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ABSTRACT
Feature cardinalities in feature diagrams determine the num-
ber of times a feature and its subtree can be duplicated dur-
ing configuration by an operation named “cloning”.

Other authors already investigated the problem and pub-
lished different proposals of semantics for this construct.
However, this previous work is not easily amenable to the
formal study of the various properties of feature diagrams
and their derived configurations. Also, cross-tree constraint
languages still need to be properly extended to account for
feature cardinalities.

This paper presents an extension of an earlier formal se-
mantics of feature diagrams by adding support for feature
cardinalities.

1. INTRODUCTION
In software product lines (SPL) engineering, feature di-

agrams (FD) are a popular family of modelling languages
used to describe variability and commonalities across prod-
ucts [14]. Most of these languages are graphical and de-
pict an SPL as a tree or a DAG, where nodes are features
and edges represent hierarchical decomposition of features.
Variability is expressed by defining the combinations of fea-
tures one can and cannot choose when configuring a product
using various mechanisms such as optional features, group
cardinalities and constraints. The following figure illustrates
these concepts on a simple example taken from one of our
industrial case studies.

Figure 1 illustrates a product line of documents. Docu-
ments can be normal documents or booklets. If the sheets
must be bound, the binding feature is selected and one (and
only one) of the three proposed sides (top, left or right) must
be selected. This is specified by the [1..1] cardinality on the
group of features under ”binding”. However, as expressed by
the additional constraint under the FD, if the document is
a booklet, no binding is allowed.
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Figure 1: A simple FD

These notations have been surveyed and formalised else-
where [17]. However, they generally lack a construct that
allows to duplicate a subtree of the FD to configure a prod-
uct of the SPL. The following figure extends our previous
example to illustrate this concept.
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Figure 2: Feature cloning

Figure 2 represents the case where sheets and pages can
appear multiple times in a document. In this case, a docu-
ment is made of one or more sheets which can be folded or
not. Each sheet can contain pages for which the orientation
and the side of the sheet can be chosen. This FD illustrates
a case where a feature that is declared once in the feature
diagram will be duplicated an arbitrary number of times in
the final product. This operation of duplicating features is
known as feature cloning [9].

Feature cloning comes along with another concept illus-
trated in Figure 2: next to each cloneable feature, an in-



terval specifying bounds on the number of times the feature
can be cloned is specified between brackets. These bounds
are called feature cardinalities. Riebisch et al. [16] were the
first to propose to extend FDs with cardinalities similar to
those found in UML class diagrams.

Even if their visual representations are very similar, fea-
ture cardinalities and group cardinalities are different types
of constraints. Feature cardinalities specify the number of
times a feature and its subtree can be duplicated; group
cardinalities require to make a choice between several alter-
natives.

Feature cloning and feature cardinalities allow to go one
step further in modelling by specifying bounds on the num-
ber of times a feature can be included and customized before
the actual system is generated, and therefore opens the door
to richer models and richer configurations.

Most configurators used in feature-oriented development
produce a configuration containing the desired features by
allowing to choose between several variants, or deciding whether
an optional feature will or will not be included in the system
being generated. They allow to make choices that are valid
with respect to the feature model of the SPL but do not
include the ability to duplicate features and their subtrees.
Cases like the one presented as example in Figure 2 cannot
be handled by such configurators because of their lack of
support for feature cardinalities.

From a theoretical perspective, a formal semantics is nec-
essary to precisely evaluate language expressiveness as well
as the complexity of its associated decision procedures. From
a practical perspective, formal semantics is a prerequisite to
unambiguous modelling as well as correct and efficient im-
plementation of model-based automations.

Several authors already covered the topic and presented
formal definitions of feature cardinalities and cloning. Zhang
et al. present their own version of the semantics of clone-
able features in [21] using two different patterns and a way
of using BDDs [2] to verify models. In [9] and [10], Czar-
necki et al. define and formalize the syntax and semantics
of clone-enabled FDs. Although their definition is a major
source of inspiration for our work, it suffers from accidental
complexity due to (1) a lack of distinction between syntac-
tic domain, semantic domain and semantic function, and (2)
the usage of a rather operational style. Sun et al. propose a
formal specification in [20] which also suffers from this lack
of distinction between the elements the language. This spec-
ification is described using the Z language and then mapped
to Alloy to conduct analyses. Bak et al. propose Clafer [4],
a modelling language with support for feature cardinalities
and present its semantics as a mapping to Alloy. Prior to
Clafer, Anastakis et al. [1] already translated UML mod-
els to Alloy. Asikainen et al. defined Kumbang [3] as a
UML Profile, and PCML (Product Configuration Modelling
Language) [13]. The semantics of both these languages are
defined as mappings to WCRL (Weight Constraint Rules
Language) [19], a more general-purpose language which is
handled by smodels [18] to conduct analyses. While all
these mappings to different languages and tools like Alloy
or WCRL and smodels, indeed define semantics, these se-
mantics are implementation-dependent and not necessarily
easy to re-implement on other platforms. They are also not
well suited to conduct formal analyses and compare to prop-
erties of other semantics.

Although the concepts found in the literature already pro-

vide a solid foundation to work upon, we transpose them
in our own terms using a universal mathematical represen-
tation, which is completely independent from any existing
language or tool. As mentioned before, this universality en-
sures that our semantics can easily be reused to implement
any language and makes it easier to analyse and compare
properties of languages.

Our contribution is an adaptation of previously defined
semantics [17] with support for feature cardinalities. As
prescribed by the guidelines of Harel and Rumpe in [12],
we propose formal definitions of the syntactic domain, the
semantic domain and the semantic function.

The remainder of this paper is structured as follows. Sec-
tion 2 presents our earlier definition of the semantics of FD,
the foundations on which we build up this work, Section 3
and 4 describe how we formalize cardinality-based FDs and
their semantics. Sections 5 and 6 identify perspectives and
challenges for future work and, finally Section 7 concludes
this paper.

2. BACKGROUND
In earlier work [17] a formal syntax and semantics for

feature diagrams was presented. As this paper builds on
this existing work and extends it, we first recall its essential
elements.

Following the guidelines of Harel and Rumpe [12], the
semantics is defined by distinguishing the three elements of
our language: the syntactic domain, the semantic domain,
and the semantic function.

2.1 Syntactic domain
The syntactic domain of our language determines every-

thing that can be written using an FD modelling language.
From an abstract point of view, any FD can be seen as a tree
of features, containing a single root, and where each feature
is decomposed in one or more features, except for the leaves.
Features can be labeled as optional and cardinalities can be
used to define the decomposition type of a feature.

Definition 1 (Syntactic domain LFD).
d ∈ LFD is a 6-tuple (F, r, ω,DE, λ,Φ) such that:

• F is the (non empty) set of features (nodes).

• r ∈ F is the root.

• ω : F → {0, 1} labels optional features with a 0

• DE ⊆ F × F is the decomposition relation between
features which forms a tree. For convenience, we will
use children(f) to denote {g | (f, g) ∈ DE}, the set
of all direct sub-features of f , and write n→ n′ some-
times instead of (n, n′) ∈ DE.

• λ : F → N × N indicates the decomposition type of
a feature, represented as a cardinality 〈i..j〉 where i
indicates the minimum number of children required in
a product and j the maximum.

• Φ is a formula that captures crosscutting constraints
(� requires� and � includes�) as well as textual
constraints. Without loss of generality, we consider Φ
to be a conjunction of Boolean formulae on features,
i.e. Φ ∈ B(N)

Furthermore, each d ∈ LFD must satisfy the following
well-formedness rules:



• r is the root: ∀f ∈ F (@f ′ ∈ F • f ′ → f)⇔ f = r,

• DE is acyclic:@f1, .., fk ∈ F • f1 → ..→ fk → f1,

• Leaves are 〈0..0〉-decomposed.

• Except for the root, each node has a single parent:
∀f ∈ F \ r : ∃!f ′ ∈ F • f ′ → f

Illustration.
The following table gives a formal abstract representation

of the example presented in Figure 1.

• F = {Document, Type, Normal, Booklet, Binding,
Top, Left, Right}

• r = Document

Feature ω λ Parent (DE)
Document 1 〈1..2〉
Type 1 〈1..1〉 Document
Normal 0 〈0..0〉 Type
Booklet 0 〈0..0〉 Type
Binding 0 〈1..1〉 Document
Top 0 〈0..0〉 Binding
Left 0 〈0..0〉 Binding
Right 0 〈0..0〉 Binding

• Φ = ¬Booklet ∨ ¬Binding

These features can be combined in various ways to form
products. The set of all possible combinations of features
from a given FD is called the semantic domain. The follow-
ing subsection describes this concept.

2.2 Semantic Domain
The semantic domain contains every product that can be

derived from any possible FD expressed in terms of the ab-
stract syntax. It is thus the set of all possible sets of features.

Definition 2 (Semantic domain SFD).

SFD = P(P(F ))

The semantic domain of a simple feature diagram is often
way too big to be fully represented. On a simple FD without
feature cardinalities, the size of the semantic domain is 2n

(where n is the number of features). Enumerating all pos-
sible combinations of the eight features of the first example
would result in 64 possible configurations. Due to cardinal-
ities, tree decompositions, and other additional constraints,
not every configuration that is part of the semantic domain
refers to a valid product. That is, some configurations are
discarded because they do not fulfill all the constraints de-
fined in the FD. The mapping between the syntactic domain,
and the corresponding valid configurations in the semantic
domain is made through the semantic function.

2.3 Semantic Function
According to Harel and Rumpe [12], the semantic function

maps elements from the syntactic domain to their meaning
in the semantic domain. The semantic function of FDs is
formally defined in [7, 17] as :

Definition 3 (Semantic function).

M : LFD → SFD

where M(d) is the set of all valid feature sets c ∈ P(F ).
Each c ∈M(d) is such that

• it contains the root : r ∈ c

• it satisfies the group cardinalities:
∀f ∈ c : λ(f) = 〈m..n〉

⇒ m− |optF | ≤ |mandp| ∧ |allp| ≤ n
where:

– optF = {g|g ∈ F ∧ ω(g) = 0 ∧ f → g}
– mandc = {g|g ∈ F ∧ ω(g) = 1 ∧ f → g}
– allc = {g|g ∈ c ∧ f → g}

• it justifies each feature:

∀f ∈ F, g ∈ c : g ∈ children(f)⇒f ∈ c

• it satisfies Φ

As an example, the FD depicted in Figure 1 allows only
5 valid products (among the 64 combinations) :

• {Document, Type,Booklet}

• {Document, Type,Normal}

• {Document, Type,Normal,Binding, Top}

• {Document, Type,Normal,Binding, Left}

• {Document, Type,Normal,Binding,Right}

2.4 Limitations
In this section, we presented the translation of the first

example in terms of our formal semantics. The second ex-
ample (illustrated in Figure 2) demonstrates the limitations
of the current semantics.

• The syntactic domain lacks support for feature cardi-
nalities, i.e., they cannot be expressed in the FD.

• As the semantic domain is defined as a set, it is im-
possible to include the same feature multiple times.

• When sheets and pages are added to a document, one
needs to know on which sheet a given page appears.
The semantics must maintain this parent-children re-
lationship between clones.

These limitations impact both the static representation of
a SPL using an FD, and the dynamic process of configuring a
product. The static representation includes everything that
is defined when designing the FD, that is, the model of the
product line in terms of features, commonalities and vari-
ability. The configuration process is dynamic in the sense
that it consists of a sequence of steps that refine the FD
until a single configuration is left.

3. FORMALIZING CLONES
As mentioned in Section 2.4, the current syntax and se-

mantics of FD has limitations and does not support cloning.
This section describes the lacking elements of the existing
semantics, how clones are going to be represented as well
as how the syntax and semantics presented in Section 2 is
modified to overcome the limitations.



3.1 Syntactic Domain
Feature cardinalities allow to constrain the number of

clones allowed for a given feature.
The current formal syntactic domain already provides a

very limited support for feature cardinalities through ω, a
function which defines if a feature is optional or mandatory.
Although cardinalities are commonly represented as an in-
terval (or as a union of intervals) 〈m..n〉 where m,n ∈ N :
m ≤ n, the optional or mandatory nature of a feature can be
considered as a cardinality as well. Optionality is translated
to 〈0..1〉 and mandatory features are labeled with 〈1..1〉.
Extending the domain of ω from {0, 1} to N × (N ∪ {∗})
thus provides a way to define cardinalities for each feature
without loss of the initial functionality. The union N ∪ {∗}
as proposed by Czarnecki et al. in [11], allows to define un-
bounded cardinalities. The < operator is then extended over
this domain as ∀n ∈ N : n < ∗. For example this is needed
in the previously mentioned case studu, see Figure 2 where
the number of sheets is unknown in advance and thus un-
bounded. This extension comes with a well-formedness rule :
the root of a FD cannot be cloned and is always mandatory.
More formally, ω(r) = 〈1..1〉

3.2 Distinguishing Features and Clones
Before diving into the details of the semantics of feature

cardinalities, we need to clarify important terms of the vo-
cabulary we will use in the rest of this paper.

As mentioned in Section 2.2, in the previous semantics, a
product was defined by the set of features that were selected.
It was possible to define products as sets of features because
(i) features could only be included once in a product and (ii)
the FD contained the whole information about how features
were decomposed. Therefore no ambiguity could exist about
how the features included the product were related to each
other. This allowed to abuse the term feature and use it to
refer to the nodes of the FD, as well as to the constituting
elements of a product.

With feature cardinalities however, a feature can be in-
cluded more than once in a product. Figure 2 illustrates a
case where a document designer needs to be able to specify
the orientation of each page he wants to print. The final
product can contain the features Page, Portrait and Land-
scape several times if the document contains several pages.
This example already gives an intuitive feeling of the prob-
lem: if a document with two pages having different orienta-
tions is represented as { Document, Sheet, Page, Orienta-
tion, Page, Orientation, Portrait, Landscape }, the FD tells
that a Page has an orientation, but not which Page has
which Orientation (Portrait or Landscape). In order to be
able to reason about this problem, a clear distinction be-
tween the nodes of the FD and elements that constitute the
product is required: we will use the term feature to refer
to a node of the FD and clone to refer to an element of a
product.

An analogy can be made between clone-enabled FD and
object models: intuitively, an FD defines a “type” (feature)
hierarchy, and a clone is an “instance” of a feature in the
object-oriented sense of the term.

3.3 Representing Clones
Since the semantic domain contains the products which

are made of clones, we first need to define a suitable struc-
ture to adequately represent clones and products.

We propose a representation that maintains the tree struc-
ture of the FD and hereby preserves the parent-children re-
lationship. This representation has a recursive definition: a
clone is represented by a tuple containing its feature and a
multiset of children which are themselves clones. An intu-
itive way to express this is by describing it as a grammatical
rule : Clone := (Feature, {Clone∗}) where Feature ∈ F .
Note that this definition is purely illustrative and hides the
fact that the children of a clone are contained in a multi-
set which is by nature, unordered. The following definition
formalizes the structure of clones.

Definition 4 (Clone). If we define a clone as a tu-
ple (feature, children) where children is a multiset of clones,
then the set of all possible clones is C such that: C ⊆
F × powerbag(C)

This representation structurally forces a clone to have a
single parent. This may be seen as a lack of flexibility but
we believe that it also eliminates a lot of complexity, as up
until now, we did not encounter any real case which requires
a feature to be shared among several parents.

3.4 Semantic Domain
The semantic domain must include every possible product

that can be derived from any possible FD. Without cloning,
the semantic domain is thus the set of all possible sets of
features, i.e. P(P(F )). As stated in [8], simply defining
a configuration as a multiset of features, rather than a set,
would not solve the problem because the final products must
also contain information about how these features are con-
nected to each other, which is not possible using multisets
since the parent of a feature might appear more than once.
As we defined a clone being a feature and its multiset of
children, any clone of the root feature is an actual product.
We can thus redefine the semantic domain SFD as the set
of all possible clones.

Definition 5 (Semantic domain). If C is the set of
all possible clones as defined in Definition 4, we define the
semantic domain as SFD = C

4. SEMANTICS OF CLONING
The introduction of cardinalities on features as well as

the concept of clones and their recursive definition have a
profound impact on the semantic function and require an
adaptation.

Before we can do this, we need to examine what cloning
actually means. As it turns out, cloning is not just a small
addition to FDs, but a complex construct that affects group
cardinalities and the way we think about optionality. This
clearly illustrates the need for and benefit of a formal, tool
independent semantics.

4.1 Group Cardinalities
Group cardinalities are an already well-known concept

in the field of FD, but the fact that multiple clones of a
given feature can appear due to the feature cardinalities,
the meaning of group cardinalities has to be redefined pre-
cisely. Without feature cardinalities, group cardinalities de-
fine the number of features that can be chosen among a set
of options under an “or” node. When features can appear
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Figure 3: Possible products depending on interpretation of group cardinalities

multiple times because they are cloned, there are several
ways to interpret this semantically.

The group cardinality 〈i..j〉 requires that the number of
selected children be between i and j. The question is how to
count these when there are clones involved. Basically, there
are two questions: (a) Should all clones be counted irrespec-
tive of their parent (i.e. the cardinality applies globally), or
should clones be counted under each cloned parent (i.e. the
cardinality is local to each parent)? We will refer to this
as the level. (b) Should the clones, that is, the instances
of features, be counted rather than the features that were
instantiated? We will refer to this as the scope. This leads
to four different interpretations as illustrated in Figure 3.

(a) scope: clones, level: global. The group cardinality af-
fects the total number of nodes under all clones of B.
The scope contains all clones, at a global level. In this
case, as illustrated in (a) on the schema, we count one
clone of C and one clone of D, which together reach the
maximal cardinality of two specified in the FD.

(b) scope: clones, level: local The group cardinality affects
the total number of nodes under each clone of B. The
scope targeted here are the clones, at a local level. On
the schema labeled (b), we count two clones of C under
the B at the left side, reaching the maximum cardinality,
and thereby preventing to define a clone of D, and un-
der the second B at the right side, we count two clones
(1 C + 1 D), and we see that there is no possibility
to add more clones of C or D even though their own
cardinalities allow more than one clone of each feature.

(c) scope: features, level: global The group cardinality af-
fects the total number of features under all clones of B.
The scope is limited to features, at a global level. In
this case, on schema (c), C and D count together for
two features and thus prevent any addition of a clone of
E under any of the two clones of B.

(d) scope: features, level: local The group cardinality af-
fects the total number of features under each clone of
B. The scope is limited to features at a local level. In
this case, the cardinality is verified on the number of fea-
tures present under each clone of B: as illustrated on the
schema labeled (d), on each side, C and D each count

for one, giving two, even though there are two clones of
C on the left, they are counted as a single feature (type).

In the previous semantics, the question was not raised
because without feature cardinalities, a feature in the FD
leads to a single node in the product tree. We believe that,
when reproducing the same FD with feature cardinalities by
setting 〈0..1〉 or 〈1..1〉 cardinalities on the features, the se-
mantics should remain unchanged, which leads us to choose
the fourth option. With each different interpretation pro-
posed, we illustrated a case where the interpretation would
lead to a counter-intuitive functioning of the cardinalities.

4.2 Feature Cardinalities
Feature cardinalities define how many times a given fea-

ture can be repeated. Similarly to group cardinalities, there
is a question about what is to be counted when checking
the cardinality: should all clones be counted, irrespective
of their parent (the cardinality applies globally), or should
clones be counted under their respective parent (locally)? In
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[1..*]

[1..2]

A

B B

C C

A

B B

C C C

(a) (b)

cardinality applies
globally locally

Figure 4: Possible products depending on interpre-
tation of feature cardinalities

Figure 4, we see the difference between the global and the
local level. On the left side (a), if the cardinality on C is
enforced on the whole product (i.e. at the global level), the
second clone of B cannot have a clone of C as child, because
the first B has already the maximum number of clones of C
in its children. On the other side, as illustrated on the right
side (b), when feature cardinalites are local, each clone of B
can have one or two clones of C as children, as the cardinal-
ity is applied under each clone of B.

We decided to choose the latter option, that is, to limit the



scope of the feature cardinalities at the “local” level. Besides
the fact that this option has also been choosen by other au-
thors [9], it also corresponds to the intuitive notion of feature
cloning and allows to duplicate a subtree independently of
the rest of the product. The example illustrated in Figure 2
gives a good overview of this intuition: if the cardinality
on Page had been 〈1..4〉 to express the fact that only four
pages can be printed on each sheet (e.g. two on each side in
booklets), applying the cardinality constraint locally would
prevent printing more than four pages on each sheet while
applying the cardinality constraint globally would prevent
to print any document having more than four pages.

4.3 Optionality
As it was already the case in our previous semantics, op-

tionality has “priority” over group cardinalities. This means
that if a feature is optional, the cardinalities of an “and”
group will not prevent it to be excluded from the product.

However, as mentioned previously, feature cardinalities
also have an impact on the way we see optionality. Pre-
viously, if a feature was part of an “or” group, it could al-
ways be omitted from a product: this is the essence of an
“or” group. A mandatory feature could then be considered
optional because the only rules enforcing the presence of
mandatory features were the group cardinalities. In other
words, no rule explicitly verified that a feature labelled as
mandatory was actually part of the product. Feature car-
dinalities are more restrictive because they actually check
the number of clones and this behaviour should not inter-
fere with “or” group cardinalities. This problem is best il-
lustrated in Figure 5. We see that the feature cardinalities
require at least one clone of B, one clone of C and one
clone of D to be included. If these cardinalities are applied
without regard to the “or” group, the cardinality allowing to
select only one of the three features becomes meaningless as
none of the three options can be omitted. In order to have
an “or” group working as intuitively expected, all features
in the group should be considered as optional. We thus de-
cided to artificially make all features of a group optional by
allowing to exclude a feature from the group by verifying
feature cardinalities only for features for which at least one
clone is present.

A

B C[1..*] [1..3] D [1..2]

[1..3]

Figure 5: Feature cardinalities and “or” groups

4.4 Semantic Function
The goal of the semantic function is to make a clear dis-

tinction between elements of the semantic domain that we
consider as valid products and those that are considered in-
valid. The rules presented previously in this section allow
to make this distinction and are formalized in the semantic
function redefined hereunder.

The semantic function ensures that a product (1) has the
correct root and (2) satisfies the decomposition rules and
the cardinalities. This point is verified using four rules. The
first rule ensures that the features of the elements of the
product are decomposed exactly as they are in the FD. For

example, if a feature a is parent of a feature b in the FD,
then each clone of b will have a clone of a as parent. The
second rule expresses formally what has been discussed in
Section 4.2 about how feature cardinalities are checked. The
third rule describes how the group cardinalities are verified
as described in Section 4.1. As the clones, and thus the
products, are defined recursively, so is the part of the se-
mantic function that refers to them. A clone satisfies the
constraints, if it respects the decomposition and cardinali-
ties and all of its children respect them as well, this recursion
is allowed by the fourth rule.

In order to improve readability, we use the following no-
tational conventions:

• {|...|} denotes a multiset or bag and {...} denotes a
regular set.

Definition 6 (Semantic function M : LFD → SFD).
M(d) is the set of all products such that ∀p ∈M(d) :

• p is topped by the root of the FD : p = (r,D)

• p satisfies the constraints of the FD : p |= d

(f,D) |= d ⇐⇒

1. The decomposition hierarchy is respected:
∀(g,E) ∈ D : f → g

2. The feature cardinalities are respected:
∀g : f → g : ω(g) = 〈m..n〉
⇒ clonesg = 0 ∨ m ≤ clonesg ≤ n

where: clonesg = |{|(g,E) ∈ D|}|

3. The group cardinalities are respected: let λ(f) = 〈m..n〉,
then

m− |optF | ≤ |mandp| ∧ |allp| ≤ n
where:

• optF = {g|g ∈ F ∧ ω(g) = 〈0..y〉 ∧ f → g}
• allp = {g|∃(g,E) ∈ D}
• mandp = allp \ optF

4. For each child of f , the rules are respected:
∀(g,E) ∈ D : (g,E) |= d

5. CROSS-TREE CONSTRAINTS
In addition to the changes already presented, the introduc-

tion of feature cardinalities has an impact on the cross-tree
constraints.

In the previous semantics, the elements of a product were
features, so these constraints were expressed by Φ, a Boolean
formula over the set of features. Now that the elements of
a product are clones, the meaning of a constraint expressed
in terms of features is not clear anymore. For example, in
the constraint Booklet⇒ Folding, Booklet refers to a single
feature while Folding is a clonable feature. It is thus unclear
to what Folding inside the constraint refers to. Intuitively,
if a document is a booklet, then all its sheets must be folded.
That would mean that Folding is to be interpreted as “all
the clones of Folding”.

Another constraint that occurs in the document manage-
ment case is that “if the document is of type Normal, then
at least one page must be on the front side of a sheet”. This



cannot be written Normal⇒ Front, since that would mean
that all pages must be on the front side of a sheet. This il-
lustrates that existing constraint language is not expressive
enough to specify the constraints one might wish to express
in the presence of clones.

Essentially, the constraints which were expressed in terms
of features have to be expressed in terms of clones. Basically,
in the first example, the feature Folding was an implicit uni-
versal quantification over the set of clones of the Folding
feature. For the second example, in contrast, we would need
an existential quantification over the set of clones of Front.
A constraint language should thus offer the ability to use
quantifiers over the sets of clones of certain features. More-
over, to specify that clones of a certain feature should be
included or excluded from a product, the language should
have a construct for expressing constraints on the number
of clones of a certain feature in the product.

In addition to quantification, the constraint language needs
to be able to handle the relationships between clones. Take,
for instance, the following constraint defined on the FD used
in Figure 3: “all clones of B, which have exactly two clones
of C also have at least three clones of D”. In this example,
the scope is in between the two extremes presented in Figure
3 and Figure 4: it neither applies locally under each clone
nor globally on all clones of B, it actually applies locally
under some clones of B that satisfy the condition “have ex-
actly 2 clones of C”. This simple example shows that this
problem is not trivial and that it should be the object of
further research into a constraint language for FD with sup-
port for feature cardinalities. This language should support
formula quantification as well as lists comprehensions and
their associated operators.

Other authors already investigated the use of languages
like OCL as a constraint definition language for FDs [12].
However this language is much more general purpose and is
not specifically tailored for FD specific constraints.

6. TOWARDS AUTOMATED TOOL SUPPORT
A formal semantics is a basis for many applications. Many

possible analyses and applications have been described in [5]
and studied extensively by other authors. The current refer-
ence implementation of our semantics is a configurator based
on a SAT solver [15]. The SAT approach is well appropriate
when using only Boolean constraints but becomes limitat-
ing when feature cardinalities and cloning are involved. The
main issue we will have to face is that a single unbounded
cardinality in a FD implies a theoretically infinite set of
products. Therefore some properties like satisfiability might
not always be verified completely.

We intend to update the TVL language [6] and its associ-
ated tools with feature cardinalities, so that it conforms to
the semantics formalized in this paper and serve as a refer-
ence implementation. However, implementation details such
as technologies and algorithms still have to be determined.

7. CONCLUSION
Previous formalizations of cardinality based feature mod-

els suffered from complexity by lack of distinction between
the syntactic domain, the semantic domain and the seman-
tic function. Others simply defined semantics as mappings
to tools or other languages. We propose a formalization in-
dependent from any tool or language. The previous version

of formal semantics of FDs defined in [17] lacked support for
feature cardinalities and cloning, an important construction
in feature-oriented development. In this paper we addressed
this issue by proposing modifications to enrich the previous
work in a consistent manner. We extended the semantics
so that it now handles feature cardinalities and clones. We
also identified new challenges that come with the fundamen-
tal changes that we have made, among which the need for
an extended constraint language to complement our current
definition as well as theoretical problems due to the possi-
bly infinite size of the domains to explore when performing
formal analyses.
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