-
fiability, Boolean Modeling and Computation, 7, 2010.

[22] Dirk Beyer. Relational Programming with CrocoPat. In ICSE, 2006.

[23] Kacper Bąk. Optimized translation of Clafer models to Alloy. Technical report, GSD
Lab, University of Waterloo, 2011.

[24] Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wąsowski. Feature and meta-models
in Clafer: mixed, specialized, and coupled. SLE, 2010.

105

http://www.codinghorror.com/blog/2008/05/xml-the-angle-bracket-tax.html
http://www.codinghorror.com/blog/2008/05/xml-the-angle-bracket-tax.html
http://www.smt-lib.org


[25] Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Clafer: Unifying Class and Feature Modeling. In Submitted to SOSYM,
2013.

[26] Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Partial Instances via Subclassing. In SLE, 2013.

[27] Kacper Bąk, Rafael Olaechea, Michał Antkiewicz, and Krzysztof Czarnecki. Clafer
Exercise. http://goo.gl/cEgZ4D. (online; accessed August 2013).

[28] Kacper Bąk, Dina Zayan, Krzysztof Czarnecki, Michał Antkiewicz, Zinovy Diskin,
Andrzej Wąsowski, and Derek Rayside. Example-Driven Modeling. Model = Ab-
stractions + Examples. In ICSE, 2013.

[29] Jeff Bone. Does XML Suck? Revisited. http://www.oreillynet.com/xml/blog/2002/08/
does_xml_suck_revisited.html. (online; accessed August 2013).

[30] C. Bunse and C. Atkinson. The normal object form: bridging the gap from models
to code. 1999.

[31] Jordi Cabot, Robert Clarisó, and Daniel Riera. Verification of UML/OCL Class
Diagrams Using Constraint Programming. In MoDeVVA, 2008.

[32] Eric Cariou, Nicolas Belloir, Franck Barbier, and Nidal Djemam. OCL contracts for
the verification of model transformations. In OCL workshop of MoDELS, 2009.

[33] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know
about datalog (and never dared to ask). IEEE Transactions on Knowledge and Data
Engineering, 1(1), 1989.

[34] Andreas Classen, Quentin Boucher, and Patrick Heymans. A text-based approach to
feature modelling: Syntax and semantics of TVL. Science of Computer Programming,
76(12), 2011.

[35] Matthias Clauß. Modeling variability with UML. In GCSE, 2001.

[36] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet,
José Meseguer, and José F. Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Science, 285(2), 2001.

[37] William F. Clocksin and Christopher S. Mellish. Programming in Prolog. Springer-
Verlag, 2003.

106

http://goo.gl/cEgZ4D
http://www.oreillynet.com/xml/blog/2002/08/does_xml_suck_revisited.html
http://www.oreillynet.com/xml/blog/2002/08/does_xml_suck_revisited.html


[38] Douglas Crockford. Request for Comments: 4627. The application/json Media Type
for JavaScript Object Notation (JSON). https://tools.ietf.org/html/rfc4627. (online; ac-
cessed August 2013).

[39] Krzysztof Czarnecki and Michał Antkiewicz. Mapping features to models: A template
approach based on superimposed variants. In GPCE, 2005.

[40] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich Eisenecker. Gen-
erative programming for embedded software: An industrial experience report. In
GPCE, 2002.

[41] Krzysztof Czarnecki, Paul Grüenbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. Cool features and tough decisions: A comparison of variability modeling
approaches. In VaMoS, 2012.

[42] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-
based feature models and their specialization. SPIP, 10(1), 2005.

[43] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration
through specialization and multilevel configuration of feature models. Software Pro-
cess: Improvement and Practice, 10(2), 2005.

[44] Krzysztof Czarnecki and Chang H. Kim. Cardinality-based feature modeling and
constraints: A progress report. In OOPSLA, 2005.

[45] Krzysztof Czarnecki, Chang Hwan Peter Kim, and Karl Trygve Kalleberg. Feature
models are views on ontologies. In SPLC, 2006.

[46] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based model tem-
plates against well-formedness ocl constraints. In GPCE, 2006.

[47] M. Dahchour, A. Pirotte, and E. Zimányi. Generic relationships in information
modeling. JDSIV, 3730, 2005.

[48] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. Tools and
Algorithms for the Construction and Analysis of Systems, 4963, 2008.

[49] Z. Diskin and B. Kadish. Variable set semantics for keyed generalized sketches:
Formal semantics for object identity and abstract syntax for conceptual modeling.
DKE, 47, 2003.

107

https://tools.ietf.org/html/rfc4627


[50] Zinovy Diskin. Visualization vs. specification in diagrammatic notations: A case
study with the UML. In Diagrams, 2002.

[51] Zinovy Diskin and Boris Cadish. Variable sets and functions framework for con-
ceptual modeling: Integrating ER and OO via sketches with dynamic markers. In
OOER, 1995.

[52] Zinovy Diskin and Jürgen Dingel. Mappings, maps and tables: Towards formal
semantics for associations in uml2. In MoDELS, 2006.

[53] Zinovy Diskin, Steve Easterbrook, and Juergen Dingel. Engineering Associations:
From Models to Code and Back through Semantics. In TOOLS. 2008.

[54] Zinovy Diskin, Boris Kadish, Frank Piessens, and Michael Johnson. Universal arrow
foundations for visual modeling. In Diagrams, 2000.

[55] Zinovy Diskin and Uwe Wolter. A diagrammatic logic for object-oriented visual
modeling. Electronic Notes in Theoretical Computer Science, 203(6), 2008.

[56] S. Ducasse, M. Blay-Fornarino, and A. M. Pinna-Dery. A reflective model for first
class dependencies. In OOPSLA, 1995.

[57] Bruno Dutertre and Leonardo De Moura. The Yices SMT solver. Technical report,
SRI Computer Science Laboratory, 2006.

[58] Niklas Een and Niklas Sörensson. An Extensible SAT-solver. Theory and Applications
of Satisfiability Testing, 2919, 2004.

[59] Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models: Towards model-
ing and reasoning with uncertainty. In ICSE, 2012.

[60] Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL: An In-
troduction to the SAE Architecture Analysis & Design Language. Addison-Wesley
Professional, 2012.

[61] D. Gessenharter. Mapping the UML2 semantics of associations to a Java code gen-
eration model. 2008.

[62] Martin Gogolla, Fabian Büttner, and mark Richters. USE: A UML-Based Specifica-
tion Environment for Validating UML and OCL. Science of Computer Programming,
69(1-3), 2007.

108



[63] Martin Gogolla, Mirco Kuhlmann, and Fabian Büttner. A benchmark for ocl engine
accuracy, determinateness, and efficiency. In MODELS. 2008.

[64] Hassan Gomaa. Designing software product lines with UML. Addison-Wesley Boston,
USA;, 2004.

[65] Google. Protocol Buffers. https://developers.google.com/protocol-buffers/. (online; ac-
cessed August 2013).

[66] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recovering binary class relationships:
Putting icing on the UML cake. In OOPSLA, 2004.

[67] Terry Halpin. ORM2. In OTM, 2005.

[68] Florian Heidenreich, Jan Kopcsek, and Christian Wende. FeatureMapper: Mapping
Features to Models. In ICSE, 2008.

[69] Arnaud Hubaux, Quentin Boucher, Herman Hartmann, Raphaël Michel, and Patrick
Heymans. Evaluating a Textual Feature Modelling Language: Four Industrial Case
Studies. SLE, 2010.

[70] Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czarnecki. A user survey of configu-
ration challenges in linux and ecos. In VaMoS, 2012.

[71] IBM, Thales, Fraunhofer FOKUS, and TCS. Proposal for Common Variability Lan-
guage (CVL) Revised Submission, 2012.

[72] Tomasz Imieliński and Witold Lipski. Incomplete information in relational databases.
JACM, 31(4), 1984.

[73] Software Enginnering Institute. Catalog of software product lines. http://www.sei.cmu.
edu/productlines/. (online; accessed August 2013).

[74] ISO/IEC. ISO/IEC13568:2002: Information technology – Z formal specification no-
tation – Syntax, type system and semantics. 2002.

[75] ISO/IEC. ISO/IEC 9075-1:2008: Information technology – Database languages –
SQL – Part 1: Framework (SQL/Framework). 2008.

[76] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2011.

109

https://developers.google.com/protocol-buffers/
http://www.sei.cmu.edu/productlines/
http://www.sei.cmu.edu/productlines/


[77] Ethan K. Jackson and Janos Sztipanovits. Towards A Formal Foundation For Domain
Specific Modeling Languages. In EMSOFT, 2006.

[78] Mikolás Janota and Goetz Botterweck. Formal approach to integrating feature and
architecture models. In FASE, 2008.

[79] David Janzen and Hossein Saiedian. Test-driven development concepts, taxonomy,
and future direction. Computer, 38(9), 2005.

[80] Frédéric Jouault and Jean Bézivin. KM3: a DSL for Metamodel Specification. In
IFIP, 2006.

[81] Kyo C. Kang. FODA: Twenty years of perspective on feature modeling. In VaMoS,
2010.

[82] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Nowak, and A. Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-21, CMU, 1990.

[83] Christian Kästner. Virtual Separation of Concerns: Toward Preprocessors 2.0. PhD
thesis, University of Magdeburg, 2010.

[84] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst.
HAMPI: A Solver For String Constraints. In ISSTA, 2009.

[85] B. B. Kristensen. Complex associations: abstractions in object-oriented modeling.
In OOPSLA, 1994.

[86] Joachim Lambek and Philip J Scott. Introduction to higher-order categorical logic,
volume 7. Cambridge University Press, 1988.

[87] Kim G Larsen and Bent Thomsen. A modal process logic. In LICS, 1988.

[88] Sean Quan Lau. Domain analysis of e-commerce systems using feature-based model
templates. Master’s thesis, University of Waterloo, 2006.

[89] Daniel Le Berre and Pascal Rapicault. Dependency management for the Eclipse
ecosystem: Eclipse p2, metadata and resolution. In IWOCE, 2009.

[90] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarello. The DLV system for knowledge representation and
reasoning. ACM Transactions on Computational Logic, 7(3), 2006.

110



[91] Jimmy Liang. Solving Clafer Models with Choco. Technical Report GSDLab-TR
2012-12-30, GSD Lab, University of Waterloo, 2012.

[92] Leonid Libkin. Approximation in databases. In ICDT, 1995.

[93] Shahar Maoz, Jan Ringert, and Bernhard Rumpe. Modal Object Diagrams. In
ECOOP, 2011.

[94] Marcílio Mendonça, Moises Branco, and Donald Cowan. S.P.L.O.T. - Software Prod-
uct Lines Online Tools. In OOPSLA, 2009.

[95] Raphael Michel, Andreas Classen, Arnaud Hubaux, and Quentin Boucher. A formal
semantics for feature cardinalities in feature diagrams. In VaMoS, 2011.

[96] Vajih Montaghami and Derek Rayside. Extending Alloy with partial instances. In
ABZ, 2012.

[97] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and harad.
Malik. Chaff: engineering an efficient SAT solver. In DAC, 2001.

[98] Ilkka Niemelä, Patrik Simons, and Tommi Syrjänen. Smodels: A System for Answer
Set Programming. In NMR, 2000.

[99] Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and Derek Rayside. Modeling
and multi-objective optimization of quality attributes in variability-rich software. In
NFPinDSML.

[100] OMG. UML Human-Usable Textual Notation, 2004.

[101] OMG. Object Constraint Language, 2010.

[102] OMG. Meta Object Facility (MOF) Core Specification, 2011.

[103] OMG. OMG Unified Modeling Language, 2011.

[104] Open-source. TextUML Toolkit. http://abstratt.com/textuml/. (online; accessed August
2013).

[105] Sam Owre, Sree Rajan, John M. Rushby, Natarajan Shankar, and Mandayam K.
Srivas. PVS: Combining specification, proof checking, and model checking. Springer-
Verlag, 1996.

111

http://abstratt.com/textuml/


[106] AUTOSAR Partnership. Release 4.1. http://www.autosar.org/. (online; accessed August
2013).

[107] Lawrence C. Paulson. Isabelle: a Generic Theorem Prover. Springer – Berlin, 1994.

[108] Klaus Pohl, Gunter Bockle, and Frank van der Linden. Software product line engi-
neering, volume 10. Springer, 2005.

[109] Rehan Rauf, Michał Antkiewicz, and Krzysztof Czarnecki. Logical Structure Extrac-
tion from Software Requirements Documents. In RE, 2011.

[110] Alessandro Rossini, Adrian Rutle, Yngve Lamo, and Uwe Wolter. A formalisation of
the copy-modify-merge approach to version control in MDE. JLAP, 79(7), 2010.

[111] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A formal approach
to the specification and transformation of constraints in MDE. JLAP, 81(4), 2012.

[112] Mehrdad Sabetzadeh and Steve Easterbrook. Analysis of inconsistency in graph-
based viewpoints: a category-theoretical approach. In ASE, 2003.

[113] Rick Salay, Marsha Chechik, and Jan Gorzny. Towards a methodology for verifying
partial model refinements. In ICST, 2012.

[114] Rick Salay, Marsha Chechik, and Jennifer Horkoff. Managing requirements uncer-
tainty with partial models. In RE, 2012.

[115] Rick Salay, Michalis Famelis, and Marsha Chechik. Language independent refinement
using partial modeling. In FASE. 2012.

[116] K. Schmid and I. John. A customizable approach to full lifecycle variability manage-
ment. SCP, 53, 2004.

[117] Asadullah Shaikh, Robert Clarisó, Uffe Kock Wiil, and Nasrullah Memon.
Verification-Driven Slicing of UML/OCL Models. In ASE, 2010.

[118] Peter Pin shan Chen. The entity-relationship model: Toward a unified view of data.
ACM Transactions on Database Systems, 1, 1976.

[119] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof Czar-
necki. Variability model of the linux kernel. In VaMoS, 2010.

[120] Software Productivity Consortium Services Corporation. Reuse-driven software pro-
cesses guidebook, version 02.00.03. Technical Report SPC-92019-CMC, 1993.

112

http://www.autosar.org/


[121] Matthew Stephan and Michał Antkiewicz. Ecore.fmp: A tool for editing and in-
stantiating class models as feature models. Technical Report 2008-08, Univeristy of
Waterloo, 2008.

[122] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refactoring
UML models. In UML, 2001.

[123] C. Suscheck and B. Sandén. A construct for effectively implementing semantic asso-
ciations. JOT, 2(3), 2003.

[124] Reinhard Tartler, Julio Sincero, and Daniel Lohmann. Dead or Alive: Finding Zom-
bie Features in the Linux Kernel. In FOSD, 2009.

[125] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In TACAS,
2007.

[126] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software product lines in
action: the best industrial practice in product line engineering. Springer, 2007.

[127] Mandana Vaziri and Daniel Jackson. Some shortcomings of OCL, the object con-
straint language of UML. Technical report, MIT Laboratory for Computer Science,
1999.

[128] W3C. RDF Primer, 2004.

[129] W3C. RDF Schema, 2004.

[130] W3C. XML Schema, 2004.

[131] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition), 2008.

[132] W3C. OWL 2 Web Ontology Language Document Overview, 2009.

[133] Y. Wand, V. Storey, and R. Weber. An ontological analysis of the relationship
construct in conceptual modeling. TODS, 24(4), 1999.

[134] Dina O. Zayan. Model Evolution: Comparative Study between Clafer and Textual
UML. Technical report, GSD Lab, University of Waterloo, 2012.

[135] Evgeny Zolin. Complexity of reasoning in Description Logics. http://www.cs.man.ac.
uk/~ezolin/dl/. (online; accessed August 2013).

113

http://www.cs.man.ac.uk/~ezolin/dl/
http://www.cs.man.ac.uk/~ezolin/dl/


APPENDICES

114



Appendix A

Formal Class Diagrams

A.1 Notation and Terminology

A.1.1 Mappings

By a mapping f from a source set A to a target set B we understand a function that sends
each element of A to a collection (perhaps, empty) f(a) of elements of B. We say that f is
multi-valued. The most general collection we consider is a bag (or a family, or an indexed
set) of elements – precise definitions are in Sect. A.2.1. We call a mapping set-valued, if
all bags f(a) are actually sets (UML then annotates the mapping with marker “unique”).
A set-valued mapping is single-valued, if all non-empty sets f(a) are singletons.

A mapping is total if all bags f(a) are not empty; otherwise it is strictly partial. An
underspecified mapping, which may be total but not necessarily, is called partial. Thus,
totality and strict partiality are constraints that a general (partial) mapping may satisfy.
Following a common practice, we often say partial instead of strictly partial. Note that
according to the definition above, a single-valued mapping can be partial.

A set-valued mapping is inclusion if its source is a subset of the target, A ⊂ B, and
for all A ∈ A, f(a) = a (but a on the right of equality is considered as an element of B).
An inclusion of A into itself is the identity mapping idA : A→ A.

A set-valued mapping is containment if its inverse is total and single-valued.

Table A.1 presents the mappings and their notation. We mark a non-constrained bag-
valued mapping with the label [bag] while being set-valued is assumed by default and we

115



Mapping Arrow Intended semantics

partial bag-valued No constraints.

partial set-valued f(a) is a set for all a ∈ A

total for any a ∈ A there is b ∈ f(a).
single-valued for any a ∈ A there is at most one

b ∈ f(a).
inclusion A ⊂ B and f(a) = a.

containment for any b ∈ B there is exactly one
a ∈ A s.t. f(a) = b.

Table A.1: Notational conventions for mappings

hide the predicate [set]. Note the difference between the arrow heads for a general multi-
valued mapping (a black triangle) and a single-valued mapping (an open arrow-head).

A.1.2 Shapes and Fonts

We use the following terminology and conventions to formally specify models and meta-
models. Boxes (called classes) represent sets, boxes with rounded edges represent primitive
domains (e.g., Integer), arrows (called maps) represent mappings between sets. Names of
classes in models are written in Serif font, whereas names of classes in meta-models are
written in Small Capital font. Names of maps are in italic font. If a class or map name
is predefined then it is underlined. Diagram predicates are [red and enclosed in brackets]. For
multiplicities we skip the braces and write numbers (e.g., 1), or number ranges (e.g., 1..1).
Derived elements are shown as blue dashed.

A.2 Semantics and syntax of DP-graphs (formal CDs)

In the OO modeling view, the world consists of objects and links between them. We typi-
cally collect objects into sets, and links into mappings between these sets. Taken together,
objects, links, sets, and mappings, constitute a huge universe denoted by SetMap. A

116



particular OO model (class diagram) specifies a small fragment of the universe; usually, by
describing a diagram of sets and mappings involved in the fragment, and properties they
must satisfy. Here, we outline the basics of a mathematical framework, in which such OO-
modeling can be formally specified. We first consider semantics, i.e., the universe SetMap
as such, in Sect. A.2.1–A.2.3, and then proceed with syntactical means for specifying frag-
ments of SetMap (Sect. A.2.4). We assume that the basic notions of naive set-theory
(set, subset, an ordered pair etc., and (single-valued) function, injection, bijection, etc.)
are known.

A.2.1 Semantic universe: Mappings

We give two definitions: relational (a mapping is a span of functions), and navigational or
functional (a mapping is a multi-valued function as in Sect. A.1.1). Then we show that
both essentially define the same construct called a mapping.

Multi-relations or Spans.

Let A and B be sets. By a mapping from A to B we can understand a set of labeled links,
i.e., triples (a, b, `) with a ∈ A, b ∈ B, and ` ∈ L a label taken from some predefined set
L of link IDs, so that multiple links between the same a and b are possible. The following
definition makes the idea precise.

Definition 1 (span) A multi-relation or a span, r : A 9 B, is a triple (Lr, sr, tr) with
Lr a set, and sr, tr two totally defined single-valued functions from Lr as shown in the
following diagram:

(span) A
sr←− Lr

tr−→ B.

Set Lr is the head, functions sr, tr are the source and target legs, and sets A,B are the
source and target feet of the span.

We will denote the set of all spans from A to B by Span(A,B).

To ease reading formulas, we will align them with the geometry of diagram (span) and
write a = sr.` to denote application of function sr to ` ∈ Lr, which results in a ∈ A, and
similarly `.tr = b denotes tr applied to ` with result b ∈ B. The triple (a, `, b) is then called
an r-link ` from a to b.

117



It is easy to see that a span r : A 9 B gives rise to a total single-valued function
r̂ : Lr → A× B (even if r is strictly partial), and conversely, any such function gives us a
span with sr = r̂.p and tr = r̂.q where p : A ← A × B and q : A × B → B are projection
functions. (Totality of r is equivalent to left-surjectivity of r̂, i.e., surjectivity of sr.) Any
relation r ⊂ A × B is a span, whose head is r and legs are projections restricted to r.
Hence, the set of all relations Rel(A,B) is included into Span(A,B).

A span r ∈ Span(A,B) can be seen as a multi-relation, i.e., a relation with possible
repetitive pairs of elements (links). We can eliminate repetitive links by considering the
image of Lr, i.e., set Lr!

def
= r̂(Lr) ⊂ A × B, which consists of pairs of elements, i.e., is a

binary relation. It gives rise to a reduct span r!, whose head is Lr!, and legs are restrictions
of projections p, q above to set Lr!. Thus, we have a function !A,B : Span(A,B)→ Rel(A,B);
the subindex will be omitted if it is clear from the context.

We will also need the notion of span isomorphism, in which the number of links matters,
not their IDs.

Definition 2 Two spans r1, r2: A9 B are considered isomorphic, r1 ∼= r2, iff there is a
bijection between their heads commuting with legs.

Multi-valued functions.

By a mapping from A to B we can also understand a function that sends each element of
A to a collection (perhaps, empty) f(a) of elements of B. Hence, we first need to define
collections.

Definition 3 (families or bags) Let X be a set. A family of X’s elements is given by
an indexed set I and a function x : I → X, for which we prefer to write xi for the value
x(i), i ∈ I. Correspondingly, the graph of function x, i.e., the set {(i, xi)| i ∈ I} is denoted
by exprression {{xi| i ∈ I}}, where double-brackets indicate that repetitions (say, xi = xj
for i 6= j) are possible. In the UML parlance, such double-bracketed expressions are often
called bags, and we also use this term. However, formally, a bag is a family, i.e., the graph
of the indexing function of the family.

The set of all bags of X’s elements is denoted Bag(X).

Note that an ordinary subset A of X can be seen as a bag {{aa| a ∈ A}}={(a, a)| a ∈ A},
which is the graph of inclusion A into X. Thus, the powerset of X, Set(X), is included
into Bag(X).

118



Any bag/family x ∈ Bag(X) can be compressed to its carrier set by eliminating rep-
etitions, i.e., by taking the image {xi| i ∈ I} of the indexing function. We denote the
resulting set by x! ⊂ X. We thus have a function !X : Bag(X)→ Set(X); the subindex will
be omitted if it is clear from the context.

Definition 4 A multi-valued (mv) function, f : A � B, is a single-valued total function
f : A → Bag(X). Given a ∈ A, we will denote the indexing function of family f(a) as
fa : Iaf → B.

By composing f with !X , we obtain the set-valued reduct of f , function f ! : A→ Set(X).

Like for span isomorphism, what maters is the number of indices rather than their IDs.

Definition 5 Two mv-functions f1, f2 : A � B are considered isomorphic, f1 ∼= f2, if
for each a ∈ A, there is a bijection between the indexing sets ιa : Iaf1 → Iaf2 commuting with
the indexing functions fia, that is, ιa.f2a = f1a.

Spans and functions together: Mappings

Given a span r : A 9 B, we can build a multi-valued function r∗ : A � B by defining for
a given a ∈ A,

1) the index set Iar∗ = s−1r (a) ⊂ Lr, and

2) for a link ` ∈ Iar∗ considered as an index, r∗a(`) = `.tr (see Def.4 for the notation
used).

In a slightly different notation,

r∗(a) = {{b`| ` ∈ Iar∗ and `.tr = b`)}}
= {(`, b`)| ` ∈ Iar∗ and `.tr = b`},

(A.1)

Given any mv-function f : A� B, we build a span f ∗ : A9 B by defining

1) the set of links Lf∗ = ]{Iaf | a ∈ A} (where ] denotes disjoint union), and

2) for any link ` ∈ Lf∗ , sf∗(`) = a iff ` ∈ Iaf , and tf∗(`) = fa(`).

Theorem 1 For any span r : A9 B, r∗∗ ∼= r and r!∗ = r∗!.

For any mv-function f : A� B, f ∗∗ ∼= f and f !∗ = f ∗!.

119



Proof.. Straightforward checking

Thus, spans and mv-functions are two equivalent ways of specifying a unidirectional
association between two sets. We can use either of them to make technicalities easier.
We thus use a loose term “mapping” as a reference to either a span, or an equivalent mv-
function. For example, working with set-valued functions is convenient, and this is how
we have interpreted non-bag arrows in our formal CDs. However, if we need to consider
instantiation in the classical UML sense via typed graphs, direct linking and, hence, spans,
may be a better choice. As for bag-valued functions, working with them is technically
much simpler in the span representation.

For a puristically oriented reader, we can define a mapping in the Clafer spirit as a pair
(r, f) with r : A9 B a span and f : A� B an mv-function with r∗ ∼= f (or, equivalently,
f ∗ ∼= r).

Set-valued mappings.

Given an mv-function f : A� B and an element a ∈ A, suppose that the indexing function
fa : Iaf → B (see Def. 4) is injective. Then the bag f(a) does not have repetitions, indexes
can be forgotten, and the bag can be seen as a subset of B. If all indexing functions are
injections, then all bags f(a) can be seen as subsets, and f ∼= f ! : A → Set(B). We then
say that f is a set-valued function.

It is easy to see that in the span representation, the counterpart of set-valued functions
are relations. A mapping/span r : A 9 B is a relation iff each element/link ` ∈ Lr is
completely identified by the pair (sf .`, `.tf ).

Theorem 2 A span r : A 9 B is a relation iff its navigational counterpart, mv-function
r∗ : A� B, is set-valued.

A.2.2 Semantic universe: Operations on mappings

(Sequential) Mapping Composition.

For set-valued mappings, f : A� B, g : B � C, their composition is an ordinary functional
composition: for any a ∈ A, a.f.g = (a.f).g, where for a set X ⊂ B, X.g def

=
⋃
x∈X x.g.

For the general case of bag-valued mappings, it is much easier to define composition
for the span representation. Given two consecutive spans q : A 9 B, r : B 9 C, their

120



composition q.r : A9 C is defined as follows. The head

Lq.r
def
= {(`, `′) ∈ Lq × Lr : `1.tq = sr.`2},

and the legs are defined by setting

sq.r.(`, `
′) = sq.`, and (`, `′).tq.r = `′.tr,

which is a straightforward generalization of the ordinary binary relation composition for
the general span case. It is easy to see that if spans are relations and hence functions q∗,
r∗ are set-valued, two definitions of composition coincide (up to isomorphism).

Note that composition of set-valued mappings can be bag-valued. For example, suppose
that A = {a}, B = {b1, b2}, C = {c}, and mappings are defined functionally: f ∗(a) =
{b1, b2}, and g∗(b1) = g∗(b2) = {c}. Then f.g consists of two links, `1 = (ab1, b1c) and
`2 = (ab2, b2c), so that (f.g)∗(a) is a bag {{c`1 , c`2}}.

With so defined mapping composition, we can check that given a span f : A 9 B,
its navigational counterpart f ∗ is actually the composition s−1f .tf . Although functions sf
and tf are always set-valued, their composition can be bag-valued as demonstrated by the
example above. Think of B as the head Lβ of some span β with sβ = (f ∗)−1, and tβ = g∗.
Then β∗ = s−1β .tβ = f.g.

Inversion.

Given a set-valued function f : A� B, its inverse is a set-valued function g : A� B such
that the equivalence

a ∈ g.b⇔ a.f 3 b
holds for any a ∈ A and b ∈ B. For the general case of bag-valued functions, we again
resort to spans.

Given a span r : A 9 B, its inverse r−1 : A 8 B is defined as follows: Lr−1 = Lr,
sr−1 = tr and tr−1 = sr. That is, the inverse of mappings uses the same span but swaps
the roles of its legs. If spans are relations, both definitions coincide. It is evident that
r−1
−1

= r.

A.2.3 Semantic universe: Configurations of mappings and their
properties

Table A.2 presents several important properties of mapping configurations, which we call
diagram predicates. The left column gives their names, the middle one specifies their arities,

121



Predicate Shape Intended semantics
name/symbol (elements a, a′, b, b′ range over A,B resp.)

inv maps f, g are mutually inverse iff their spans f ∗, g∗ are
such.

key fi(a) = fi(a
′) for both i = 1, 2 implies a = a′.

= f ∗.g∗ = h∗

cover for any b ∈ B there is a ∈ Ai s.t. b ∈ fi!(a) for i=1 or
2, or both.

disj f1!(a) ∩ f2!(a′) = ∅ for all a 6= a′.

mult-trg m ≤ |f(a)| ≤ n.

mult-src m ≤ |g(b)| ≤ n where g is the inverse of f .

Table A.2: A signature of diagram predicates (the labels [bag] are omitted)

122



i.e., configurations of mappings that may have the property, and the right column provides
semantics.

A.2.4 Syntax: DP-graphs

As mentioned, an OO model specifies a fragment of the universe by describing a diagram
of sets and mappings involved in the fragment, and properties they must satisfy. That is, a
model appears as a graph with diagram predicate declarations (a DP-graph) that describe
properties. Formal CDs used in the paper are DP-graphs, whose nodes are called classes,
arrows are maps (= unidirectional assications), and predicate declarations are constraints
imposed on classes and maps. Hence, semantics of a formal CDs is given by interpreting
its classes as sets, and maps as mappings such that the constraints are satisfied. In this
section we specify syntax and semantics of DP-graphs/formal CDs formally.

Graphs

Definition 6 (Graphs and their moprhisms.) A (directed multi)graph G consists of
a set of nodes GN , a set of arrows GA, and two total single-valued functions src, trg:GA →
GN giving each arrow its source and target.

A graph morphism (mapping) f : G1 → G2 is a pair of functions fN : G1N → G2N and
fA: G1A → G2A such that the incidence of nodes and arrows is preserved: for any arrow
a ∈ G1A, src(fA(a)) = fN(src(a)) and trg(fA(a)) = fN(trg(a)).

DP-Graphs

Definition 7 (Signature.) A (diagram predicate) signature is a set Σ of predicate sym-
bols together with assignment to each label P ∈ Σ its arity shape – a graph Gar(P ).

Definition 8 ((Diagram) formulas.) Given a diagram predicate signature Σ and a graph
G, a (diagram) formula over G is a pair (P, args) with P ∈ Σ a predicate symbol, and
args : Gar(P ) → G a graph morphism binding formal parameters in the arity graph by the
actual arguments — elements of graph G. Assume the arity graph Gar(P ) has a finite set
of arrows α1...αn, and does not have isolated nodes. Then a formula can be encoded by
an expression P (a1...an) where ai = args(αi), i = 1..n. In other words, a formula is a
pair (P,~a) with P a predicate symbol and ~a a bag of arrows of the carrier graph, whose
indexing set is the arity graph Gar(P ) (note that the indexing function must be a correct
graph morphism – this constraint was called [ad], arity discipline, in Sect. 4.2.1.

123



Definition 9 (DP-Graph) A DP-graph is a pair S = (G,Φ) with G a carrier graph,
and Φ a set of formulas over G (here S stands for specification, or sketch — a family of
categorical constructs similar to DP-graphs).

Definition 10 (DP-Graph Morphisms.) A DP-graph morphism (mapping) f : S1 →
S2 is a morphism of the carrier graphs, f : G1 → G2, compatible with formulas in the
following way.

We first note that any graph morphism f : G1 → G2 translates formulas over G1 into
formulas over G2: any formula φ = P (a1..an) in Φ1 (with ai = αi.args) is translated into
a formula over G2, f(φ) = P (a1.f, ..., an.f)—indeed, args .f : Gar(P ) → G2 is a graph
morphism. Then we require that all translated formulas were declared in Φ2: f(φ) ∈ Φ2

for all φ ∈ Φ1.

A.2.5 Syntax and semantics together

A major idea of categorical logic [15] is to treat semantic universes syntactically, that is, in
our case, as DP-graphs. Indeed, the universe SetMap can be seen as a huge (categoricians
would say big) DP-graph: its nodes are sets, arrows are mappings, and formulas are true
statements about sets and mappings. For example, if A and B are sets (nodes in graph
Γ[SetMap]), and f , g are mappings between them (i.e., arrows in Γ[SetMap]) going in the
opposite direction, then, if mappings f and g are mutually inverse, i.e., (f, g) |= [inv], then
we add formula [inv](f, g) to set Φ[SetMap]. Thus, the big set of formulas Φ[SetMap]
consists of all valid statements about all possible configurations of sets and mappings
matching predicate arities. Then an instance of a DP-graph S can be seen as a DP-graph
morphism J..K : S → SetMap. An immediate consequence of such an arrangement is the
following important result:

Theorem 3 Any DP-graph morphism f : S1 → S2 gives rise to a function between the
respective sets of instances, JfK : JS1K ← JS2K, where JSiK denotes the (big) set of all
instances of DP-graph Si.

Proof.. As a correct instance of S2 is a correct graph morphism, J..K : S2 → SetMap, its
composition with f gives us a correct instance of S1.

124



Appendix B

Details of Clafer

B.1 Clafer Concrete Syntax

Conciseness is an important goal for Clafer; therefore, it provides syntactic sugar for com-
mon constructions. FigureB.1 shows the model from Fig. 3.2 in a desugared notation, in
which the defaults (e.g., multiplicities) are inserted into clafer declarations. Each declara-
tion starts with group cardinality, followed by name, optional supertype, then by optional
clafer’s target, and ends with multiplicity (see Fig. B.2). The desugared notation shows
that all clafers nested in an abstract clafer are abstract by default. There are also differ-
ent kinds of clafers: basic (have no reference target), reference set (name followed by ’→’
symbol, and reference bag (name followed by ’�’ symbol); not shown.

Clafer multiplicity is given by an interval m..n. Clafer provides syntactic sugar similar
to syntax of regular expressions: ? (optional) denotes 0..1; * denotes 0..∗; and + denotes
1..∗. By default, clafers have multiplicity 1..1.

Group cardinality is given by an interval m..n, with the same restrictions on m and n
as for multiplicities, or by a keyword: xor denotes 1..1; or denotes 1..∗; opt denotes 0..∗;
and mux denotes 0..1; further, each of the keywords makes children optional by default.
For example, xor on size (line 2) states that only one child instance of either small or large
is allowed. No explicit group cardinality stands for 0..∗, except when it is inherited from
clafers supertype.

125



1 abstract 0..∗ options 0..∗ {
2 abstract 1..1 size 1..1 {
3 abstract 0..∗ small 0..1 {}
4 abstract 0..∗ large 0..1 {}
5 }
6 abstract 0..∗ cache 0..1 {
7 abstract 0..∗ size→ int 1..1 {
8 abstract 0..∗ fixed 0..1 {}
9 }

10 }
11 [ some this.size.small &&
12 some this.cache =⇒
13 some this.cache.size.fixed ]
14 }

Figure B.1: Desugared Clafer model.

〈Clafer〉 ⇒ 〈Abs〉 〈GCard〉 string 〈Super〉 〈Target〉 〈Card〉 〈Elements〉
〈Abs〉 ⇒ | abstract
〈Elements〉 ⇒ {〈ElList〉} 〈ElList〉 ⇒ | 〈Element〉 〈ElList〉
〈Element〉 ⇒ 〈Clafer〉 | 〈Constraint〉
〈Super〉 ⇒ | : string
〈Target〉 ⇒ | 〈Kind〉 string
〈Kind〉 ⇒ → | �
〈GCard〉 ⇒ | xor | or | mux | opt | 〈NCard〉
〈Card〉 ⇒ | ? | + | * | 〈NCard〉
〈NCard〉 ⇒ integer .. ExInteger
〈ExInteger〉 ⇒ * | integer

Figure B.2: BNF grammar of Clafer (no constraints).

126



B.2 Clafer Constraint Language

The Clafer constraint language is essentially borrowed from Alloy [76]. The two most
significant differences are name resolution rules and the default some quantifier before
clafer names. Both developments contribute to conciseness of the constraints defined over
hierarchical models. Constraints are logical expressions composed of terms and logical
operators. Terms either relate values (integers, strings) or are navigational expressions.
The value of navigational expression is always a set, therefore each expression must be
preceded by a quantifier, such as no (requires set to be empty), one (requires set to have
one element), lone (requires set to have at most one element), or some (requires the set to
be non-empty). Lack of explicit quantifier (Fig. 3.2) stands for some (Fig. B.1).

Although the constraints are specified over Clafer models, we define their semantics
over Class Diagrams (our semantic domain). A formal class diagram of Clafer model is
composed of classes, maps, and constraints. An instance of class diagram is an object
diagram that is composed of objects and links; it must satisfy constraints defined over
CD. Each constraint is defined in context of a class. The context corresponds to defining
constraints nested under clafers, because in an LCS the head class represents the clafer. If
in a Clafer model constraint is defined at top-level, then in the corresponding LMCS and
CD it is defined in the context of synthetic root. The constraint language used in Clafer
allows one to define new diagram predicates of shapes spanning several Clafer shapes and
whose semantics is expressible in first-order logic.

B.2.1 Grammar

FigureB.3 shows grammar of the core constraint language. The full constraint language
has additional syntactic sugar, but any constraint may be desugared to the core constraint
language. In the first production in Fig. B.3 var represents variables bound by quantifiers.
In the production with binary operators, ⊕ is one of <,=,+,− (logical comparison, equal-
ity, addition, and subtraction, respectively). In the production with set operators, ⊗ is
one of ++,−−,&, in (set union, difference, intersection, and subsetting, respectively). The
last production Name represents names of head maps that correspond to clafer names, or
is one of reserved names. When Names form a sequence n1.n2 . . . nm, we call such as an
expression a navigation. The dot between names indicates relational join.

127



〈Exp〉 ⇒
all var : 〈SetExp〉 | 〈Exp〉 universal quantification
| 〈Exp〉 && 〈Exp〉 conjunction
| ! 〈Exp〉 negation
| 〈Exp〉 ⊕ 〈Exp〉 binary operators
| # 〈Exp〉 set cardinality
| 〈SetExp〉 set expression
〈SetExp〉 ⇒
〈SetExp〉 ⊗ 〈SetExp〉 set operators
| 〈SetExp〉 . 〈SetExp〉 relational join
| Name reserved/map name

Figure B.3: BNF grammar of core Clafer constraints

B.2.2 Name Resolution Rules

Name resolution rules disambiguate names of clafers used in constraints. The rules are
needed as clafer names may repeat in Clafer model. The rules are applied during compila-
tion of Clafer model to LMCS; thus LMCS and CD have all names properly resolved. The
rules are similar to CVL rules [71], as the latter were inspired by Clafer. A name is resolved
in the context of a clafer (top-level constraints are defined in the context of synthetic root)
as follows:

1. Reserved names. Check if it is a special name: such as parent, ref, and this. The latter
indicates object for which the constraint is evaluated. Further, primitive domains also
use reserved names, int for integers, and string for strings.

2. Binding. Check if name is introduced by a local variable (used in constraints with
quantifiers).

3. Descendants. Look up the name in descendant clafers of the context clafer in breadth-
first search manner. If a clafer has supertype, take into account inherited clafers.

4. Targets. Similar to the previous step but additionally take into account clafers reach-
able via references.

5. Ancestors. Search in the ancestors clafers starting from the parent clafer of the
context and up. For each ancestor, look up the name using the rules Descendants
and, if necessary, Targets.

6. Top level. Search in other top-level clafers. For each clafer apply rules Descendants
and, if necessary, Targets.

128



7. Error. If the name cannot be resolved or is ambiguous within a single step, the
constraint is not well-formed and an error is reported.

For navigations (expressions of the form n1.n2 . . . nm) the name resolution rules are
applied to resolve n1 first. Once it is resolved, subsequent clafers (n2.n3 . . . nm) are resolved
by applying only rules Reserved names, Descendants, and Error. Note that n1 becomes
the context clafer for resolving n2, and n2 becomes the context for n3, etc. A fully resolved
name is a navigation that starts with this, i.e., is of the form this.c2 . . . cm.

B.2.3 Type Rules

The type system is specified in a series of formal rules.

statementA

statementB

The above rule says that if A holds, then B follows.

Expressions

Universal quantification. In the rule below the environment env is extended by speci-
fying that the type of var is SetExp.

env, var :: SetExp ` Exp :: Boolean
env ` all var : SetExp | Exp :: Boolean

Conjunction.
env ` Exp1 :: Boolean env ` Exp2 :: Boolean

env ` Exp1 && Exp2 :: Boolean

Negation.
env ` Exp :: Boolean
env ` !Exp :: Boolean

Comparison.
env ` Exp1 :: τ env ` Exp2 :: τ

env ` Exp1 ⊕ Exp2 :: Boolean
,

where ⊕ ∈ {<,=}.

129



Arithmetic operator.

env ` Exp1 :: τ env ` Exp2 :: τ

env ` Exp1 + Exp2 :: τ
, where ⊕ ∈ {+,−}.

Set cardinality.
env ` Exp :: τ

env ` #Exp :: Integer

Set expression. env ` Exp :: τ

Set Expressions

Set operators.

env ` Exp1 :: τ env ` Exp2 :: τ

env ` Exp1 ++ Exp2 :: τ
,

where ⊕ ∈ {++,−−,&}.

Subsetting.
env ` Exp1 :: τ env ` Exp2 :: τ

env ` Exp1 in Exp2 :: Boolean

Relational join.

env ` Exp1 :: τ × υ env ` Exp2 :: υ × φ
env ` Exp1.Exp2 :: τ × φ

env ` Exp1 :: τ env ` Exp2 :: τ × υ
env ` Exp1.Exp2 :: υ

Reserved/map name.

env ` this :: τ

env ` Name :: τ × υ

B.2.4 Semantics

The semantics assumes that: 1) navigation paths have already been resolved to specific
clafers (head classes), and 2) all expressions are correctly typed. A constraint is specified
in the context of a class, and is evaluated in the context of each instance (object) of that

130



class. We call the latter context an environment. For an object o we initialize environment
to be env = {this 7→ o}

Env = Var→ Value

Value = P(Object) ∪ P(Link)

Environment maps variables to values, which are either sets of objects or links. Note
that a single object would be represented as a singleton set.

A constraint is a Boolean-valued expression. The semantics uses two interpretation
functions:

JKE : Exp→ Env→ Boolean ∪ P(Object)

JKS : SetExp→ Env→ Value

The former function interprets abstract syntax elements of expressions for a given en-
vironment and evaluates to a Boolean value or a set of objects. A set of objects is always
a singleton. In particular, values of primitive domains (e.g., integer) are encoded as sin-
gletons. Analogically, the latter function interprets set expressions, which are either sets
of objects or links.

Semantics of Expressions

Universal quantification. For universal quantification the expression Exp has to hold
for each instance of SetExp. It is done by extending the environment with a mapping
from from var to an instance.

Jall var : SetExp | ExpKE env=
∧
{JExpKE (env⊕ var 7→ v)|v ∈ JSetExpKS env}

Conjunction.

JExp1 && Exp2KE env= JExp1KE env∧ JExp2KE env

Negation. J!ExpKE env= ¬ JExpKE env

Less than. JExp1 < Exp2KE env= JExp1KE env< JExp2KE env

Equality. JExp1 = Exp2KE env= (JExp1KE env= JExp2KE env)

Subsetting.

JExp1 in Exp2KE env= JExp1KE env⊆ JExp2KE env

Addition. JExp1 + Exp2KE env= JExp1KE env+ JExp2KE env

131



Subtraction. JExp1 - Exp2KE env= JExp1KE env− JExp2KE env

Set cardinality. J#ExpKE env= | JExpKE env |

Set expression. Although set expressions are also expressions, they must be quantified
to evaluate to a Boolean value. JSetExpKE env= JSetExpKS env

Semantics of Set Expressions

Union. JExp1 ++ Exp2KS env= JExp1KS env∪ JExp2KE env

Difference. JExp1 – – Exp2KS env= JExp1KS env\ JExp2KE env

Intersection. JExp1 & Exp2KS env= JExp1KS env∩ JExp2KE env

Relational join. Relational join (the dot operator) joins two relations. In our formal
CDs all navigational expressions start with the this keyword, which is then followed
by names of maps (clafer names): Name. The this keyword indicates an object; it
can be viewed as a unary relation. Furthermore, all other relations are binary, thus
the final result of each navigation expression is always a set of objects. If any of the
components of the navigational expression evaluates to an empty set, the final result
is also an empty set.

JExp1.Exp2KS env=
{(x, z)|∃y((x, y) ∈JExp1KSenv ∧ (y, z) ∈JExp2KSenv)}

Reserved/map name. It refers to names of maps in formal CD. JNameKS env= env(Name)

B.3 LMCS Constraints

Each Labeled Multi-Clafer Shape is only valid if it satisfies incidence constraints (defined
in Tab. B.1), clafer kind/shape discipline constraints (defined in Tab. B.2), clafer cojoining
constraints (defined in Tab. B.3), and naming discipline constraints (defined in Tab. B.4).

132



Description Constraints
The map head_map goes from
class (role) source_class to class
head_class. Analogical constraints
hold for the maps parent_map,
ref_map, and target_map.

this.head_map.so = this.source_class
this.head_map.ta = this.head_class

Table B.1: Incidence constraints in the context of Clafer, which the LMCS meta-model
in Fig. 4.12 must satisfy

Description Constraints

The LCS of Sing has only the class
Sing as head and does not partici-
pate in inheritance.

this ∈ Sing =⇒
this.source_class = ⊥
this.target_class = ⊥

this.super = ⊥

The LCS of Dom is a basic clafer
whose parent is Sing.

this ∈ Dom =⇒
this.source_class = Sing

this.target_class = ⊥
this.super = ⊥

Basic clafers have a source_class
but no target_class. Analogical con-
straints apply to reference clafers.

this ∈ BasicClafer =⇒
this.source_class 6= ⊥
this.target_class = ⊥

Top-level clafers, that are not a syn-
thetic root, are abstract.

this.parent = ⊥ ∧ this 6= Sing =⇒
this.abstract = true

Table B.2: Clafer kind constraints in the context of Clafer, which the LMCS meta-model
in Fig. 4.12 must satisfy

133



Description Constraints
The class source_class of given LCS
is a class head_class of the parent
LCS. Analogical constraints hold for
cojoining LCS with the LCS of its
target.

this.source_class = this.parent.head_class
this.target_class = this.target.head_class

In case of subclassing between two
clafers, there exists an inclusion
between the head classes of the
two LCSs. Analogical constraints
hold for maps super s and super t if
the corresponding source and target
classes exist in both LCSs.

this.super 6= ⊥ =⇒
this.superh.so = this.head_class
this.superh.ta = this.super.head_class

Table B.3: Clafer cojoining LMCS constraints in the context of Clafer, which the LMCS
meta-model in Fig. 4.12 must satisfy

Description Constraints
The map head has the same name as
the class head. this.head_map.label = this.head_class.label

The map parent is named “parent”.
Analogical constraints holds for the
map ref.

this.parent_map.label = "parent"

The map target (if defined) has
name derived from the name of
the class head by concatenating the
name with *.

this.target_map.label =

concat(this.head_map.label, *)

There is one distinguished element
of String named “Sing”. Analogical
constraints hold for other predefined
clafers, such as “int” and “string”.

this ∈ Sing ⇐⇒ this.head_class.label = "Sing"

Table B.4: Naming constraints in the context of Clafer, which the operation Compile
must satisfy

134



Appendix C

Modeling in Clafer

C.1 Full Telematics Model

Below is the running example of telematics system modeled in Clafer.
abstract options

xor size
small ?
large ?

cache ?
size→ int

fixed ?
[ small && cache =⇒ fixed ]

abstract comp
version→ int

abstract ECU : comp

abstract display : comp
server→ ECU
‘options // shorthand for options : options
[ version ≥ server.version ]

abstract plaECU : ECU
plaDisplay : display 1..2

[ !cache
server = parent ]

135



ECU1 : plaECU

ECU2 : plaECU ?
master→ ECU1

// feature model for the specific PL

telematics
xor channel

single ?
dual ?

extraDisplay ?

xor size
small ?
large ?

[ dual⇔ ECU2
extraDisplay⇔#ECU1.plaDisplay = 2
extraDisplay⇔ (ECU2 =⇒ #ECU2.plaDisplay = 2)
large⇔ !plaECU.plaDisplay.options.size.small
small⇔ !plaECU.plaDisplay.options.size.large ]

// concrete product
[ dual && extraDisplay && telematics.size.large ]
[ all c : comp | c.version = 1]

136


	List of Tables
	List of Figures
	Introduction
	Clafer Overview
	Implementation and Evaluation
	Research Contributions
	Outline of the Dissertation
	Publications

	Challenges of Modeling Variability in Software Product Lines
	Modeling Variability in SPLs: An Example
	Three Problems
	Problem 1: Merging Feature and Class Models
	Problem 2: Representation of Partial Instances
	Problem 3: Mapping Features to Component Configurations
	Toward a Solution

	Concluding Remarks

	Clafer: Unifying Class and Feature Modeling
	Clafer vs. the Three Problems
	Clafer in a Nutshell
	Solving Problem 1: Merging Feature and Class Models
	Solving Problem 2: Representation of Partial Instances
	Solving Problem 3: Mapping Feature to Component Configurations

	Concluding Remarks

	Concept Unification and Arbitrary Property Nesting
	Anatomy of a Clafer Model and Its Instantiation
	Clafers as Views to Class Diagrams
	Clafer Shape
	Kinds of Clafers
	Clafer Nesting
	Inheritance
	Instantiation

	Formal Semantics 
	Formal Class Diagrams and Their Instantiation 
	Formalizing Clafer Syntax
	Formalizing Instantiation

	Concluding Remarks

	Partial Instances via Subclassing
	Partial Instances and Object-Oriented Modeling
	Requirements Elicitation with Partial Instances: An Example
	Completion under the Closed World Assumption
	Completion under the Open World Assumption

	Modeling Partial Examples with Subclassing
	Extension under the CWA
	Extension under the OWA
	Encoding Partial Instances as Class Diagrams

	Partial Instantiation as Subclassing
	Formal Class Diagrams and Their Extensions
	Partial Instances and Their Completion
	Partial Object Diagrams via Class Diagrams

	Partial Instances in Clafer
	Concluding Remarks

	Evaluation
	Analytical Evaluation
	Experimental Evaluation
	Threats to Validity
	Concluding Remarks

	Related Work
	Variability Modeling
	Object-Oriented Modeling
	Data Modeling
	Knowledge Representation
	Analyses
	Unification
	Concluding remarks

	Conclusion
	Limitations and Future Work

	References
	APPENDICES
	Formal Class Diagrams
	Notation and Terminology
	Mappings
	Shapes and Fonts

	Semantics and syntax of DP-graphs (formal CDs) 
	Semantic universe: Mappings
	Semantic universe: Operations on mappings
	Semantic universe: Configurations of mappings and their properties
	Syntax: DP-graphs
	Syntax and semantics together


	Details of Clafer
	Clafer Concrete Syntax
	Clafer Constraint Language
	Grammar
	Name Resolution Rules
	Type Rules
	Semantics

	LMCS Constraints

	Modeling in Clafer
	Full Telematics Model


