14,222 research outputs found

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    RETURNN as a Generic Flexible Neural Toolkit with Application to Translation and Speech Recognition

    Full text link
    We compare the fast training and decoding speed of RETURNN of attention models for translation, due to fast CUDA LSTM kernels, and a fast pure TensorFlow beam search decoder. We show that a layer-wise pretraining scheme for recurrent attention models gives over 1% BLEU improvement absolute and it allows to train deeper recurrent encoder networks. Promising preliminary results on max. expected BLEU training are presented. We are able to train state-of-the-art models for translation and end-to-end models for speech recognition and show results on WMT 2017 and Switchboard. The flexibility of RETURNN allows a fast research feedback loop to experiment with alternative architectures, and its generality allows to use it on a wide range of applications.Comment: accepted as demo paper on ACL 201

    LittleDarwin: a Feature-Rich and Extensible Mutation Testing Framework for Large and Complex Java Systems

    Full text link
    Mutation testing is a well-studied method for increasing the quality of a test suite. We designed LittleDarwin as a mutation testing framework able to cope with large and complex Java software systems, while still being easily extensible with new experimental components. LittleDarwin addresses two existing problems in the domain of mutation testing: having a tool able to work within an industrial setting, and yet, be open to extension for cutting edge techniques provided by academia. LittleDarwin already offers higher-order mutation, null type mutants, mutant sampling, manual mutation, and mutant subsumption analysis. There is no tool today available with all these features that is able to work with typical industrial software systems.Comment: Pre-proceedings of the 7th IPM International Conference on Fundamentals of Software Engineerin

    Virtue integrated platform : holistic support for distributed ship hydrodynamic design

    Get PDF
    Ship hydrodynamic design today is often still done in a sequential approach. Tools used for the different aspects of CFD (Computational Fluid Dynamics) simulation (e.g. wave resistance, cavitation, seakeeping, and manoeuvring), and even for the different levels of detail within a single aspect, are often poorly integrated. VIRTUE (the VIRtual Tank Utility in Europe) project has the objective to develop a platform that will enable various distributed CFD and design applications to be integrated so that they may operate in a unified and holistic manner. This paper presents an overview of the VIRTUE Integrated Platform (VIP), e.g. research background, objectives, current work, user requirements, system architecture, its implementation, evaluation, and current development and future work

    Gnocis: An integrated system for interactive and reproducible analysis and modelling of cis-regulatory elements in Python 3

    Get PDF
    Gene expression is regulated through cis-regulatory elements (CREs), among which are promoters, enhancers, Polycomb/Trithorax Response Elements (PREs), silencers and insulators. Computational prediction of CREs can be achieved using a variety of statistical and machine learning methods combined with different feature space formulations. Although Python packages for DNA sequence feature sets and for machine learning are available, no existing package facilitates the combination of DNA sequence feature sets with machine learning methods for the genome-wide prediction of candidate CREs. We here present Gnocis, a Python package that streamlines the analysis and the modelling of CRE sequences by providing extensible APIs and implementing the glue required for combining feature sets and models for genome-wide prediction. Gnocis implements a variety of base feature sets, including motif pair occurrence frequencies and the k-spectrum mismatch kernel. It integrates with Scikit-learn and TensorFlow for state-of-the-art machine learning. Gnocis additionally implements a broad suite of tools for the handling and preparation of sequence, region and curve data, which can be useful for general DNA bioinformatics in Python. We also present Deep-MOCCA, a neural network architecture inspired by SVM-MOCCA that achieves moderate to high generalization without prior motif knowledge. To demonstrate the use of Gnocis, we applied multiple machine learning methods to the modelling of D. melanogaster PREs, including a Convolutional Neural Network (CNN), making this the first study to model PREs with CNNs. The models are readily adapted to new CRE modelling problems and to other organisms. In order to produce a high-performance, compiled package for Python 3, we implemented Gnocis in Cython. Gnocis can be installed using the PyPI package manager by running ‘pip install gnocis’.publishedVersio

    A flexible architecture for modeling and simulation of diffusional association

    Full text link
    Up to now, it is not possible to obtain analytical solutions for complex molecular association processes (e.g. Molecule recognition in Signaling or catalysis). Instead Brownian Dynamics (BD) simulations are commonly used to estimate the rate of diffusional association, e.g. to be later used in mesoscopic simulations. Meanwhile a portfolio of diffusional association (DA) methods have been developed that exploit BD. However, DA methods do not clearly distinguish between modeling, simulation, and experiment settings. This hampers to classify and compare the existing methods with respect to, for instance model assumptions, simulation approximations or specific optimization strategies for steering the computation of trajectories. To address this deficiency we propose FADA (Flexible Architecture for Diffusional Association) - an architecture that allows the flexible definition of the experiment comprising a formal description of the model in SpacePi, different simulators, as well as validation and analysis methods. Based on the NAM (Northrup-Allison-McCammon) method, which forms the basis of many existing DA methods, we illustrate the structure and functioning of FADA. A discussion of future validation experiments illuminates how the FADA can be exploited in order to estimate reaction rates and how validation techniques may be applied to validate additional features of the model

    An automated model-based test oracle for access control systems

    Full text link
    In the context of XACML-based access control systems, an intensive testing activity is among the most adopted means to assure that sensible information or resources are correctly accessed. Unfortunately, it requires a huge effort for manual inspection of results: thus automated verdict derivation is a key aspect for improving the cost-effectiveness of testing. To this purpose, we introduce XACMET, a novel approach for automated model-based oracle definition. XACMET defines a typed graph, called the XAC-Graph, that models the XACML policy evaluation. The expected verdict of a specific request execution can thus be automatically derived by executing the corresponding path in such graph. Our validation of the XACMET prototype implementation confirms the effectiveness of the proposed approach.Comment: 7 page
    • 

    corecore